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ELASTO-PLASTIC MODELS OF POLYCRYSTALLINE MATERIAL DEFORMATION AND THEIR APPLICATIONS

MODELE SPRĘŻYSTO-PLASTYCZNE ODKSZTAŁCENIA POLIKRYSZTAŁU I ICH ZASTOSOWANIA

Then elasto-plastic models, used for analysis of polycrystalline material deformation are presented and discussed. Two
models are presented in details: the Leffers-Wierzbanowski model and the elasto-plastic self-consistent model, developed by
Lipinski, Berveiller and Zaoui. The crystallographic mechanisms of plastic deformation, being the basis of the models, are
evoked. The both models have many common elements, they differ, however, in the type of assumed grain-matrix interaction.
Some current applications of the decribed models are shown. They are e.g.: prediction of deformation textures, stress-strain
curves and distribution of the stored energy as well as the interpretation of residual stress measurement by diffraction technique.

W pracy przedstawiono podstawowe modele typu sprężysto-plastycznego, używane do opisu odkształcenia materiałów
polikrystalicznych. Omówiono w szczegółach dwa modele: model Leffersa-Wierzbanowskiego oraz sprężysto-plastyczny mo-
del samo-uzgodniony, opracowany przez Lipińskiego, Berveillera i Zaoui. Scharakteryzowano mechanizmy krystalograficzne
odkształcenia plastycznego, leżące u podstaw modeli. Oba modele maja wiele wspólnych elementów, różnią się one jednak
typem założonego oddziaływania pomiędzy ziarnem i otaczającym go materiałem. Pokazano kilka najczęstszych zastosowań
omówionych modeli. Są nimi np.: przewidywanie tekstur odkształcenia, makroskopowych krzywych umocnienia oraz rozkładu
energii zgromadzonej w materiale jak również interpretacja dyfrakcyjnych badań naprężeń wewnętrznych.

1. Mechanisms of plastic deformation

Contrary to the elastic deformation, which involves
reversible atom displacements, the plastic deformation
undergoes by non-reversible mechanisms such as crys-
tallographic slip or (and) mechanical twinning. The both
mechanisms are non-reversible, which means that after
the release of external forces some permanent deforma-
tion stays in the material. Both during the slip and twin-
ning, two parts of crystal (or grain) are sheared one with
respect to another. The crystallographic slip is schemat-
ically presented in Fig.1. Neighbouring blocs of crystal
are relatively displaced. This movement (i.e. slip) occurs
on a slip plane (hkl) and along a slip direction [uvw].
Consequently, one defines a slip system [uvw](hkl) and
also a family of crystallographically equivalent slip sys-
tems <uvw>{hkl}. The slip phenomenon occurs due to
a movement of a huge number of dislocations on a slip
plane. The dislocation movement, and hence the slip it-
self, appears in relatively narrow volumes of material,
called the slip bands (with an average width h); on the

other hand, displaced blocs of crystal (with an average
width H) are “inactive” in their volume (Fig. 1).

Fig. 1. Slip in a single crystal: blocs of a crystal of an average width
H are relatively displaced along the slip plane and slip direction.
Regions of an average width h, where slip intensively occurs – are
called slip bands; dislocation density is of a few orders of magnitude
higher inside slip bands than in other parts of a crystal

Mechanical twinning consists of the shearing move-
ments of atomic planes, which leads to the formation of
a crystal region with a crystal lattice being a mirror im-
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age of the original crystal (matrix) – Fig. 2. This newly
created crystal region is called twin. Let us notice that
during a twin formation, all subsequent atom layers of
the twin are displaced (by shear movement) with respect
to neighbouring ones. “Non-active blocs” do not exit in
this case and consequently the shear deformation γ is
high. By activation of many slip (or twinning) systems
one can obtain any imposed deformation of a crystal. It
can be shown that at least five independent shear systems
(slip or twinning) are necessary to produce a requested
deformation. We will see later that besides of slip also
crystal lattice rotation is induced by slip or twinning
(Fig. 7).

Fig. 2. A twin is created from an original crystal by shearing move-
ments of consecutive atomic layers. A boundary between a matrix
and twin crystals is called habitus plane. In analogy to slip, one
defines the twinning direction and plane (the latter being parallel to
the habitus plane)

Generally, twinning appears in these materials in
which a number of independent slip systems is not suffi-
cient to produce an imposed deformation (e.g., in h.c.p.
metals or in f.c.c. metals deformed in low temperatures).
However, if one considers f.c.c. or b.c.c. metals deformed
in room temperature, it is generally sufficient to take into
account only slip phenomenon. The exhaustive review of
deformation mechanisms in polycrystalline materials can
be found in the monograph of Asaro [1].

2. Classification of the models

Mathematical relations describing the elastic defor-
mation (Hooke’s law in tensor form) as well as the mech-
anisms of plastic deformation (slip and twinning) are
well known and verified. On the other hand, we dispose
of a complete description of the polycrystalline material
structure, e.g., by the orientation distribution function
(texture), grain boundary size distribution or the distri-
bution of grain boundary orientations and misorientation
function. Consequently, one can try to create a deforma-
tion model and use it to predict the macroscopic defor-
mation and texture function knowing elementary defor-
mation mechanisms and microstructure description. This
would enable to find the transition from the single crystal
to the polycrystalline scale. Such the model will describe

in a general way the response of a polycrystalline mate-
rial (elastic and plastic deformation, texture function...)
as a result of applying macroscopic forces (expressed by
Σi j tensor) if the initial material microstructure is known.
This latter is given by: crystal structure, initial texture,
elastic constants, critical stress for slip, initial residual
stress, etc.

The basic question, which has to be answered in
any model, is: what is the relation between macroscopic
variables of the sample (Σi j, Ei j) and analogical micro-
scopic ones (σi j, εi j), “seen” by a polycrystalline grain –
Fig. 3. Unfortunately, generally it is not possible to find
the unknown quantities in an analytical way. That is the
reason why we use models.

Fig. 3. Macroscopic load Σi j is applied to a material and as a result
a local stress σi j is seen on a grain level. The sample deformation is
Ei j , but a local grain deformation is εi j

It was shown by Hill [2] that a general relation be-
tween local and global variables can be written in the
form:

σ̇i j = Σ̇i j + Li jkl(Ėkl − ε̇kl), (1)

where Li jkl is an interaction tensor and dot means the
time derivative. In the present work we use the conven-
tion of the summation on the repeated lower indices (for
upper indices we apply a classical summation symbol).

A strict calculation of Li jkl tensor is impossible in a
general case, hence some simplifying assumptions have
to be done. A considerable progress was done by so
called self consistent models and many interesting re-
sults were found using them [3–7].

Nevertheless, it was found that in many interesting
cases the assumption of an isotropic grain-matrix inter-
action leads to surprisingly good predictions of material
properties. In such the case the Li jkl tensor is replaced
by a scalar L:

σ̇i j = Σ̇i j + L(Ėi j − ε̇i j), (2)

Some of known models can be reduced to Eq. 2 if
L takes appropriate values. For example:
a) L = 0 leads to the Sachs model [8] (Sachs, 1928); it
is assumed that no interactions between grains appear
and consequently a homogeneous stress state results:
σi j = Σi j,
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b) L → ∞ leads to the Taylor model [9] (Taylor, 1938);
the basic assumption of the model is a homogeneous
plastic deformation in the sample: εpl

i j = Epl
i j ;

c) L = 2(7−5ν)
15(1−ν)µ (where ν is the Poisson coefficient and µ

is the shear modulus; L � µ for typical value ν � 0.3)
is obtained under the assumption of a purely elastic in-
teraction between a grain and the matrix [10] (Kröner,
1961),
d) L = 2µ leads to Lin model [11]; its basic assumption
is: Ee

i j + Epl
i j = ε

e
i j + ε

pl
i j ,

e) L = αµ leads to a compromise description, very
close to a real interaction. This is isotropic model with
elasto-plastic interaction [3, 12, 13]. The α parame-
ter is called the elasto-plastic accommodation parameter
and it describes a partial shape accommodation between
grains, caused by some additional local slip. Values of α
from the [0.1–0.01] range lead to a good agreement with
experimental data. This kind of interaction was used in
the Leffers-Wierzbanowski model (LW) [12–17].

Let us recall now some basic quantities, which are
common components of any deformation model.

3. Basic quantities in deformation models

Crystallographic slip
∗ Slip is the elementary mechanism of plastic defor-
mation. It occurs on a crystal plane (hkl) and along a
[uvw] direction (situated in this plane). The slip plane
is defined by the unit vector n (perpendicular to the
plane), and slip direction – by the unit vector m. A slip
system {m, n} is usually denoted as: [uvw](hkl). It is
very useful to introduce the reference frame connected
with the slip system: xg

1 = m, xg
3 = n (Fig. 4). The re-

solved shear stress, decisive for a slip system activation,
is easily expressed in this coordinates system: τ = σg

13.

Fig. 4. Displacement of the material during a single slip. The first
axis of the g system is defined by m vector and the third axis – by
n vector

In a similar way, the glide shear ∆γ produced by a single
slip is characterized by only one non-zero component

∆epl(g)
13 = ∆γ of the plastic displacement gradient tensor

(∆epl(g)
i j ) (compare Figs. 4 and 5).

∆x

∆z

γ=∆x/∆z

Fig. 5. Definition of the glide shear γ caused by a single slip
(γ = ∆epl(g)

13 )

∗ The condition for the slip occurrence is:

τ > τcr , (3)

i.e., the resolved shear stress (τ = σg
13) has to exceed a

critical value τcr (Schmid law).
The resolved shear stress τ = σg

13 on the slip system
{m, n} is calculated as:

τ = σ
g
13 = a1ia3 jσi j = min jσi j, (4)

where σi j jest the local stress tensor expressed in the
sample reference frame – S (defined by main symmetry
axes of the sample – e.g., rolling, transverse and normal
directions in the case of rolling). The coefficients ai j de-
fine the transition from the system S do g. It is practical
to define the following quantity:

Ri j = min j (5)

characterizing the orientation of g system with respect
to S. Finally, we obtain:

τ = Ri jσi j. (6)

Hardening of slip systems

The slip systems are hardened during deformation,
which is visualized in the shape of the stress-strain curve
(Fig. 6a). If only one slip system is considered, the hard-
ening curve (τcr versus γ) in a relatively wide range of
deformation has a linear form – Fig. 6b. The physical
reason of the hardening is an intensive multiplication of
dislocations during plastic deformation. The dislocations
are necessary for crystal glide, but if they are in an ex-
cessive number – they block each other and this leads to
the increasing of critical stress for slip.

Generally, a multi-slip is observed and in such the
case the hardening of the system (“i”) depends on shear
glides on other active slip systems (“ j”):
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∆τi
cr =
∑

j

Hi j∆γ j (7)

or also:

τi
cr = τ0 +

∑
j

Hi jγ j. (8)

Fig. 6. Hardening curves: a) linear range of stress-strain curve, b)
τcr versus γ (t and s are indices of slip systems) according to linear
hardening law

Hi j is called the hardening matrix; obviously it is
symmetrical. Both theoretical and experimental study
show that in the first approximation this matrix contains
two types of terms: strong (h2) and weak (h1) ones. Their
ratio A = h2/h1 is called the hardening anisotropy coef-
ficient. The terms located on the matrix diagonal (weak
terms) describe the self-hardening of slip systems. An
exemplary case of a strong term corresponds to a pair of
slip systems with perpendicular slip system directions.
For the f.c.c. metals (twelve slip systems <110>{111})
the following hardening matrix was found [18]:

Hi j = h1



1
1 1
1 1 1
1 A A 1
A 1 A 1 1
A A 1 1 1 1
1 A A 1 A A 1
A 1 A A 1 A 1 1
A A 1 A A 1 1 1 1
1 A A 1 A A 1 A A 1
A 1 A A 1 A A 1 A 1 1
A A 1 A A 1 A A 1 1 1 1


(9)

Grain deformation and lattice rotation

Let us calculate the deformation and rotation (∆εpl
i j

and ∆ωpl
i j ), resulting from a glide on one slip system with

the shear glide ∆γ. In the slip system reference frame (g)
the displacement gradient tensor has only one non-zero
component: ∆epl(P)

13 = ∆γ. This tensor after transforma-
tion to the sample reference frame (S) has the form:
∆epl

i j = a′i1a
′
j3∆epl(P)

13 . Taking into account the definition
of S and g systems (Fig. 4) we see that: a′i1 = mi and
a′j3 = nj (a′i j define the transformation from g do S,
while ai j – from S do g; obviously: ai j = a′ji). Finally:

∆epl
i j = min j∆γ, or also:

∆epl
i j = Ri j∆γ. (10)

If a multi-slip is occurring, then:

∆epl
i j =
∑

s

Rs
i j∆γ

s, (11)

Having ∆epl
i j , one finds easily grain deformation

and rotation – ∆εpl
i j and ∆ωpl

i j (they are symmetric and

anty-symmetric parts of ∆epl
i j , respectively):

∆ε
pl
i j =

1
2

∑
s

(Rs
i j + Rs

ji)∆γ
s =
∑

s

Rs
(i j)∆γ

s (12)

∆ω
pl
i j =

1
2

∑
s

(Rs
i j − Rs

ji)∆γ
s =
∑

s

Rs
)i j(∆γ

s (13)

where: Rs
(i j) =

1
2 (Rs

i j + Rs
ji) and Rs

)i j( =
1
2 (Rs

i j − Rs
ji). Let

us underline that ∆ωpl
i j is a rigid body grain rotation

produced by slip. If there was not interaction between a
grain and the matrix – crystal lattice orientation would
not change (see Fig. 7a,b). However, in general a grain
does not rotate as a rigid body, because of the constraints
imposed by the neighbouring material and a deformation
device. As a consequence, some compensating rotation
occurs (∆ωlatt

i j ) and it changes the grain lattice orienta-
tion:

∆ωlatt
i j = −∆ωpl

i j . (14)

For example, in the tensile test of a single crystal
(Fig. 7), the direction defined by a tensile force has to
be preserved. This condition imposes a compensating
rotation of a crystal, ∆ωlatt

i j , which causes the rotation of
a lattice.
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z z z

x x x

a) b) c)

Fig. 7. Tensile test of a crystal along z direction: a) before slip, b)
after slip, c) after fulfilment of the condition of z axis preservation
(parallel to applied force)

Mascroscopic (sample) deformation

The deformation of the sample is an average over of all
grains:

Epl
i j =< ε

pl
i j >=

1
V0

∑
I

ε
pl(I)
i j V I , (15)

where VI is the volume of the I-th grain, and V0 is the
sample volume.

Interaction law

Each grain interacts with a neighbouring material. Con-
sequently, a local stress, “seen” by a grain is the su-
perposition of the applied macroscopic load (Σi j) and
reaction stress, resulting from the shape incompatibili-
ty (between a grain and the matrix). As it was already
mentioned, the local stress is described in general by:
σ̇i j = Σ̇i j+Li jkl(Ėkl− ε̇kl) (Eq. 1). This relation is verified
with different precision in various deformation models.

Calculation mode

Calculations are done in incremental way. If we take an
example of the rolling deformation and a homogenous
material, the applied forces can be approximately pre-
sented as:

Σi j = Σ


1 0 0
0 0 0
0 0 −1

 , (16)

where Σ is the stress “amplitude”. In the following
step k the amplitude of applied stress tensor is: Σ =
Σ0 + (k − 1)∆Σ.

In each calculation step we find active slip systems.
We attribute to each of them elementary glide shear am-
plitude ∆γ and we calculate the resulting deformation
and lattice rotation as well as the modification of re-
action stresses (residual stresses). The calculations are
stopped in a given step if no more active slip systems
are found (due to their hardening). Than we start a new

step (k+1), hence we increase the amplitude of the ap-
plied stress tensor of ∆Σ and we repeat all the operations
described above. We stop the calculations if the macro-
scopic deformation has attained a preset final value.

4. Self-consistent model

We will give a short review of basic quantities and
relations used in the elasto-plastic self-consistent model
(SCM).

Ellipsoidal inclusion

The basic assumption of the presented SCM is the rep-
resentation of an individual grain as a three dimensional
ellipsoidal inclusion embedded in an equivalent homo-
geneous material (Fig. 8).

εij
c

εij
t

Fig. 8. Problem of ellipsoidal inclusion

Let us assume that we cut out such an inclusion
from a homogeneous material (matrix) and we take it
outside. Next, we impose a change of its form, which is
described by εt

i j tensor. In the following step, we insert
back the inclusion to the hole in the matrix; its final
deformation is εc

i j. The relation between εc
i j and εt

i j was
derived by Eshelby [19], and is given by means of the
Si jkl tensor:

εc
i j = Si jklε

t
kl . (17)

The Si jkl tensor is of basic importance, because it
characterizes the interaction of a grain with the sample
(matrix).

Description of polycrystal

Polycrystalline grains are presented as ellipsoidal inclu-
sions.

σij, εij

Σij, Eij
Σij, Eijσij, εij

Fig. 9. Polycrystalline grain as an ellipsoidal inclusion

The basic problem in deformation modelling is to
find the relation between local (σi j, εi j) and global char-
acteristics (Σi j et Ei j). This relation is less direct in the
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case of SCM than, e.g., in the case of LW model. In the
following text we present the calculation mode used in
the elasto-plastic SCM, based on the scheme proposed
by Lipinski and Berveiller [4].

Elastic constants and tangent moduli

In the elastic range a general form of the Hook’s law is
used:

Σi j = Ci jklEkl and σI
i j = cI

i jklε
I
kl , (18)

where Ci jkl and cI
i jkl are stiffness tensors of the sam-

ple and the I-th grain, respectively, and Ekl and εI
kl are

corresponding deformation tensors. In the elasto-plastic
deformation range we use analogical relations, but con-
cerning the stress and strain increments:

∆Σi j = Li jkl∆Ekl and ∆σI
i j = lI

i jkl∆ε
I
kl , (19)

where Li jkl and lI
i jkl are so called tangent modulus of

the sample and the I-th grain, respectively (let us recall
that the summation convention does not concern the
upper repeated indices). The tangent modulus tensor of
a grain, lI

i jkl , can be calculated if active slip systems
and corresponding glide shears are known for this grain.

Fig. 10. Determination of (L−1)1111 from the stress-strain curve

The sample tangent modulus, Li jkl , is obtained by appro-
priate averaging of grain tangent moduli (Eq. 32). If the
elastic deformation range is considered then: Li jkl = Ci jkl
and lI

i jkl = cI
i jkl . The single crystal elastic properties

are known in general and the same properties for the
sample can be calculated using some hypothesis con-
cerning grain-grain interactions (e.g. models presented
in [10, 20, 21]. In the elasto-plastic range tangent mod-
uli change with deformation and their values must be
continuously calculated. Some components of the Li jkl
tensor have a direct experimental interpretation. For ex-
ample the (L−1)1111 component can be determined from
the stress-strain curve – Fig. 10.

Interaction between a grain and its environment

Interaction between a grain and the matrix can be di-
rectly calculated using the Eshelby tensor Si jkl (eq.17).
However, in the present paper the calculation scheme
developed by Lipinski and Berveiller [4] is used.

According to Eq. 19, the local stress in the
elasto-plastic range is:

σ̇i j(r) = li jkl ε̇kl(r) (20)

where li jkl(r) is the local tangent modulus tensor (“I”
grain index was omitted). This tensor can be also written
as:

li jkl(r) = Li jkl + δ li jkl(r) (21)

where δ li jkl(r) is a variable part depending on position
in the material (let us note that it is simply the difference
between the local and global tangent moduli: δ li jkl(r)
= li jkl(r) − Li jkl . Introducing the modified Green tensor,
Γi jkl (r − r′), the local deformation can be expressed as
[4, 22]:

ε̇i j(r) = Ėi j +

∫

V

Γi jkl(r − r′)δ lklmn(r′) ε̇mn(r′) dV ′ (22)

Physical sense of the above equation is explained in
Fig. 11a: The local deformation in the point r depends on
deformation εmn(r′) and δ lklmn(r′) tensors in any other
point r′; these quantities are linked by the Γi jkl (r − r′)
tensor.

r

r’ Γ(r-r’)

r

r’

T
IJ

I

J

a) b)

Fig. 11. a) Deformation in the point r depends on deformation in any
other point r′ and is described by the Green’s tensor, b) interaction
between inclusions “I” and “J” is described by TIJ tensor

Deformation in the inclusion (grain) “I” can be ex-
pressed as [4]:

ε̇i j = Ėi j +

N∑
J=1

TIJ
i jkl δ lJ

klmnε̇
J
mn (23)

where TIJ
i jkl tensor describes the interaction between in-

clusions “I” and “J” and N is total number of them. Let
us note that the above relation is a discretized form of
Eq. 22, if:

TIJ
i jkl =

1
VI

∫

VI

∫

VJ

Γi jkl(r − r′)dVdV ′ . (24)
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We assume that δ lJ
klmn and εJ

mn are homogeneous
inside each inclusion (grain). The interaction between
inclusions “I” and “J” is schematically shown in Fig.
11b. We will see later that the tensor TII

i jkl is a very
important quantity, because it describes the interaction
of the I-th inclusion with its environment. This tensor
is used in one-site approach which, which is applied in
this work.

Concentration tensors

We return now to the relations between local and glob-
al variables. Let us assume that there exist concentra-
tion tensors for deformation (AI

i jkl) and for stress (BI
i jkl),

which enable the calculation of local variables from the
global ones:

ε̇I
i j = AI

i jkl Ėkl (25)

σ̇I
i j = BI

i jklΣ̇kl . (26)

We will consider separately the elastic and elasto-plastic
ranges of deformation.

a) Elastic deformation range:

It can be derived [23] that using the TII
i jkl tensor (one-site

approach) and the Hooke’s law (Eq. 18) one obtains:

[(AI )−1]i jkl = Ii jkl − TII
i jmn(c

I
mnkl − Cmnkl), (27)

where Ii jkl is the unit tensor. The macroscopic (sample)
stiffness tensor, Ci jkl , appearing in the above equation is
expressed as:

Ci jkl =

N∑
I=1

f I cI
i jmnAI

mnkl , (28)

where f I is the volume share of the grain “I”. It is clear
from the above equations that AI

i jkl and Ci jkl tensors de-
pend one on another. Consequently, they are determined
using a self-consistent calculation procedure. Once the
AI

i jkl tensor is calculated, the second concentration tensor
can be found using the Hooke’s law:

BI
i jkl = cI

i jmnAI
mnop(C

−1)opkl (29)

b) Elasto-plastic deformation range:

We obtain analogous results as above if Ci jkl tensor is
replaced by Li jkl and cI

i jmn – by lI
i jmn one. Moreover, Eq.

19 or its equivalent form:

Σ̇i j = Li jkl Ėkl and σ̇I
i j = lI

i jkl ε̇
I
kl , (30)

has to be used instead of the Hooke’s law.
As a result, the concentration tensor is:

[(AI )−1]i jkl = Ii jkl − TII
i jmn(l

I
mnkl − Lmnkl) (31)

with the sample tangent modulus tensor defined as:

Li jkl =

N∑
I=1

f I lI
i jmnAI

mnkl . (32)

The concentration tensor for stress is:

BI
i jkl = lI

i jmnAI
mnop(L

−1)opkl . (33)

Criteria of slip system selection

Three criteria of slip system selection were examined:
a) a set of systems minimizing the plastic work is cho-

sen (MW criterion),
b) five systems, which exceed maximally the Schmid’s

criterion are selected (ML criterion),
c) a series of systems selected step by step is active;

the shear glide is very small and constant for each of
them and each active system exceeds maximally the
Schmid’s law in a given moment (LW criterion).
In the course of many calculations it was found that

the three above criteria lead to rather similar deformation
and texture predictions.

5. Exemplary results obtained with the models

The models can be used for prediction of important ma-
terial characteristics, e.g.:
– crystallographic texture,
– hardening curves (e.g., stress-strain curves),
– residual stresses,
– plastic flow surfaces,
– dislocation density and stored energy.

Exemplary comparison of predicted and experimen-
tal rolling textures for low carbon steel is shown in
Fig. 12. The <110>{111} slip systems and SCM were
used. The qualitative agreement between predicted and
experimental textures is very good.

Another important characteristic is the stress-strain
curve – Fig. 13. Tensile and compression tests were con-
sidered. During each of them the increase of loading
force was stopped many times for several minutes. The
points obtained in such a way correspond to equilibrium
condition or to infinitely slow deformation. They agree
very well with the model predictions (SCM), which is
not rate sensitive (not visco-plastic) but elasto-plastic
one.
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Fig. 12. Comparison of predicted (SCM, LW criterion, Eeq = 60%) and measured orientation distribution function for cold rolled low
carbon steel, Eeq = 105%); ϕ2 =const sections are shown
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Fig. 13. Predicted stress-strain curves in tension and compression tests for low carbon steel (broken curves) and experimental curves
obtained during fast deformation (solid lines). The increase of external load was stopped several times during experiment and the

equilibrium points (corresponding to infinitely slow deformation) agree perfectly with the predictions of elasto-plastic SCM.

Fig. 14. Texture of low carbon steel (contours) and its relation to the stored energy: a) rolling texture, b) recrystallization texture.
The maximum of the stored energy distribution (black area), predicted by SCM is shown; ϕ2 = 45◦ section is shown
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Fig. 15. Measured and calculated (SCM) crystal lattice strain in α and γ phases of austeno-ferritic steel. The results were obtained using
neutron diffraction and in situ tensile test

The third example, we present here, is the predic-
tion of the stored energy distribution (proportional to the
dislocation density) versus crystal orientation in aspect
of texture change during recrystallization – Fig. 14. The
low carbon steel was considered and the predictions were
obtained using SCM. In the same figure the rolling and
recrystallization textures of low carbon steel are shown.
It is visible that the γ texture fibre (horizontal one) is re-
inforced and the α fibre (vertical one) is reduced during
annealing. We observe that the model predicts the high
values of the stored energy for the γ fibre. It is generally
accepted that recrystallization nuclei form in grains with
high stored energy and this could explain the observed
texture change [24].

Finally, let us mention about the application of de-
formation models in the field of residual stress analysis
– Fig. 15. Two strain components induced by the ex-
ternal force in each phase of the austeno-ferritic steel
were measured and calculated using SCM. The neutron
diffraction was used for strain measurement. A very good
agreement between prediction and experiment confirms
the model and its parameters.

6. Conclusions

The presented models of elasto-plastic deforma-
tion are useful tools for the study of mechanical prop-
erties of polycrystalline materials. They enable pre-
dictions of macroscopic material properties (e.g., tex-
ture, stress-strain curve, plastic flow surfaces, disloca-
tion density, final state of residual stress) basing on its
micro-structural characteristics (crystallography of slip
systems, hardening law, initial residual stress state, etc.).
Such the models are precious tools for technologists
searching for optimal material properties.
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