
PHASE EQUILIBRIA WITH ELEMENTS 

OF CHEMICAL THERMODYNAMICS

Basic definitions

Phenomenological thermodynamics is a branch of science 

dealing with macroscopic properties and phenomena without 

going into molecular (atomic) translation.

The system is a part of nature (space), whose properties or 
phenomena occurring in it are examined.



The surroundings is the part of nature (space) out of the system.

The phase is a part of the system with clear boundaries (separated from 
the rest by clear boundaries), in which one equation of state applies 
(applies).

Within the phase, macroscopic physical and chemical properties may 
change continuously, and at the phase boundaries, at least some of the 
physical and chemical macroscopic properties change discontinuously.



The phases due to their physical and chemical properties can be:

a) homogeneous

b) non-homogeneous

The homogeneous phase is one whose macroscopic physical and chemical 

properties are identical at its different locations.

Non-homogeneous phase is such that the macroscopic physical and 

chemical properties are different in the different places.

Division of systems or phases due to the numer of components:

a) one component systems (phase)

b) multticomponent systems (phase)



Division of systems due to the numer of phases:
a) one phase (homogeneous) systems (one or multi-component) 
b) multi-phase (heterogeneous) systems (one or multi-component) 



Equilibrium due to some process

One can say that the system is in equilibrium due to any process when this
process dose not go and it can not go.

Equilibrium in relation to some process, it is a state in which this process does 
not take place and can not take place.

The system or phase is in a state of equilibrium in relation to certain 
processes, if it is in a state in which neither of these processes takes place nor 
can occur. 

If in given circumstances no process takes place and can not occur, then we 
say, that the phase or system is in a state of equilibrium.



State parameters.
The quantities whose knowledge is necessary and sufficient to 
determine the state of the phase are called state parameters.

We say that the state of the system is determined when the state 
parameters of all phases of the system are known.

Demarcation (cover, boundary)
a) diathermic
b) adiabatic



The adiabatic demarcation (cover, boundary, seperation) of the 
system from the environment is one that, despite the changes outside 
the system, does not change the volume of the system. 

This means that no mechanical work has been done on the system or 
via the system.

Diathermy (diathermic) demarcation is characterized by the following 
property:

if phase 1 is in equilibrium with phase 2 and with phase 3, then phase 2 
is in equilibrium with phase 3.



If the system is surrounded by an adiabatic boundary (demarcation, 
cover), then whatever changes (processes) it experiences, we will call, by 
definition, transformations (transition) or adiabatic processes.

By definition, the adiabatic cover (delimitation) of the system shows that 
with any non-adiabatic shields, changes outside the system cause, as a 
rule, changes in the system state, and thus the state of the system 
depends on the state outside the system.

It follows that if two phases of the boundary system (separated) are from 
each other a adiabatic border (cover, demarcation), then the equilibrium 
in the first phase is completely independent of the equilibrium in the 
second phase.



Examples













In the case of non-adiabatic phase separation, the equilibrium state of 
one phase can not be adjacent to any equilibrium state of the second 
phase. It follows that the equilibrium states of the two phases are 
dependent on each other, and the nature of this relationship results from 
the nature of the boundary between the phases.

Therefore, for each non-adiabatic phase boundary, the state parameters 
of both phases denoted X1, X2, X3 ... and Y1, Y2, Y3 ... have to meet a 
certain condition of the following form:

F(𝑿𝟏, 𝑿𝟐, 𝑿𝟑, … , 𝒀𝟏, 𝒀𝟐, 𝒀𝟑, …)=0

This condition results from the nature of a given boundary and is 
characteristic for it.



In a system with non-adiabatic boundaries, the system state parameters must 
meet in equilibrium a series of equations of the above type. 

Thus, the number of independent parameters will be equal to the difference 
between the number of all state parameters and the number of these equations.

Independent state parameters are called independent variables of the system, 
because their set defines the state of the system in equilibrium. 

Thus, each equilibrium state of the system can be presented as a point in the n-
dimensional space, i.e. in the space of n independent variables (n independent 
state parameters).



Consider three phases (1, 2, 3) in a given system, which are seperated by 
the diathermic border. 
Based on the definitione of diathermic boundary if it is known that: 
phase 1 is in equilibrium with phase 2 and phase 1 is in equilibrium with 
phase 3 then always the phase 2 is in equilibrium with the phase 3.
Mathematically it means that the following equations must be met:

𝑭𝟏 𝑿𝟏, 𝑿𝟐, 𝑿𝟑, … . , 𝒀𝟏, 𝒀𝟐, 𝒀𝟑, … = 𝟎 phase 1 in equilibrium with phase 2

𝑭𝟏 𝑿𝟏, 𝑿𝟐, 𝑿𝟑, … . , 𝒀𝟏, 𝒀𝟐, 𝒀𝟑, … = 𝟎 phase 1 in equilibrium with phase 2

then also the following equation must be met:

𝑭𝟑 𝒀𝟏, 𝒀𝟐, 𝒀𝟑, … . , 𝒁𝟏, 𝒁𝟐, 𝒁𝟑, … = 𝟎 phase 1 in equilibrium with phase 3



It is known from mathematics that such relations are possible only if the 

above 3 equations are equivalent to the following equations:

𝑭𝟏(𝑿𝟏, 𝑿𝟐, 𝑿𝟑, … ) = 𝑭𝟐(𝒀𝟏, 𝒀𝟐, 𝒀𝟑, … ) = 𝑭𝟑(𝒁𝟏, 𝒁𝟐, 𝒁𝟑, … ) = 𝒕

where: T is the value of F1 , F2 , F3 functions, the same for all phases, which

are diathermic separated and in the equilibrium.

From the definitione each of the equation;

𝑭𝟏(𝑿𝟏, 𝑿𝟐, 𝑿𝟑, … ) = 𝑻; 𝑭𝟐(𝒀𝟏, 𝒀𝟐, 𝒀𝟑, … ) = 𝑻; 𝑭𝟑(𝒁𝟏, 𝒁𝟐, 𝒁𝟑, … ) = 𝐓

the state equation is called and T is the temperaturę of phase.



If in a given system, independent variables are:

for the phase 1; X1, X2, X3

for the phase 2; Y1, Y2, Y3

for the phase 3; Z1, Z2, Z3

and these phases are diathermic separated and in equilibrium, then one 
can eliminate for each phase, one variable using the state equation and 
replace it with the common variable T. Then in the system analized the 
independent variables are as follows:

T, X2, X3,…., T, Y2, Y3,…, T, Z2, Z3



Quasi-static processes 
Processes in which the temperature and external forces are 
infinitesimally different from the temperature and system's own power, 
we define as the quasi-static processes. 
Transformations in which only the condition of equality of forces will be 
fulfilled are called mechanically quasi-static processes.
The quasi-static processes are particularly useful in theoretical 
considerations, and their significance is: 
1) the value of work results from their own forces and is therefore bound 
with the phase state of 
2) the ambient temperature is equal to the temperature of the system.

In the case of the quasi-static process, the work is denoted as DW to 
distinguish from the elementary work, designated Wel.



The elementary work is expressed as follows:

Wel = L1dL1 + L2dL2 + L3dL3 + ....

Where: L1, L2, L3, ... forces resulting from the state of the system.

The expression for work in the quasi-static process has a specific 
mathematical character and depends on the state of the phase.

In the case of nonquasi-static process (transformation), the expression 
for work is not mathematical and can take any value.

Elementary work



Elemental volume work is associated with a change in the volume of the 
medium (fluid, gas, solid) and is given by:

Wel = -pdV

Where: p is the pressure acting on the fluid during the change in volume 
by dV.
In the case of elementary quasi-static work, the volume work is equal to:

DW = -pdV

Volume elementary work
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CONCLUSIONS
1. The work done (taken) when passing the system from state I to state II is 
generally dependent on the pathway on which this transformation took 
place.

2. When calculating the value of the volume work, we need to know the 
path it has taken (equation describing relation between the volume and 
pressure)

3. After summing up elementary works (after integration) you can not 
compare the work to a certain amount that is a difference in the initial and 
final state, and thus to the difference in value being a function of the state in 
these states.

4. Mathematically, this means that elementary work is not a total
differential.



Mechanical work W and heat Q are not state functions.

The types of work we encounter in thermodynamics:
Volume work:

DW = -pdV

Work of surface forces, which is given by dependence: 

DWs = sdA

where: s is surface tension, and dA is the elementary change of the liquid surface.
Mechanical work: 

DWM = FdL

where: F is strength and dL is the way or the electric work:

DWe = Edq

where: E is the potential difference and dq is the charge.



The first law of thermodynamics

1. Joule's experience.

Assumptions:

a) The same initial state of the water (medium)

b) Water in an adiabatic cover

Lessons from experience:

1.The same amount of work carried out always causes an identical 

change in the state of the phase, i.e. a change in density, temperature 

or volume

2. The amount of work required to produce an identical change in the 

phase state is proportional to the mass of the phase



Each phase of system in equilibrium is described by a state function Uj of the 
state parameters X1, X2, X3 ..

Uj = U(X1,X2,X3 ..) - a state function

The state function U of the system with j phases:

𝑼 =  𝑼𝒋 , j=1, 2, ….
Difference between the states 2 and 1, in every adiabatic transition, is given as 
follows:

𝑼𝟐 −𝑼𝟏 = ∆𝑼 = 𝑾, ∆𝑈 −𝑊 = 0,    

W - the work done on or by the system 
∆𝑼 −𝑾 = 𝟎



The first law of thermodynamics postulates the existence of a state 
function U, which is a function of independent state parameters.

If the independent parameters are denoted by X1, X2, X3, ...
then we can write the state function in the following form:

U = U(X1, X2, X3,… )



The state function is a function whose complete difference is given by the 
formula:

𝑑𝑈 =
𝛿𝑈

𝛿𝑋1
𝑑𝑋1 +

𝛿𝑈

𝛿𝑋2
𝑑𝑋2 +⋯

mixed derivatives are equal and do not dependent on the order of differentiation

dU = (x1, x2,…)dx1 +  (x1, x2,…) dx2+  (x1, x2,…) dx3

𝛿𝛼

𝛿𝑥2
=
𝛿𝛽

𝛿𝑥1
,   

𝛿𝛼

𝛿𝑥3
=
𝛿𝜑

𝛿𝑥1
, 

𝛿𝛽

𝛿𝑥3
=
𝛿𝜑

𝛿𝑥2

the change of the U state function when transitioning from state A to state B is 
equal to:

 𝐴
𝐵
𝑑𝑈 = 𝑈𝐵 − 𝑈𝐴



where: UA and UB are values of U function in a state A and B it means in 
the initial state (before the process) and in the final (after proces).



The physical meaning of the function U?
By definition, the elementary change in the U function in the adiabatic 
process is equal to:

dU = Wel (adiabatyczna) lub dU = DW(adiabatyczna i kwazystyczna)

It follows that:
1) the U function is quantitatively equal to work done in adiabatic 
transformation
2) this work was done at the expense of mechanical energy, hence
3) U value is measured in the same units and arises at the expense of 
mechanical energy, therefore,
4) the U function is different from mechanical energy and another form 
of energy, and we call it

INTERNAL ENERGY.



The mathematical formulation of the first law of thermodynamics.

The first principle of thermodynamics can be written in the form of the 
following equations:

dU =  Wel + Qel - in the case of elemental transformation
or

dU = DW + dQ - in the case of quasistatic transformation

The above mathematical formulations of the first law of thermodynamics 
are convenient for deriving practical conclusions from them.



Physical meaning of the equations of the first law of thermodynamics
cited above:

1. The first law of thermodynamics is a step towards the general principle 
of energy conservation, which also takes into account other types of 
energy,

2. Under the concept of work one should understand – all possible types
of work



Change in internal energy

The internal energy of the system can be changed by adding energy to it or by 
taking energy from the system.

If the energy is supplied to the system, it has a sign (+) and otherwise it has a 
minus sign (-). 

According to this convention, volumetric work must be given by the equation:

Wel = - PdV

because, when dV is positive (system expands) work is done by the system it
means that the system loses energy and when dV is negative, then the work is 
done on the system (compression) which means that the system gains energy.



To indicate that elementary work can consist of various works and to 
distinguish volumetric work from them, the expression for work is written 
in the following equation:

𝑊𝑒𝑙 = −𝑃𝑑𝑉 + 𝑊𝑒𝑙

Considering the above, the first law of thermodynamics can be written 
for elemental transformation as:

𝑑𝑈 = −𝑃𝑑𝑉 + 𝑄𝑒𝑙 + 𝑊𝑒𝑙

and for the quasi-static transformation as:

𝑑𝑈 = −𝑃𝑑𝑉 + 𝐷𝑄 + 𝐷𝑊



ENTHALPY

If the pressure P is the system's own pressure, the equation of the first 
law of thermodynamics can be written in a slightly different form taking 
into account the influence of own pressure and own volume.

By adding to both sides of the equation for the change of internal energy 
the expression d(PV), the following relationships are obtained:

𝑑𝑈 + 𝑑 𝑃𝑉 = −𝑃𝑑𝑉 + 𝑄𝑒𝑙 +𝑊𝑒𝑙 + 𝑑 𝑃𝑉 p.el.

𝑑𝑈 + 𝑑 𝑃𝑉 = −𝑃𝑑𝑉 + 𝐷𝑄 + 𝐷𝑊 + 𝑑(𝑃𝑉) p.qs.

and because 𝑑 𝑃𝑉 = 𝑃𝑑𝑉 + 𝑉𝑑𝑃



the above equations one can write as follows:

𝒅(𝑼 + 𝑷𝑽) = 𝑽𝒅𝑷 + 𝑸𝒆𝒍 +𝑾𝒆𝒍 p.el.

𝒅 𝑼 + 𝑷𝑽 = 𝑽𝒅𝑷 + 𝑫𝑸+ 𝑫𝑾 p.qs.

the expression in brackets :

𝑯 = 𝑼+ 𝑷𝑽

is new state function and it is named enthalpy.

Because U is the state function and P and V are state parameters, the enthalpy
is also the state function.



The first principle of thermodynamics you can also write in the form of the 
enthalpy and it is as follows:

𝒅𝑯 = 𝑽𝒅𝑷 + 𝑸𝒆𝒍 +𝑾𝒆𝒍 el

𝒅𝑯 = 𝑽𝒅𝒑 + 𝑫𝑸 +𝑫𝑾 qs

In the case of systems, in which we deal only with volumetric work, the 
first law of thermodynamics takes the form of the following equations:

𝒅𝑼 = 𝑸𝒆𝒍 − 𝑷𝒅𝑽

𝒅𝑯 = 𝑸𝒆𝒍 + 𝑽𝒅𝑷



Isochoric processes are those that run in a constant volume, i.e. for 
which:

V = const and thus dV = 0

But because:

𝑑𝑈 = 𝑄𝑒𝑙 -𝑃𝑑𝑉 => 𝑑𝑈 = (𝑄𝑒𝑙)𝑉

that is, the change of internal energy in the isochoric transformation is 
equal to the heat supplied to the system or separated by the system. 



Let us consider a system consisting of only one uniform phase, whose 
state is function of temperature T and volume V. Then internal energy is 
a function of these state parameters and is expressed by the general 
formula:

𝑑𝑈 = 𝑈 (𝑇, 𝑉)

and its complete differential is given by the equation:

𝒅𝑼 =
𝜹𝑼

𝜹𝑽 𝑻
𝒅𝑽 +

𝜹𝑼

𝜹𝑻 𝑽
𝒅𝑻

and for V=const

𝒅𝑼 =
𝜹𝑼

𝜹𝑻 𝑽
𝒅𝑻



but because: 

𝒅𝑼 = 𝑸𝒆𝒍 𝑽

then:

𝒅𝑼 =
𝜹𝑼

𝜹𝑻 𝑽
𝒅𝑻 = 𝑸𝒆𝒍 𝑽

that is, the heat delivered to the phase in the isochoric process is equal 
to the change in its internal energy. Because the internal energy U is a 
function of the parameters V and T, when the V is constant, the change 
in the internal energy of the system must cause a change in the 
temperature T.



So the change U caused by the heat Qel (supplied or given up) is manifested in this 
case by a change in temperature by dT.

Dividing the last equation by dT we get a new dependence of the form:

𝜹𝑼

𝜹𝑻 𝑽
=
𝑸𝒆𝒍 𝑽
𝒅𝑻

The right side of the equation gives information about the amount of heat to be 
delivered to the system (phase) to cause the change of temperature T  of 1 degree.

If the system consists of 1 gram of phase, then the ratio (Qel)V / dT is called the 
specific heat and we designate it as cV.

If the system consists of 1 mole of atoms, we call it the thermal capacity or molar 
specific heat at a constant volume and it is denoted as CV.



Relation between mentioned two kind of specific heats is as follows:

𝜹𝑼

𝜹𝑻
𝑽

=
𝑸𝒆𝒍
𝒅𝑻

𝑽

= 𝑪𝑽 = 𝑴𝒄𝑽

where: CV – the molar specific heat in [J/gramatom], 
cV – the specific heat in [J/gram] and M – the atomic mass in 
[gram/mole]



Conclusion
If the relations between the internal energy of any phase U and temperature T
and molare volume V is known one can always calculate the heat capatity by 
constat volume by differention the internal energy with respect to the 
temperaturę T. 

Hess's law
Consider a system consisting of a series of phases in which isochoric 
transformation takes place. Then, in accordance with the first law of 
thermodynamics, we know that:

𝒅𝑼 = 𝑸𝒆𝒍 𝑽

That is, the change in internal energy = the heat of the isochoric transformation



The total change in internal energy as a function of state depends only on the 
state parameters, i.e. on the difference in its final (2) and initial (1) value. We can 
therefore write:

𝑈2 − 𝑈1 =  
1

2

𝑑𝑈 =  
1

2

 𝑄𝑒𝑙 = 𝑄𝑉

QV – the transition thermal (heat) effect

𝑈2 − 𝑈1 = 𝑄𝑉

The thermal (heat) effect of the isochoric transition from state 1 to 2 is equal to 
the difference in internal energy in the final state (2) and the initial state (1). This 
difference does not depend on the path of isochoric transformation, but only on 
the initial and final state of transformation.



The consequence of the above law is that the heat of obtaining products from 
substrates in the isochoric process does not depend on intermediate reactions or 
their order.

In the case of an isobaric transformation, Hess's law sounds similar but it 
concerns enthalpy:

𝑯𝟐 − 𝑯𝟏 = 𝑸𝒑

The equation above says,that the thermal effect of the isobaric process from the 
initial state (1) to the final state (2) is equal to the enthalpy difference in both 
states. This difference does not depend on the transformation path but only on 
the initial and final state. 

For chemical reactions, the thermal effect of receiving products from substrates 
does not depend on the intermediate reactions or their order.



H= 𝑼 + 𝑷𝑽

dH = Qel + VdP for p=const

dH = (Qel)p  𝒅𝑯 =
𝑸𝒆𝒍

𝒅𝑻 pdT

H = H(T, p)     𝒅𝑯 =
𝒅𝑯

𝒅𝑻 p dT + 
𝒅𝑯

𝒅𝒑 T dp for p=const

𝒅𝑯 =
𝒅𝑯

𝒅𝑻 pdT    
𝒅𝑯

𝒅𝑻 p = 
𝑸𝒆𝒍

𝒅𝑻 p = Cp  dH = Cp dT

H2 - H1 =  𝟏
𝟐
𝑪𝒑dT



If state A is the state before the process and B is the state after the process, equality 
occurs for the reversible process:

(Su + Sot)B = (Su + Sot)A 

And for the irreversible process:

(Su + Sot)B > (Su + Sot)A 

THE SECOND  LAW OF THERMODYNAMICS

𝒅𝑺 ≥
𝑸𝒆𝒍
𝑻

Where: dS is a complete differential of entropy, T is the temperature and Qel is 

the heat of transformation.



𝒅𝑺 ≥
𝑸
𝒆𝒍

𝑻
dS -
𝒅𝑼 −𝑾𝒆𝒍

𝑻
≥ 𝟎

TdS – (dU + Wel) ≥ 0 or dU – TdS ≥ Wel

d(U – TS) = Wel

F = U - TS - free energy, Helmholtza free energy

F + PV = U – TS + PV d(F+PV) = d(U-TS+PV)

F + PV = G = U – TS + PV = U + PV – TS 

G = H – TS     - free enthalpy, Gibbs free energy, Gibbs energy



G = U – TS + PV 

G = H – TS 

dG = dH – TdS

𝑮𝟐 − 𝑮𝟏 =  𝟏
𝟐
𝑪𝒑𝒅𝑻 − 𝑻 𝟏

𝟐 𝑪𝒑

𝑻
𝒅𝑻

𝑪𝒑 = 𝒂 + 𝒃𝑻 + 𝒄𝑻𝒍𝒏𝑻 + 𝒅𝑻
𝟐

where: a, b, c, d – parameters obtained from measurements of Cp



CALCULATION OF ENTHALPY, ENTROPY AND GIBBS FREE ENERGY

Calculation of the enthalpy change of a substance.

𝒅𝑯 =  𝑪𝒑𝒅𝑻

𝑪𝒑 = 𝒂 + 𝒃𝑻 + 𝒄/𝑻
𝟐 + 𝒅𝑻𝟐

∆𝑯 = 𝑯𝟐 −𝑯𝟏 =  𝟏
𝟐
𝑪𝒑𝒅𝑻

Calculation of the enthalpy at the temperaturę T2 :

𝑯𝟐 =  𝟏
𝟐
𝑪𝒑𝒅𝑻 +𝑯𝟏

H1 must be known.



When p = p0 = 1atm oraz T1 = T0 = 298.16 K (standard conditions), the enthalpy
H1 is called the standard enthalpy and is designated by 𝑯𝑻𝟎

𝟎 . 

𝑯𝟐 =  
𝟏

𝟐

𝑪𝒑𝒅𝑻 +𝑯𝑻𝟎
𝟎

𝑯𝟐 =  𝟏
𝟐
(𝒂 + 𝒃𝑻 +

𝒄

𝑻𝟐
+ 𝒅𝑻𝟐)𝒅𝑻 + 𝑯𝑻𝟎

𝟎

𝑯𝟐 = 𝒂(𝑻 − 𝑻
𝟎) + 𝒃

𝑻𝟐−𝑻𝟎𝟐

𝟐
+ 𝒄
𝑻−𝑻𝟎

𝑻∙𝑻𝟎
+ 𝒅
𝑻𝟑−𝑻𝟎𝟑

𝟑
+𝑯𝑻𝟎
𝟎

||               ||             ||              ||

ℎ1
0 ℎ2

0 ℎ3
0 ℎ4

0



𝑯𝜶𝑻 = 𝑎𝜶 ∙ ℎ1
0 + 𝒃𝜶 ∙ ℎ2

0 + 𝒄𝜶 ∙ ℎ3
0 +𝒅𝜶 ∙ ℎ4

0 +𝑯𝜶𝑻𝟎
𝟎

a, b, c, d – parameters of Kelley’s equation for Cp, 𝑯𝜶𝑻 – the enthalpy at
temperature T and 𝑯𝜶𝑻𝟎

𝟎 - the standard enthalpy of  phase.



𝑯
𝜶𝑻𝟎
𝟎 - the standard enthalpy of  phase

𝑯
𝜷𝑻𝟎
𝟎 - the standard enthalpy of  phase

𝑯
𝜸𝑻𝟎
𝟎 - the standard enthalpy of g phase

∆𝑯𝜶→𝜷 - the transition enthalpy of  to 

phase
∆𝑯𝜷→𝜸 - the transition enthalpy of  to g

phase



𝑺𝟐 =  
𝟏

𝟐𝑪𝒑

𝑻
𝒅𝑻 + 𝑺𝑻𝟎

𝟎

𝑺𝟐 =  𝟏
𝟐
(
𝒂

𝑻
+ 𝒃 +

𝒄

𝑻𝟑
+ 𝒅𝑻)𝒅𝑻 + 𝑺𝑻𝟎

𝟎

𝑺𝟐 = 𝒂𝒍𝒏
𝑻

𝑻𝟎
+ 𝒃(𝑻 − 𝑻𝟎) +𝒄

𝑻𝟐−𝑻𝟎𝟐

𝟐𝑻𝟐∙𝑻𝟎𝟐
+ 𝒅
𝑻𝟐−𝑻𝟎𝟐

𝟐
+ 𝑺𝑻𝟎
𝟎

||               ||             ||              ||

𝑠1
0 𝑠2

0 𝑠3
0 𝑠4

0



𝑺𝜶𝑻 = 𝒂𝜶 ∙ 𝑠1
0 + 𝒃𝜶 ∙ 𝑠2

0 + 𝒄𝜶 ∙ 𝑠𝟑
𝟎 +𝒅𝜶 ∙ 𝑠𝟒

𝟎 + 𝑺𝜶𝑻𝟎
𝟎

a, b, c, d – parameters of Kelley’s equation for Cp, 𝑺𝜶𝑻 – the entropy at
temperaturę T and 𝑺𝜶𝑻𝟎

𝟎 - the standard entopy of  phase.



𝑺
𝜶𝑻𝟎
𝟎 - the standard entropy of  phase

𝑺
𝜷𝑻𝟎
𝟎 - the standard entropy of  phase

𝑺
𝜸𝑻𝟎
𝟎 - the standard entropy of g phase

∆𝑺𝜶→𝜷 - the transition entropy of  to 

phase
∆𝑺𝜷→𝜸 - the transition entropy of  to g

phase



Exercise 1

Calculate the change in the enthalpy and entropy of solid and liquid zinc in the 
temperature range from T0 = 298.16 K to T = 1000 K, step =100 K based on 
following data:

MPT=692.655K    BPT= 1180K

s - 4.956   2.99E-3    .199E+5    0.             298.14     𝐻𝛼𝑇0
0 = 0. 𝑆𝛼𝑇0

0 = 9.95

l  - 7.5     3*0.                                 692.655   ∆𝐻𝑠→𝑙 = 1750.

g - 4.968   3*0.                                1180.       ∆𝐻𝑙→𝑔 = 27569.   


