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The first order stresses



Stress and strain

Tensile, bending, compressive and shear loads

.

Donald R. Askeland, Pradeep P. Phulé „The science and engineering of materials”, Thomson 2006.
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where:  - stress

S – internal resistance force

F – axial force
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Engineering Stress = σ = F/S [MPa]

Stress and strain
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=Fn/S

Tensile stress

=Fs/S

Tangential (shear) stress

The value of stress is always equal to the force divided by the area.

Units : (Nm-2) (MNm-2) lub MPa

1 Pa = 1,019716·10 -5 at

= 1,019716·10 -5 kG/cm2
= 1,450377·10 -4 psi
= 10 -5 bar
= 0,98692326671·10 -5 atm
= 0,0075006167382112 mmHg
= 0,1019716212977928 mmH2O
= 10 b
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What causes tensile stress?
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linear strain

n – nominal linear strain

p – transverse strain

Elongation changes the transverse cross-section, 

the measure of the strain is: 



What is the shear stress??
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Non-dilatational strain
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Defined strains

n – nominal linear strain (+)

p – transverse strain (-)

 - non-dilatational strain



Poisson's coefficient:
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In case of large deformations

n this case, we are talking about real strain:
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where: lo - length before deformation, l – length after deformation



Young's modulus

According to Hooke's law (for small deformations), the deformation is proportional to the compression or tensile force applied:

σ=Eε

gdzie E – Youngs modulus (współczynnik sprężystości wzdłużnej) [GPa]

The elastic deformation is the result of the increased distance between the atoms:

Stress expressed by the change 

of distance between atoms
Stress-free Change in shape due to application of 

tensile force



First, second and third order stresses,

XRD, TEM and SEM



Definition of different types of stresses at various spatial scales 

Scale of the first order stresses

(the macrostress is the mean value over          volume) 
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Scale of the second order stresses

(         is the mean stress for the volume        of the g– th grain) 
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Scale of the third order stresses

(the local stress at r position is indicated) 
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First order stresses

XRD



Strain Measurement
To perform strain measurements the specimen is placed in the X-ray diffractometer, and it is exposed to an X-

ray beam that interacts with the crystal lattice to cause diffraction patterns. By scanning through an arc of

radius about the specimen the diffraction peaks can be located and the necessary calculations made.

There is a clear relationship between the diffraction pattern that is observed when X-rays are diffracted through

crystal lattices and the distance between atomic planes (the inter-planar spacing) within the material. By altering

the inter-planar spacing different diffraction patterns will be obtained. Changing the wavelength of the X-

ray beam will also result in a different diffraction pattern. The inter-planar spacing of a material that is free from

strain will produce a characteristic diffraction pattern for that material. When a material is strained, elongations

and contractions are produced within the crystal lattice, which change the inter-planar spacing of the {hkl} lattice

planes. This induced change in d will cause a shift in the diffraction pattern. By precise measurement of

this shift, the change in the inter-planar spacing can be evaluated and thus the strain within the material

deduced.

M.E. Fitzpatrick, A.T. Fry, P. Holdway, F.A. Kandil, J. Shackleton and L. Suominen: Determination of Residual Stresses by X-ray Diffraction. 
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Strain Measurement

M.E. Fitzpatrick, A.T. Fry, P. Holdway, F.A. Kandil, J. Shackleton and L. Suominen: Determination of Residual Stresses by X-ray Diffraction. 



Let us assume that because the measurement is made within the surface, that σ3 = 0. The strain εz however will not be equal to zero. The strain εz can be
measured experimental by measuring the peak position 2θ, and solving equation nλ = 2d'sinθ for a value of dn. If we know the unstrained inter-planar spacing
d0 then:

By altering the tilt of the specimen within the

diffractometer, measurements of planes at an

angle ψ can be made and thus the strains along

that direction can be calculated using

Schematic showing diffraction planes parallel to the surface and at an angle φψ. Note σ1 and σ2 both lie in the plane of the specimen surface. 

The strain within the surface of the material can be measured by comparing the

unstressed lattice inter-planar spacing with the strained inter-planar spacing.

M.E. Fitzpatrick, A.T. Fry, P. Holdway, F.A. Kandil, J. Shackleton and L. Suominen: Determination of Residual Stresses by X-ray Diffraction. 



{hkl}

y

S{hkl}

→

Sin2y method
By altering the tilt of the specimen within the diffractometer, measurements of

planes at an angle ψ can be made and thus the strains along that direction

can be calculated using



Stress Determination

Whilst it is very useful to know the strains within the material, it is more useful to

know the engineering stresses that are linked to these strains. From Hooke’s

law we know that

Tensile force producing a strain in the X-direction will produce not only a linear

strain in that direction but also strains in the transverse directions. Assuming a

state of plane stress exists, i.e. σz = 0, and that the stresses are biaxial, then the

ratio of the transverse to longitudinal strains is Poisson’s ratio, ν;

M.E. Fitzpatrick, A.T. Fry, P. Holdway, F.A. Kandil, J. Shackleton and L. Suominen: Determination of Residual Stresses by X-ray Diffraction. 



If we assume that σz = 0 then:

Thus:

Equation applies to a general case, where only the sum of the principal stresses can be obtained, and the 

precise value of d0 is required.

M.E. Fitzpatrick, A.T. Fry, P. Holdway, F.A. Kandil, J. Shackleton and L. Suominen: Determination of Residual Stresses by X-ray Diffraction. 



Elasticity theory for an isotropic solid shows that the strain along an inclined line (m3) is:

M.E. Fitzpatrick, A.T. Fry, P. Holdway, F.A. Kandil, J. Shackleton and L. Suominen: Determination of Residual Stresses by X-ray Diffraction. 



If we consider the strains in terms of inter-planar spacing, and use the strains to evaluate the stresses, then it can 

be shown that:

This equation allows us to calculate the stress in any chosen direction from the inter-planar spacings

determined from two measurements, made in a plane normal to the surface and containing the direction

of the stress to be measured.

M.E. Fitzpatrick, A.T. Fry, P. Holdway, F.A. Kandil, J. Shackleton and L. Suominen: Determination of Residual Stresses by X-ray Diffraction. 
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The most commonly used method for stress determination is the sin2ψ method. A number of XRD

measurements are made at different psi tilts. The inter-planar spacing, or 2-theta peak position, is measured and

plotted as a curve similar to that shown below:

M.E. Fitzpatrick, A.T. Fry, P. Holdway, F.A. Kandil, J. Shackleton and L. Suominen: Determination of Residual Stresses by X-ray Diffraction. 



The stress can then be calculated from such a plot by calculating the gradient of the line and with basic

knowledge of the elastic properties of the material. This assumes a zero stress at d = dn, where d is the intercept

on the y-axis when sin2ψ = 0:

where m is the gradient of the d vs. sin2ψ curve.

The above equation is the basis of stress determination using X-ray diffraction. 

M.E. Fitzpatrick, A.T. Fry, P. Holdway, F.A. Kandil, J. Shackleton and L. Suominen: Determination of Residual Stresses by X-ray Diffraction. 



More complex solutions for stress determination using X-ray diffraction exist for non-ideal situations where, for

example, psi splitting occurs (caused by the presence of shear stresses) or there is an inhomogeneous stress

state within the material.

M.E. Fitzpatrick, A.T. Fry, P. Holdway, F.A. Kandil, J. Shackleton and L. Suominen: Determination of Residual Stresses by X-ray Diffraction. 



Depth of Penetration
Many metallic specimens strongly absorb X-rays, and because of this the intensity of the incident beam is

greatly reduced in a very short distance below the surface. Consequently the majority of the diffracted beam

originates from a thin surface layer, and hence the residual stress measurements correspond only to that layer of

the material. This begs the question of what is the effective penetration depth of X-rays and to what depth in the

material does the diffraction data truly apply? This is not a straightforward question to answer and is dependent

on many factors that include the absorption coefficient of the material for a particular beam, and the beam

dimensions on the specimen surface.

M.E. Fitzpatrick, A.T. Fry, P. Holdway, F.A. Kandil, J. Shackleton and L. Suominen: Determination of Residual Stresses by X-ray Diffraction. 



Figures below show the penetration depths vs. Sin2ψ for materials commonly

used for residua stress measurements. The difference in the effective layer

thickness with ψ angles becomes of greater importance when the test

specimen exhibits a steep stress gradient:

Penetration depths vs. sin2ψ of different metals and radiations

M.E. Fitzpatrick, A.T. Fry, P. Holdway, F.A. Kandil, J. Shackleton and L. Suominen: Determination of Residual Stresses by X-ray Diffraction. 



Textured samples

Non-linearity in the sin2Ψ relation is observed due to stress gradients or texture (Maeder, 1986). The sin2Ψ 

method, or any other methods like the cos2ϕ become then non applicable as is.

An easy way to solve this problem, in the case of strong and sharp textures, is to use the "crystallite group method" (Willemse et al. 1982, Hauk et Vaessen 1985):

interreticular strains are measured on several well-oriented crystalline planes (corresponding to specific orientation components) and related to the stress tensor via the

single crystal elastic constants (Clemens et Bain 1992, Badawi et al. 1994, Labat et al. 2000). But this approach does not take into account the volume fraction of crystallites

actually diffracting in each orientation, a quantity that can be estimated using the ODF.

From a perfectly isotropic powder of Young's modulus E and Poisson coefficient G to a perfect single crystal of elastic compliances Sijkl, a broad

range of mechanical behaviour can be encountered in textured samples. The way the anisotropy in elastic constants can be taken into account is still

a long debate. Most of the investigations are dealing with the so-called diffraction stress factors, Fij(φ,ψ,h), which take into account the deviations of

the elastic constants from the single crystal case (Hauk 1997, Welzel et Mittemeijer 2003). This approach needs the ODF to be determined in order

to provide a correct average of the diffraction stress factors, and is barely used in the literature. Another approach is the use of a simulation for the

calculation of the macroscopic elastic tensors as they are exhibited by the oriented polycrystal. Knowing the ODF and the elastic compliance or

stiffness of the single crystal, several models have been developed to calculate the real macroscopic tensor of the polycrystal. Strains can then be

deduced from the measurements involving different sample orientations (in fact the texture measurements) and the stresses deduced from the

simulated macroscopic constants.

M.E. Fitzpatrick, A.T. Fry, P. Holdway, F.A. Kandil, J. Shackleton and L. Suominen: Determination of Residual Stresses by X-ray Diffraction. 



Novelty of the proposed method

Developed approach combines 3 advanced techniques:

• Controlled depth of X-ray penetration into the sample

• Flexible measurement grid selection for stress and texture investigation

• Modelling of texture-induced mechanical anisotropy of the material
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Controlling X-ray penetration depth in the stress investigation
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incident radiation

detected radiation

diffraction vector

Controlling X-ray penetration depth in the stress investigation
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incident radiation

detected radiation

diffraction vector

} penetrated layer

Controlling X-ray penetration depth in the stress investigation
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standard sin2ψ measurement

Controlling X-ray penetration depth in the stress investigation
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standard sin2ψ measurement

Controlling X-ray penetration depth in the stress investigation
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tomographic measurement

Controlling X-ray penetration depth in the stress investigation
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tomographic measurement

Controlling X-ray penetration depth in the stress investigation
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tomographic measurement

Controlling X-ray penetration depth in the stress investigation

38



tomographic measurement

for any ψ-tilt direction of the measurement 
can be freely adjusted

Controlling X-ray penetration depth in the stress investigation
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tomographic measurement

for any ψ-tilt direction of the measurement 
can be freely adjusted

Controlling X-ray penetration depth in the stress investigation
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Controlling X-ray penetration depth in the stress investigation

standard investigation tomographic investigation

3.5 μm Ni electrodeposited coating on Ni substrate

205 20MPa    195 10MPa   

42



Controlling X-ray penetration depth in the stress investigation

3.5 μm Ni electrodeposited coating on Ni substrate
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65 5 ?hi MPa   
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002 Zn, extruded Zn-Mg alloy, Mg 1.5% wt

Flexible measurement grid selection for stress and texture investigation



25 5hi MPa   

130 10hi MPa   
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002 Zn, extruded Zn-Mg alloy, Mg 1.5% wt

Flexible measurement grid selection for stress and texture investigation



Texture-induced mechanical anisotropy
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Austenite Young modulus 
surface
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Texture-induced mechanical anisotropy

= -280 10MPa  Possible stress and texture 
depth gradient

Ni cold rolled substrate Ni coating on Ni substrate
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Texture-induced mechanical anisotropy
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Applications of proposed methodology of XRD residual stress investigation

• Thin functional coatings investigations

• 3D printed and severe deformed materials studies

• Stress and texture mapping
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Thank you for your attention


