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ON THE EVALUATION OF MECHANICAL PROPERTIES FROM THE AXISYMMETRIC TENSILE TEST

WYZNACZANIE WEASCIWOSCI MECHANICZNYCH Z PROBY ROZCIAGANIA

This paper deals with analytical modelling of the classical tensile test which is still considered as one of the main
experimental procedures to determine the flow curve of elasto-plastic materials. Accurate numerical simulation of the process
allowed us to recognise the errors introduced by the well-known classical formulae which are used to correct the experimental
data under the stage of neck formation. Modifications to the analytical models make it possible to eliminate some of the
questionable classical assumptions and to construct a new formula. Comparison of the new results with the well-known
classical ones indicates significant improvement.
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Praca dotyczy analitycznego modelowania klasycznej proby rozciggania, ktdra jest wcigz uwazana za jedng z podstawowych
procedur eksperymentalnych do wyznaczania krzywej umocnienia materiatéw sprezysto-plastycznych. Doktadna symulacja nu-
meryczna procesu pozwolita rozpoznaé biedy wynikajgce z zastosowania powszechnie znanych wzoréw klasycznych podczas
korygowania danych eksperymentalnych od momentu pojawienia si¢ szyjki. Wprowadzenie modyfikacji do modelu analitycz-
nego umozliwito wyeliminowanie pewnych watpliwych uproszczeni klasycznych i skonstruowanie nowego wzoru na podstawie
deformacyjnej teorii plastyczno$ci. Poréwnanie rezultatéw otrzymanych w wyniku zastosowania nowego wzoru z powszechnie

znanymi wzorami klasycznymi, wskazuje na osiagni¢cie znaczacego usprawnienia.

1. Introduction

Tensile testing with axisymmetric specimens is a simple
and an important standard engineering procedure which
is effective to determine elastic and plastic properties
of materials. Up to the stage of neck formation, it is
characterised by a homogeneous 1-D stress state that
provides a unique opportunity to evaluate the properties
of the specimen material. However, when the neck ap-
pears in the sample, the stress state becomes essentially
3-D and the neck shape has to be taken into account in
the yield stress evaluation. An analysis of possible stress
distributions in the neck of an axisymmetric sample un-
der tensile test and respective formulae for the yield
stress from the moment of neck creation can be con-
sidered as classic results obtained by Bridgman, Siebel,
Davidenkov-Spiridonova, and slightly later by Szczepin-
ski. Their formulae are presented in numerous textbooks
devoted to mechanical engineering [11, 14, 23] and the-
ory of plasticity [9, 12].

e

Bridgman and Davidenkov-Spiridonova derived their for-
mulae in frames of the deformation theory of plastici-
ty in Euler’s coordinates under Huber-Mises or Tresca
yield criteria. Accurate mathematical derivation of the
Bridgman formula in the frame of the plastic flow theo-
ry can be found in Hill’s monograph [9]. All the authors
additionally employed a set of simplifying assumptions
which assumed to be valid in a neighbourhood of the
minimum cross-section. Namely, they a) neglected elas-
tic properties at the stage of the neck creation (and re-
spectively postulated material incompressibility within
the plastic region), b) proposed to accept the hypothesis
that the circumferential stress is equal to the radial stress,
c) assumed that the yield stress, &, is a constant value at
every time increment (but changing in time) and finally
d) used different formulae describing the radius of cur-
vature of the longitudinal stress trajectory, p = p(r), see
Fig. 1.
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Fig. 1. Neck geometry of a tensile specimen (a); main stress trajectories in the meridian plane (b)

These assumptions allowed them to derive the following
correction formulae for the normalised axial stress in the
minimum cross section:

Bridgman: % = (1 + 2f)ln(] + ﬁ),
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Szczepinski: ‘TT = % [exp(ﬁ) - 1]

Davidenkov — Spiridonova :

where R is the external neck radius at point » = a and
z = 0 (see Fig. 1a). Let us note that the same result, even
in a more general form in comparison with that obtained
by Davidenkov-Spiridonova, has been earlier derived by
Siebel [22]:

o, a

k _1+(n+3)R‘ @
It is clear that the Davidenkov-Spiridonova solution co-
incides with Siebel’s one if n = 1. However, Siebel pub-
lished his paper in German in an unfortunate time and
as a result it is not well-known. In addition, Siebel did
not provide enough information to choose the value of
parameter n and finally came to the same assumption as
Davidenkov-Spiridonova, i.e. n = 1 (see [22]).
Let us remind that also Szczepinski formula (13) was
derived under the classical simplifying assumptions a) —
d) together with a simple engineering balance law (see
[23]) instead of exchanging accurate equilibrium equa-
tions. This result can be hardly found in engineering
literature. Finally, it is important to underline that all
the formulae from (1) lead to the same main asymptotic
approximation for small ratio a/R with accuracy of the
order (a/R?).

Short time after publishing the classical formulae, many
attempts have been made to verify the formulae utilis-
ing experimental data (see for example [15]). Since it
is impossible to directly determine the yield stress from
experiments, most of the authors compared the real stress
instead identifying them with (1). It looked like that the
Bridgman formula revealed a constant accuracy during
the whole tensile test, while outcomes received from
Davidenkov-Spiridonova formula were not so accurate
for values of a/R greater than 0.6. On this basis, the
conclusion was drawn that application of Bridgman for-
mula provides better results, which obviously must have
not always been true and required further investigation.
Just to support this conclusion, let us remind here
that Bridgman, Siebel, Davidenkov-Spiridonova and
Szczepinski utilised some simplifying assumptions dur-
ing the derivation of the formulae for the yield stress
whose accuracies were not well enough estimated. Since
Finite Element Method (FEM) started to be the main en-
gineering instrument, numerous papers (for example [2,
16, 17, 21, 26]) were published with attempt to verify
the assumptions numerically. Two of them, equality of
the radial and circumferential stresses and constancy of
the yield stress along the minimum cross-section were
questioned. Simultaneously, the assumptions were anal-
ysed also theoretically and recognised to be not enough
accurate in many textbooks [9, 12, 23]. Outcomes of our
own semi-analytical and numerical results concerning
accuracy of the assumption are presented in the second
section.

Besides verification of any particular simplifying as-
sumption, it is equally important to check the correct-
ness of the classical formulae (1) as every simplifying



assumption can lead to mutually complementary results
in such a sense that the total error may be less than
(maximal/minimal) error of each individual assumption.
Such estimations were reported in [1-3, 20] where the
authors utilised numerical simulation. They claim that a
considerable discrepancy exists between results obtained
from the numerical simulation and those received from
classical formulae.

Apart of the earliest work mentioned above, the first
statement that Davidenkov-Spiridonova formula provides
better result in comparison with the Bridgman’s one has
been given by Jasienski [10], who quoted results from
C. Rossarda, P. Blama and F. A. Hodierne’a. Our own
results (see section 2) also support this hypothesis. De-
spite this fact, Bridgman’s formula is the most often ap-
plied in practice until now to evaluate the flow curve
from the moment of the neck formation [13, 18, 19, 25,
26]. Moreover, some authors made use of the classical
formulae in cases when they have not been sufficient-
ly justified (for instance to create damage accumulation
models of plastic materials [18, 19] or for samples with
cross-sections different from the circle).

Difficulties in the profile measurement of the deformed
sample and imperfectness in determination of the curva-
ture radius of the neck contour R were noticed even by
Bridgman as well as many others [4, 10, 13, 23, 25, 26].
This error influences the value of the yield stress deter-
mined from any of the classic formula. Attempts have
been made to link other easy measurable values during
the experiment [4, 10] with the formulae (1). However,
outcomes did not bring an expected effect. Fortunately,
recent measurements given by modern sensitive exten-
someters and laser scanners overcome this problem.
Short time after the publication of the classical formulae,
several unsuccessful attempts have been made to improve
them [2, 10, 16, 17, 21, 26]. During the last years, deter-
mination of the yield stress from axisymmetric sample
under tensile test from the moment of neck creation be-
comes again of great interest. Thus, Ling applied the
method of weight average to evaluate the flow curve in
paper [13]. However, this method requires the knowl-
edge on the highest and lowest limitations of the flow
curve and thus, causes difficulties during its application
in practice. It is worth mentioning different approaches
to determine material properties. First of all it is the
inverse analysis method [5, 24]. This method allows to
reconstruct the properties even from more complicat-
ed processes, but a disadvantage of this method is time
consuming computations and limited accuracy of coef-
ficients reconstruction (an untypical flow curve cannot
be, in fact, recognisable at all). An additional weakness
of the method is unavailability for industrial engineers
possessing equipment for materials testing.
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All the aforementioned arguments prove the necessity to
revise the classic formulae for the yield stress evaluation.
In fact, with modern computers and software allowing
computation accuracy at level of percent fraction and
measurements realised with sensitive extensometers and
lasers on the same level, nobody should accept infor-
mation on material properties evaluated by the classic
formulae without knowing the accuracy.

In the next sections, our recent results concerning eval-
uation of the mechanical properties from the tensile test
are discussed. In particular, we estimate the accuracy of
the most questionable assumptions and derive a more
accurate formula for the yield stress than the classical
ones. Comparison of classical and the more adequate
formula obtained has been done with accurate numerical
simulations.

2. Evaluation of a new formula

In paper [7], three of the four questionable assump-
tions b), ¢) and d) were verified by means of numeri-
cal simulation. The first assumption, a), was deliberately
omitted as elastic strains play any visible role only at
an initial stage of the neck formation and that is why
we also believe that its influence on the final results
should be marginal. An accurate numerical model has
been prepared to simulate errors resulted from the ap-
plication of a particular simplification were estimated on
the basis of theoretical analysis and numerical simula-
tions. As expected simplifying assumptions used to de-
rive the classical formulae cannot be fully acceptable. It
turned out that the highest error exhibits the assumption
of equality of the radial and circumferential stresses. The
smallest error is generated by the utilised formulae for
the curvature radius of the longitudinal stress trajectory.
Surprisingly, the simplification of constant yield stress
along the minimum cross-section occurred to be quite
accurate.

In [6], we additionally checked the formula for the loga-
rithmic plastic strain widely used instead of strain inten-
sity (for example [1]). It provides even better accuracy
then one can expect (0.6%).

Our first attempt to improve the classical formulae has
been made in [7]. Together with estimation of the afore-
mentioned error caused by application of specific formu-
lae for the curvature of the longitudinal stress trajectory,
we derived a new formula:

- -
NN D 3)
k 4R 4R(4 - )

where conditions for parameters @ and S were deter-

mined assuming a monotonic behaviour of the curvature
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radius distribution in the minimum cross-section. Unfor-
tunately, it turned out that it is not possible to find a
unique set of suitable parameters for all possible loads.
This effectively means that the parameters should depend
on a, R and probably some other measured values. How-
ever, in spite of this fact, we selected a parameter set as
a = 0.5 and 8 = 0.5, which gave a better approximation
than any classical formula for all material laws tested in
[7].

On the other hand, formula (3) is identical to Siebel
one (2) and allows to find up to now unknown value of
the parameter n as a function of these new parameters
a,f :n=[44-a))[4-a+a(l -p)] - 3. In case
a = =0.5 one gets n = 11/15 and thus, n = 1 looks
not to be the best assumption.

In the same paper [7], we tried to evaluate a new formu-
la using the deformation theory of plasticity under La-
grange’s coordinate approach. We assumed incompress-
ibility of the material in the minimal cross section, but
none of the simplifying assumptions were additionally
applied. We have used intensively asymptotic methods
with some assumption on coefficients appearing in com-
putations. However, the new formula for small deforma-
tion was better than classical ones but behaved worst
than the empirical suggestions (3).

SA 2(1-6A) 2 30ABA-0-56A) 3(8A—-0-56A)

In [8], we have made the similar analysis under Eu-
ler’s approach. The two new non-empirical formulae de-
rived in [7, 8] give better results in comparison with
Szczepinski formula (the best from the classical ones,
as it follows from our own analysis, compare Figs. 2).
The formula derived under Euler’s approach has a wider
range of applicability than that derived for the Lagrange
approach and reveals for small deformation better ac-
curacy in comparison with all other suggestions, (1)-(3).
Unfortunately, both of these new non-empirical formulae
are only valid for small plastic deformations.

Our present approach is aimed to expand the applicabili-
ty of the latter formula obtained by Euler approach in [8].
For this reason, coefficients appeared in the formula are
determined in a slightly different way. Namely, analysing
semi-analytically the stress state in the neighbourhood
of the symmetrical part of the sample (where the high-
est plastic deformation occurs), we derived a differential
equation describing the trajectory of the main stress. The
neck contour was approximated then with a polynomial
of fourth degree. Coefficients of the polynomial were
selected in such a manner to satisfy asymptotically all
boundary conditions on the neck surface and symme-
try axis. Neglecting technical details, the new formula
finally takes the form:

76(1+5A)

7.
k

=1- - z
T(1+5A) 7(l+5A)+7 495(1+5A)?

where 6 = a/R, A = 1 — ap/a.

It is worth noticing here that in two specific cases when
A — 0 with a fixed parameter 6 and 6 — 0 with a fixed
parameter A < 0 formula (4) leads to the same results
k = o, which is in agreement with expectations.

3. Comparison of the new formula with numerical
simulations and discussions

To verify (4), the numerical simulations were based
on the commercial finite element code MSC.Marc un-
der the option of the large deformation and strains. The
utilised model for the numerical simulation is the same
as that described in details in [7]. The material of the
considered specimen was assumed to be elasto-plastic
with Young’s modulus of 210 GPa, Poisson’s ratio of 0.3
and the initial yield stress of 200 MPa. We carried out

75(1+5A)

2(1-6A) 2 30A(8A—6—56A)) ,l

"7 495(1+5A)?

T(1+5A) 7 @

3(8A=6-56M)|’

the simulations for three different flow curves modelling
a variety of possible material properties. Namely, linear
hardening with a plastic modulus of 150 MPa, nonlin-
ear hardening with yield stress k(") = 100 + 100(1
+ 14.247758")%3, and finally the ideal plasticity model.
Computations were verified with respect of both the sta-
bility of the obtained solution and the accuracy of the
results which was controlled to be less than 0.1%.

By means of appropriate indicated markers, the rela-
tions between values of o,/k and a/R obtained from
numerical simulations are shown in Figs. 2 together
with respective results obtained from the new formu-
la (4). (Fig. 2a, 2b and 2c corresponds to the three
materials under consideration). For illustrative reasons,
the curves corresponding to the classical Bridgman,
Siebel-Davidenkov-Spiridonova and Szczepinski formu-
lae are also drawn.
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Fig. 2. Ratio 7./k as a function of a/R obtained from FEM simulation and its approximations by the classical formulae by Bridgman,
Siebel-Davidenkov-Spiridonova and Szczepinski and by the new formula (4). Fig 2a), 2b and 2c¢ correspond to the ideal plastic, linear
hardening and nonlinear hardening material, respectively

As it follows from the numerical simulations, a sig-
nificant improvement has been achieved by using the new
formula (4). It is important to note that the new formula
additionally incorporates into analysis the initial radius
of the sample ay. As a result, the curves corresponding

to different materials do not coincide to each other in
contrast with the classical formulae.

Similarly to all other considerations, we have neglected
in the analysis an influence of elastic strains at the stage
of the neck creation. Further improvement of the derived
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solutions may be possible by taking into account this
factor. However, one should not have a high expectation
from this as it may rather have some influence only at
an initial stage of the neck formation when the elastic
strains can still play a certain role.
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