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THE PREDICTION OF THE MICROSTRUCTURE CONSTITUENTS OF SPHEROIDAL GRAPHITE CAST IRON BY USING

THERMAL ANALYSIS AND ARTIFICIAL NEURAL NETWORKS

PRZEWIDYWANIE ELEMENTOW MIKROSTRUKTURY SFEROIDALNEGO GRAFITOWEGO ZELIWA Z ZASTOSOWANIEM

ANALIZY TERMICZNE] I SZTUCZNYCH SIECI NEURONOWYCH

This paper presents the application of articial neural networks in the production process of spheroidal graphite cast iron.
Backpropagation neural networks have been established to predict the microstructure constituents (ferrite content, pearlite
conent, nodule count and nodularity) of speroidal geaphite cast iron using the thermal analysis parameters as inputs. General-
ization properties of the developed artificial neural netyworks are very good, which id=s confirmed by a very good accordance
between the predicted and the targeted values of the microstructure constituents on a new data that was not included in the

training data set.
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Praca przedstawia zastosowanie sieci sztucznych neuronéw do procesu wytwarzania sferoidalnego zeliwa grafityzowanego.
Celem przewidzenia skladowych m ikrostruktury (sktadowej ferrytycznej, sktadowej perlitycznej, ilo$¢ grafitowych wtracen
kulkowych, kulistos¢ wtracerl) sferoidalnego zeliwa grafityzowanego, ustalona zostala jako danych wejsciowych.

Ogdlne wlasnosci zbudowanej sieci neuronowej sa bardzo dobre, co zostato potwierdzone poprzez bardzo dobra zgodnos$¢
przewidywanych i uzyskanych wartosci sktadowych mikrostruktury.

1. Introduction

Spheroidal graphite cast iron (SGI), also known as
ductile iron (DI), is an excellent example of a material
where the mechanical properties are determined primar-
ily by its microstructure. The microstructure of a typical
commercial SGI, in the as-cast condition, consists of
graphite nodules which are embedded in the metal ma-
trix (Figure 1). The metal matrix is usually a mixture of
ferrite and pearlite.

The ferrite (pearlite) content in the metal matrix of
SGI depends on the chemical composition, the cooling
rate during the solidification and the subsequent trans-
formation in the solid state, as well as the volume frac-
tion and the number of graphite nodules [1-5]. Silicon
promotes ferrite, while the elements Cu, Sn, Sb, Mn,
Cr etc. are pearlite promoters [5-7]. The influence of
the cooling rate on the microstructure of SGI is quite
complex, since it affects both graphite morphology and
the ferrite/pearlite ratio. A higher cooling rate during
the solidification will increase graphite nodule count and
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nodularity. However, higher cooling rates in the eutectoid
transformation range result in a higher pearlite content
in the microstructure [1, 8, 9]. Nodule count has a sig-
nificant influence on the ferrite/pearlite ratio [1, 10, 11].
The increase of the nodule count per unit volume (re-
ducing of the average nodules size at constant graphite
volume fraction) results in the decreasing of the diffu-
sional paths of carbon during the eutectoid transforma-
tion which leads to a higher ferrite content in the mi-
crostructure of SGI for the same chemical composition
and cooling rate.

It is obvious that there is a large number of factors
which influence the microstructure of SGI. The chemical
composition does not give the insight into the metallur-
gical state of the melt, i.e. the quality and the susceptibil-
ity of the melt for obtaining the required microstructure
and mechanical properties. For example, the chemical
composition of SGI does not give the information about
the metallurgical state of melt which has a significant
influence on the nodule count in the microstructure. The
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melt control method which gives the insight into the
metallurgical state of the melt is thermal analysis (TA).
In the foundries, thermal analysis is performed by the
recording of the cooling curves. The cooling curve incor-
porates the solidification history of the particular sample
for which the curve was recorded. Many attempts have
been made to correlate the data from the cooling curve
with the shape of graphite, microstructure and mechan-
ical properties [12-14]. In this paper the data from the
cooling curves are correlated with the microstructure of
SGI (ferrite and pearlite content, nodule count and nodu-
larity).

The on-line prediction of the microstructure of SGI
is important for the control of the casting properties.
In order to obtain reliable models for the prediction of
the microstructure of SGI, it is necessary to use artifi-
cial neural networks (ANN) because the casting produc-
tion process is a complex and a non-linear process, i.e.
the chemical composition, the metallurgical state of the
melt and the microstructure are not in a linear relation-
ship. ANN are complex systems composed of simple
elements (artificial neurons) operating in parallel [15].
Two or more neurons may be combined in a layer, and
a particular network might contain one or more layers
(the input layer, the output layer and hidden layers). The
network function is determined by the connections be-
tween the elements. We can train (learn) ANN to per-
form a particular function by adjusting the values of the
connections (weights) between the elements. The most
important and the most widely used algorithm for the
ANN training (learning) is backpropagation. Each input
to a neuron is weighted with an appropriate weight. The
sum of the weighted inputs and the bias form the input to
the neuron transfer function. It is the function that maps

a neuron’s (or layer’s) net output to its actual output. The
most popular transfer functions are linear, log sigmoid,
hyperbolic tangent sigmoid etc.

Properly trained ANN are capable to map the input
to the output patterns with a minimal error between the
predicted and the measured output values. The testing of
ANN follows after the training. It is performed by a new
input data set which is not included in the input data set
for the training of ANN.

The goal of present research was to establish ANN
models for predicting of the microstructure of the com-
mercial SGI using the data from the cooling curves as
inputs.

2. Experimental

Examinations were performed in the commer-
cial foundry in real industrial conditions. The base
melt for the production of SGI was produced in an
acid-lined cupola furnace. The melt was transferred to
the net-frequent induction furnace where the homoge-
nization and the correction of the chemical composition
were carried out. After that, the melt was desulphurized
in a ladle by the addition of CaC, and strongly mixed
with nitrogen which was introduced through a porous
plug located at the ladle bottom. After the desulphuriza-
tion and the removing of slag the melt was poured into a
channel-type induction holding furnace (receptor). The
nodularizing treatment of the base melt was performed
by the Flotret method. After the treatment and inocula-
tion, a sample of the melt was taken for the estimation
of the chemical composition and a Y-block was cast.
The chemical composition of the examined SGI melts is
given in Table 1.

TABLE 1
Chemical composition (wt. %) of the SGI melts used in the experiments
C Si Mn P S Ni Cr Cu Mo Al Sn Mg
33 2.7 0.1 0.030 0.005 0.03 0.02 0.08 0.003 0.009 0.005 0.029
3.4 3.0 0.2 0.045 0.010 0.04 0.04 0.50 0.009 0.015 0.015 0.040

A Y-block was cast into the mould which had been
produced by the Betaset® process. The dimensions and
the form of the Y-block are specified according to the EN
1563. Thermal analysis was performed by the advanced
thermal analysis system. Altogether, 150 melts have been
made.

Test pieces for the metallographic examinations were
machined from Y-blocks and prepared by the stan-
dard metallographic technique. The quantitative metal-

lographic examinations (the estimation of ferrite con-
tent, pearlite content, nodule count and nodularity) were
performed by a light metallographic microscope with a
digital camera and the image analysis system.

The software used to create the ANN which predict
the microstructure constituents of SGI using the selected
TA parameters as inputs is Neural Network Toolbox of
MATLAB® 7.0.



3. Results and discussion

With the goal of achieving a higher accuracy, a sepa-
rate neural network was established for each microstruc-
ture constituent, except for pearlite content because the
metal matrix of the analyzed samples was consisted of
ferrite and pearlite. Percent of the ferrite in the metal
matrix + percent of the pearlite in the metal matrix were
100 % of the metal matrix. The input parameters for the
ANN were thermal parameters from the cooling curves
in the eutectic and the eutectoid range and thermal pa-
rameters from the first derivative of the cooling curves in
the eutectic range. Only the relevant thermal parameters
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were selected as inputs parameters of the ANN. They
are: Y1, (liquidus temperature, °C), gow (the lowest eu-
tectic temperature or temperature of eutectic undercool-
ing, °C), Jr (recalescence, °C), 5 (solidus temperature,
°C), GRF1 (Graphite Factor 1), GRF2 (Graphite Factor
2), d/dt¥s (value of the first derivative at solidus temper-
ature or the depth of the first derivative (negative peak)
at the solidus, °C/s) and Jg,;; (eutectoid temperature,
°C). Figures 2a and 2b schematically show the selected
input parameters of the ANN on the cooling curve in the
eutectic range and on the first derivative of the cooling
curve in the eutectic range, respectively.
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Fig. 1. Optical micrographs of a typical as-cast microstructure of spheroidal graphite cast iron: a) no etched; b) etched, nital
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Fig. 2. a) Schematic description of the cooling curve of the SGI in the eutectic range with displayed TA parameters, b) Schematic description
of the first derivative of the cooling curve in the eutectic range with displayed TA parameters

The eutectoid temperature (Jg,;s) was not included
as the input parameter of the ANN for the prediction of
the nodule count and nodularity because the nucleation
of new graphite particles during the eutectoid transfor-
mation is extremely difficult and the shape of graphite
is established during the solidification and cannot be
changed afterwards.

When creating a neural network, it is important to
prevent the overfitting. In this work, the early stopping
method was used to improve network generalization and
prevent the overfitting. According to this method, the
experimental data set is divided into three subsets: the
training data set, the validation data set and the test data
set. The training data set was used for computing the
gradient and updating the networks weights and biases.
Training was performed only on the training set. The
validation data set was not included in the training data
set and was used to decide when to stop the training.
The test data set error was not used during the training,
but it was used for the comparison of different models,

i.e. for the evaluation of the performance of networks.
Network generalization is good when networks are able
to perform as well on the test data set as on the training
data set. To produce the most efficient training, the input
and the output data are normalized before the training.

In this paper, different networks architectures were
examined to determine the networks which have a
minimum generalization error. The best results were
achieved by the multilayer Backpropagation Neu-
ral Networks (BPNN) which are trained using the
Levenberg-Marquardt algorithm. Optimum structure of
network (number of layers, number of neurons, transfer
functions etc.) was obtained using genetic algorithms
(GA).

The performances of the trained BPNN were mea-
sured by the regression analysis between the networks
outputs (predicted values) and the corresponding target
values which had been obtained by measuring (Table 2).
Figures 3a - 3c show the performances of the BPNN on
the test data set.
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TABLE 2
Values of coefficients correlation (R) on training, validation, test and entire data set
Coeflicient Data BPNNI BPNN2 BPNN3
correlation set
Training data set 0.981 0.984 0.966
R Validation data set 0.958 0.951 0.907
Test data set 0.966 0.950 0.772
Entire data set 0.971 0.966 0.907

BPNNI - the neural network to predict the ferrite content in the microstructure of SGI
BPNN2 — the neural network to predict the nodule count/mm? in the microstructure of SGI
BPNN3 - the neural network to predict graphite nodularity in the microstructure of SGI

R = 0.966
A=(0917) T + (6.65)

Predicted ferrite content, %

607 P
o

| 7

50 7 NRMSE = 0.2629
/ [s] Data

400 A=f(T)

| A=T
30! : : : : ;

40 50 60 70 &0 a0 100

Target ferrite content, %

200

b) o
R =0.95 7
A=(0932)T +(6.6) e
g / l
=] ey
o 74 ]
3 150+ o/
(=] o
=
= 6 |
g | 8%
S 100 %
g NRMSE = 03131
2% é;;) D o Dal:l._ \
o 2 A=R(T)
o] A=T
50 : '
50 100 150 200
Target nodule count
85
c)
R=0.772
A=(0.87) T +(9.31
- 80 ‘ @30 a
= i
=
= o © i/
=75 Cop
= ° - 8 .23
: o
g 8843
= o0 08"" 8 :
270 g9
2 agc =]
O Q
B | o NRMSE=0.7214
65 o Data {
A=f(T)
A=T |
60—
65 70 75 80 85

Target nodularity, %

Fig. 3. a) Performance of the BPNN1 to predict the ferrite content on

the test data set, b) Performance of the BPNN2 to predict the nodule
count/mm?2 on the test data set, ¢) Performance of the BPNN3 1o
predict nodularity on the test data set, R — coefficient correlation, A
— predicted values, T — target values

Performance functions are important measures for
the evaluation of a network’s performance. In this paper,
the performance functions used for the training of BPNN
are the Sum Squared Error (SSE), the Mean Square Er-
ror (MSE), the Root Mean Square Error (RMSE) and
the Normalized Root Mean Square Error (NRMSE).

Figures 3a - 3c show a very good networks general-
ization which is confirmed by high values of coeflicients
correlation between the networks outputs and the corre-
sponding target values obtained by measuring. This is the
indication of proper networks architectures and proper
selection of input networks parameters.

The obtained results show that the combination of
thermal analysis and neural networks is a powerful tool
for the prediction of the microstructure of SGI. Success-
fulness of the models is confirmed by high values of
coeflicients correlation between the measured and the
predicted microstructure on the test data set.

Thermal parameters, which were taken as input vari-
ables for the neural networks, are closely connected with
the chemical composition and the microstructure devel-
opment of SGI. In the succession of discussion, there
will be considered the influence of the selected TA pa-
rameters on the microstructure of SGI.

The liquidus temperature %, (Figure 2a) is closely
related to the carbon equivalent (CE), i.e. with C and
Si contents. Low values of the liquidus temperature are
primarily the indication of high C contents. The combi-
nation of high C contents, i.e. carbon equivalent and slow
cooling rates (thick sections), results in the flotation and
formation of non-spheroidal graphite forms. The increas-
ing of C contents may result in the increase of nodules
count per unit volume and the decrease of the average
distance between them. Silicon promotes ferrite. At very
high contents, Si strengthens the ferrite, which has the
influence on the mechanical properties of SGL

The liquidus temperature ¢y, the temperature of the
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start of the eutectic reaction ES and the lowest eutec-
tic temperature Vg0 Of the examined melts are almost
the same temperatures, which indicates the nearness of
the eutectic composition and equal precipitation of the
eutectic during the solidification, i.e. a continuous nucle-
ation of graphite. The continuous nucleation of graphite
during the solidification results in a higher density of
graphite particles (high nodule count) in the metal ma-
trix. During the eutectoid transformation, i.e. austenite
decomposition, a high density of graphite particles acts
on the decreasing of diffusional paths of C in the sol-
id state, which results in the increasing of the ferrite
content in the microstructure. Nodule count has a sig-
nificant influence on nodularity. The increase of nodule
count results in a decrease of their size and increase of
nodularity.

The lowest eutectic temperature or the temperature
of eutectic undercooling ¥y, (Figure 2a) is related to
the nucleation state of the melt. Low temperature of eu-
tectic undercooling indicates poor nucleation properties
of the melt i.e. a low number of active sites for the
nucleation of graphite. A low number of active sites for
the nucleation of graphite results in a low nodule count.
Moreover, if the temperature of eutectic undercooling
lies below the metastable temperature, primary carbides
may occur in the microstructure.

Recalescence ¢r (Figure 2a) represents the differ-
ence between the highest eutectic temperature ;,, and
the lowest eutectic temperature (the temperature of eu-
tectic undercooling) 9¥g,,. Recalescence is the indica-
tor of eutectic growth, i.e. the amount of austenite and
graphite precipitated during the early stage of eutectic
solidification. High recalescence indicates poor nucle-
ation susceptibility of the melt. Moreover, high value
of recalescence is related to the non-continuous precip-
itation of graphite during the solidification. A too high
amount of graphite precipitated in the early stage of eu-
tectic solidification results in a small amount of graphite
precipitated during the later solidification. Due to that,
secondary sites of nucleations are not activated, which
may result in a low nodule count.

The solidus temperature s (Figure 2a) is an im-
portant thermal parameter for monitoring the end of the
solidification. The segregation of carbide forming ele-
ments such as Cr, Mn, V etc. at cell boundaries causes
an increase of the metastable eutectic temperature. If
the solidus temperature lies below the metastable eutec-
tic temperature, intercellular carbides may occur in the
microstructure.

GRF1 (Figure 2a) is a parameter that reflects how
much eutectic, i.e. eutectic graphite is precipitated from
Dhign to Us. This parameter is defined as the relative time
for the temperature to drop 15°C from the highest eutec-

tic temperature (J;,,). A high GRF1 indicates a contin-
uous precipitation of eutectic graphite, which is related
to the activation of secondary nucleation sites. This re-
sults in the moving of the eutectic reaction toward longer
times. This mode of eutectic solidification, when the nu-
cleation and the growth of eutectic occur in longer times,
results in a higher distribution of sizes of the precipitat-
ed graphite, i.e. a higher density of graphite particles in
the metal matrix. A higher number of graphite particles
during the eutectoid transformation enable the formation
of a higher ferrite content in the microstructure.

GRF2 (Figure 2b) is a parameter that reflects the
change of the cooling rate at the end of the solidifi-
cation, measuring indirectly thermal conductivity. The
angle of the first derivative at the solidus temperature
(fs) and the negative peak at the latest segment of the
first derivative are used to calculate GRF2. Low value
of GRF2 indicates high thermal conductivity, which is
an indicator of a high amount of graphite at the end
of the solidification. Low value of the first derivative
of the cooling curve at the solidus (higher depth of the
negative peak) d/dtds (Figure 2b) is related to a high
amount of eutectic graphite at the end of the solidifi-
cation, i.e. a high nodule count in the SGI. Therefore,
GRF2 combined with d/dtds is a strong indicator of
thermal conductivity, i.e. the graphite shape and nodule
count in SGI.

The solid state transformation of austenite (y) into
ferrite (o) and graphite or pearlite (oo + Fe;C) occurs in
the eutectoid transformation range. The eutectoid trans-
formation has an important influence on the final mi-
crostructure of SGI. The ferrite and pearlite content in
the microstructure of SGI depends on the chemical com-
position, the cooling rate through the eutectoid transfor-
mation range and the volume fraction and the number
of graphite nodules. When pearlite is created latent heat
is released, which is visible as an arrest in the cooling
curve. At higher amounts of pearlite, recalescence occurs
during the eutectoid transformation. A fully ferritic SGI
does not show recalescence. It has also been found that
the increasing of the amounts of pearlite in the metal
matrix lowers the eutectoid temperature. Therefore, the
eutectoid temperature is the indicator of pearlite content
in the metal matrix of SGI.

4. Conclusions

The obtained results show that the analysis of the
cooling curves and neural network modeling enable the
formation of mathematical models for the prediction of
the microstructure constituents of spheroidal graphite
cast iron before pouring of the melt into the moulds. The
developed backpropagation neural networks successfully



predict the microstructure constituents using the thermal
analysis parameters as inputs. A very good accordance
between the measured and the predicted microstructure
constituents was achieved. This allows for corrective
measures to be taken with the purpose of obtaining
the required microstructure and mechanical properties
of castings as well as the decrease in the percentage of
the waste castings.
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