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THE CALCULATION OF HEIGHT AND STRUCTURE PARAMETERS OF COMBUSTION ZONE IN COKE-FIRED CUPOLAS

OBLICZANIE WYSOKOŚCI I STRUKTURY STREFY SPALANIA ŻELIWIAKÓW KOKSOWYCH

The calculation formulas of the combustion zone height in the coke-fired cupolas (coke pieces in the form of square
based prisms and various dimensions) as well as the structure of combustion zone have been derived in the present work. The
structure has been characterized with the following parameters: zone volume, mass of burning coke, number of burning coke
pieces and their average dimensions, surface of development of coke pieces, number of their sequences, their volumes and
surfaces in sequences, combustion time of coke cartridges, primary height of the filling coke and others.

The presented examples illustrate practical calculations and describe the movement of coke from the melting zone to the
combustion one as a continuous process at constant height of the combustion zone. Such an approach completely changes the
models of combustion and melting processes proceeding at the interface of combustion and melting zones valid so far.
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W pracy wyprowadza się wzory do obliczania wysokości strefy spalania w żeliwiakach koksowych (kawałki koksu w
kształcie graniastosłupów o podstawie kwadratu i różnych wymiarach), oraz struktury strefy, którą charakteryzują następujące
wielkości: objętość strefy, masa palącego się koksu; liczba palących się kawałków koksu i ich średnie wymiary, powierzchnia
rozwinięcia kawałków koksu, liczba ciągów kawałków koksu, ich objętości i powierzchnie; objętości i powierzchnie kawałków
ciągach; czas spalania nabojów koksu; pierwotna wysokość koksu wypełniającego i in.

Zamieszczone przykłady ilustrują praktyczne obliczenia oraz charakteryzują proces przemieszczeń koksu ze strefy topienia
do strefy spalania jako proces ciągły, przy zachowaniu stałej wysokości strefy spalania, co całkowicie zmienia dotychczasowe
poglądy na temat modelu procesów spalania i topienia, zachodzących na granicy stref spalania i topienia.

General denotations

a – initial length of sides of coke piece base (square),
m, a = 2 µk τc
b – initial height (length) of coke piece (square based
prism), m
Fc,k – surface of coke pieces in one sequence of pieces,
m2

F̄k,s – development surface of combustion zone (total
surface of burning coke pieces in the zone), m2

Fr,s – surface of cross-section of combustion zone, per-
pendicular to cupola axis, m2

fo,k – initial surface of coke pieces, m2

fk,τ – surface of burning coke piece after combustion
time τ, m2

f̄k =fo,k ϕ f – mean integral surface of coke pieces, m2

Hs – height of combustion zone, m
k1=2 + 1

m ; k2= 1 + 2
m ; k3 = 1

m

Lk,4 – volume of air blast consumed in the combustion
of coke mass unit, normal conditions, m3

p/kgc

m=
b
a

– slenderness ratio of coke piece,

M̄k,s – mass of burning coke in the zone, kg
nk – number of coke pieces in the zone,
nc,k (or n) – number of coke pieces in each sequence
Pc – efficiency of blast, normal conditions, m3

p/s
PF – relative efficiency of blast, normal conditions
m3

p/(m
2· s)

rk,o =
vk,o

fk,o
– initial module of coke pieces, m

r̄k = rk,o
ϕv
ϕf

– average integral module of coke pieces, m
Vc,k – volume of pieces in one sequence, m3

v̄k= vo,kϕv – average integral volume of coke pieces, m3

vo,k – initial volume of coke pieces, m3

vk,X – volume of burning coke piece in dependence on
relative time X, m3

∗ AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, FACULTY OF FOUNDRY ENGINEERING, 30-059 KRAKÓW, 23 REYMONTA STR., POLAND



48

X =
τ

τc
– relative thickness of burnt layer of coke, in

unit fraction
2z – constant difference of linear dimensions of coke
pieces in sequences,

δ=
1
n

=
2z
a

ηv,4 – degree of combustion in unit fraction
µk – linear rate of coke combustion, m/s
ρk – density of coke mass, kg/m3

k
ρn,k – bulk density of coke, kgk/m3

τ – time measured from the beginning of combustion
process, s
ϕv – average integral volume of coke piece divided by

its initial volume, ϕv =
v̄k

vo,k
ϕ f – average integral surface of coke piece divided by

its initial surface,
f̄k
fo,k

ϕv,n – factor ϕv dependent on the number of coke pieces
in sequence
ϕ f ,n – factor ϕ f dependent on the number of coke pieces
in sequence

1. Introduction

The height of combustion is an important factor in
the theory and practice of the coke-fired cupola process.
Its height affects the degree of liquid metal superheat-
ing and the effective height of cupolas. The combustion
zone, together with the melting zone and height of the
filling coke have become the object of long-term contro-
versial ideas of the optimal model of the coke process.
The participants of the dispute although not having at
disposal a rational approach to the calculation of height
and structure of melting and combustion zones, have
produced simplified models, which have not resulted in
the solution of the problem, since they comprise only
fragments of the process. In the considered models, such
an obvious fact, that burning coke pieces become small-
er as they move in the direction of lower zone boundary
similarly to melting metal pieces in the melting zone has
been neglected.

The prediction of burnt coke parameters allowing
for their random distribution in the zone is the basic
problem in the elaboration of the calculation method of
combustion zone height

The mathematical description of metal piece melting
and coke combustion was derived in work [1], in which
also their average integral volumes and surfaces together
with the accuracy of calculations were given. In work [2]
the paradigm was applied to the calculation of height and

structure parameters of the melting zone as well as to
the description of its efficiency and the movements of
metal and coke in the zone. The present work refers to
the calculation of height and structure parameters of the
combustion zone in coke cupolas and it comprises the
following problems:
– the formation of stabilized height of the combustion

zone,
– the calculation of combustion zone height for the

coke pieces of identical shape and weight,
– the calculation of average integral volumes and sur-

faces of coke pieces of the square based prism shape,
– the calculation of volumes and surfaces of coke se-

quences in the combustion zone as well as volumes
and surfaces of individual pieces of sequences,

– the calculation of combustion zone height for the
coke cartridges containing fractions of different
shape and weight,

– the calculation of initial height of the filling coke,
– examples of application of the derived formulas.

The present work is a synthesis and development of
the models considered in papers [3÷6].

2. Formation of a stabilized combustion zone height
in single-rowed cupolas

The process of coke burning in the cupola shaft will
be followed above the level of lower nozzles from the
moment, when after the repair of the furnace lining and
other preparatory actions (like drying, annealing, glow-
ing up the coke, the measurement and supplement of the
initial height of the filling coke, loading the shaft with
cartridges of coke, metal and flux) the blast is turned on,
for the first 10 minutes, in the amount of 50 % of the
target volume. The material structure in the cupola shaft
is as follows: above the level of lower nozzles there is
a homogenous column of the coke charge, called filling
coke, about 1250 mm high lying on a column of cupola
crucible coke or on the cupola hearth.

The bulk layers of charge coke cartridges lie on
the filling coke column alternately with the flux and
metal. The mentioned column of the coke fills up the
space in the cupola shaft between the lower level of
nozzles and the lowest cartridge of the metal charge.
A primary and a secondary height of filling coke can be
distinguished in the cupola process.

The primary height of the filling coke concerns the
initial period of the cupola process (20÷30 minutes), in
which a stabilized combustion zone should form from
the primary height of the filling coke. During the forma-
tion of stable combustion zone height also a stabilized
height of the melting zone should appear which requires



49

a proper selection of weight and shape of metal pieces
in the charge cartridges.

The term of secondary height of filling coke refers
to the cupola process after the formation of combustion
and melting zones. It consists of the height of the com-
bustion zone and the lower part of the melting zone,
which contains low percentage of the zone metal. Its
height can be controlled from outside through inspec-
tion openings, usually by enlarging it with additional
coke cartridges. The secondary filling coke height or
simply, filling coke height definitely affects the degree
of superheating of the smelted cast iron and should be
optimal (its optimality is assessed according to the cast
iron temperature obtained)

In the following part, a method of calculation of
primary filling coke height is derived.

3. Stabilized combustion zone height – coke pieces
of identical shape and weight

Model assumptions

– height of combustion zone is stabilized; the metal melt-
ing does not occur in the zone, but the drops of melt-
ed metal and slag from the melting zone passing the
combustion zone undergo superheating, leading to the
decrease of temperature of gases, without the change of
zone height;
– surfaces limiting the combustion zone height are flat
perpendicular to the cupola axis; the lower boundary is
at the level of bottom row of nozzles, while the upper
one at the level, where burning of coke ends (due to the
lack of oxygen). The internal cross-section of the zone,
perpendicular to the cupola axis is constant at the whole
zone height;
– the burning coke pieces passing to the combus-
tion zone form sequences of diminishing pieces. The
number of such sequences is equal to the amount of
coke pieces moving simultaneously through the up-
per zone surface of the volume gained in the melt-
ing zone (primary volume diminished as a result
of losses of coke coal for the reduction of CO2);
coke pieces burning in the stabilized zone have their vo-
lumes and surfaces equal to their average integrals defi-
ned in work [1];
– the coke pieces moving towards the combustion zone
are of the same volume, shape and physical and chemical
properties;
– coke pieces, forming individual sequences of pieces are
randomly distributed at the zone height with tendency
of smaller and smaller pieces to move towards the lower
nozzles. Their bulk density is identical in the whole zone

and equal to the bulk density of coke cartridges loaded
into the cupola;
– coke pieces burn on their whole surface and in the
whole zone height at the same, constant linear combus-
tion rate.

Height of combustion zone

A mass rate of coke burning in the combustion zone
can be formulated with the following:

mk,s = µkF̄k,s ρk (1)

where:
mk,s – mass rate of coke burning in the combustion

zone, kgc/s
µk – linear rate of coke burning (formula given fur-

ther on), m/s
F̄k,s – development surface of the combustion zone

(total surface of burning coke pieces in the zone), m2

ρk – mass density of coke pieces, kg/m3
k

Surface F̄k,s can be written with formula

F̄k,s= nk f̄k=
M̄k,s

ρkv̄k
f̄k (2)

And after further conversion

F̄k,s=
HsFr,s ρn,k

ρk r̄k
(3)

at which:
r̄k=

v̄k

f̄k
(4)

where:
nk – number of coke pieces in the zone
f̄k, v̄k – mean integral surface and average integral

volume of coke pieces in the zone, respectively, m2 and
m3

M̄k,s – mass of coke in the zone, kg
r̄k – average integral module of coke pieces in the

zone, m
Hs – height of combustion zone, m
Fr,s – surface of cross-section of the combustion

zone, perpendicular to the cupola axis, m2

ρn,k – bulk density of coke in the zone, kgk/m3

After the substitution of (3) into (1)

mk,s = µk
HsFr,sρn,k

r̄k
(5)

Hs can be calculated from (5)

Hs =
mk,sr̄k

µkFr,sρn,k
(6)

mk,s may be described with formula

mk,s =
Pc

CkLc,4
(7)
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where:
Pc – efficiency of blast delivered to the cupola, nor-

mal conditions, m3
p/s

Ck – relative fraction of coal in the coke, kgc/kgk
Lc4 – volume of air blast consumed in the process

for burning elementary mass of coke coal, normal con-
ditions, m3

p/kgc
Incorporating (7) into (6)

Hs =
PFr̄k

CkLc,4µkρn,k
(8)

where: PF =
Pc

Fr,s
– relative amount of blast in the com-

bustion zone, m3
p/(m

2· s)
The height of combustion zone for charge coke

pieces of equal volume, mass and shape can be calcu-
lated from formula (8).

Volume Lc4 is calculated from formula (blast with
normal content of oxygen)

Lc4 = 4, 45(1 + ηv,4) (9)

at which:

ηv,4 =
(CO2)v,4

(CO2)v,4+(CO)v,4
(10)

where:
ηv,4 – degree of gas combustion in the process, in

unit fraction
f̄k and v̄k can be obtained from formulas

f̄k = fo,kφ f (11)

v̄k = vo,kφv (12)

where:
fo,k , vo,k – initial surface and volume of coke pieces,

m2 and m3, respectively
ϕ f , ϕv – dimensionless coefficients dependant on

shape of coke pieces.

4. Calculation of coefficients ϕv and ϕ f for coke
pieces in the shape of square based prisms

Taking advantage of recipe from work [1] the for-
mulas to calculate coefficients ϕv and ϕ f will be derived
for coke pieces in the shape of square based prisms

Coefficient ϕv
The process of burning of singular coke piece in the

shape of square based prism at constant linear rate will
be now considered. The volume of piece, after burning
time τ is equal to

vk,τ = (a − 2µkτ)2(b − 2µkτ) (13)

where:
a, b – length of prism base side and its height before

the beginning of the process, m
τ – time measured from the moment of the start of

coke piece combustion, s
µk – linear rate of burning of coke piece, m/s.
Equation (13) is transformed to the form

vk,τ= vk,o

(
1−2µk

a
τ

)2 (
1−2µk

am
τ

)
(14)

where:
vk,o = a2b – initial volume of coke piece, m3

m = b
a – fineness of coke piece

a and X can be defined as

a = 2µk τc (15)

X =
τ

τc
(16)

where:
τc – time of complete combustion of coke piece, s
X – relative thickness of burnt layer of coke, in unit

fraction
After substituting (15) and (16) into (14) volume

vk,X is derived

vk,X= vk,o(1 − X)2
(
1−X

m

)
(17)

where:
vk,X substitutes vk,τ (volume of burnt coke piece in

dependence on relative time X), m3.
After the multiplication, equation (17) takes form

vk,X = vk,o(1 − k1X + k2X2 − k3X3) (18)

in which:

k1 = 2 +
1
m

; k2 = 1 +
2
m

; k3 =
1
m

(19)

The following formula is a definition of average in-
tegral volume of coke piece after relative time of burn-
ing X

v̄k,X=

∫ X
0 vk,XdX
∫ X
0 dX

(20)

After incorporating (18) into (20), the integration
of the numerator and the denominator of the obtained
equation and the addition of integration limits and then
the simplification the following formula is obtained

v̄k,X= vk,o

(
1 − k1

X
2

+k2
X2

3
−k3

X3

4

)
(21)

From equation (21), the average integral volume of
burning coke piece after relative time X is calculated.
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After the substitution of X=1 into (21), the formula of
calculation of the average integral volume for the total
time of burning coke piece is derived

v̄k= vk,o

(
1 − k1

1
2

+k2
1
3
−k3

1
4

)
(22)

where:
v̄k,X = v̄k – mean integral volume of coke piece, m3.
After substituting expressions (19) into (22) and the

simplification, the formula for v̄k is as follows

v̄k= vk,o

(
1
3
− 1

12m

)
(23)

Based on (12) and (23), the following formula for
the calculation of coefficient φv is derived

ϕv=
v̄k

vk,o
=

1
3
− 1

12m
(24)

Dimensionless coefficient φv is equal to the ratio
of average integral volume of coke piece in time of its
complete burning to the volume of coke piece before the
beginning of the combustion process.

Formula for the calculation of ϕ f

The surface of the burning coke piece in the form
of square based prism, after time τ, can be written down
as follows

fk,τ = 2(a − 2µkτ)2 + 4(a − 2µkτ)(b − 2µkτ) (25)

Eq. (25) is reshaped to the form

fk,τ = 4ab
(
1 − 2µk

a
τ

) (
1 − 2µk

b
τ

)
+ 2a2

(
1 − 2µk

a
τ

)
(26)

Relations (15) (16) and m =
a
b
ifk,τ = fk,X are insert-

ed into (26)

fk,X = 4ab(1 − X)
(
1 − X

m

)
+ 2a2(1 − X)2 (27)

After the multiplication, eq. (27) takes form

fk,X = 4ab
(
1 − X

m
− X +

X2

m

)
+ 2a2(1 + X2 − 2X) (28)

Average integral surface of coke piece after relative
time X can be described as

f̄k,X=

∫ X
0 fk,XdX
∫ X
0 dX

(29)

After including (28) into (29), the integration of the
numerator and denominator of the obtained relationship,
after inserting the integration limits and its simplifica-
tion, the following equation of average integral surface
of coke piece in dependence on value of relative com-
bustion time X can be produced

f̄k,X= 4ab
(
1− X

2m
−X

2
+

X2

3m

)
+2a2

(
1 − X+

X2

3

)
(30)

Equation (30) is transformed into the following
shape

f̄k,X= fk,o

(
1− 2 + m

2m + 1
X+

X2

2m + 1

)
(31)

at which

fk,o = 4ab + 2a2 = (4m + 2)a2 (32)

where
fk,o – initial surface of burnt piece of coke, m2

The average integral surface of burning coke piece
after relative time X is calculated from eq. (31). After
including X=1 into (31) the following formula of the
average integral surface for the total combustion time of
piece of coke can be derived

f̄k= fk,o

(
1− 2 + m

2m + 1
+

1
2m + 1

)
(33)

where:
f̄k,X = f̄k for X = 1.

Eq. (33) can be transformed into the form of

f̄k= fk,o
m

2m + 1
(34)

Based on (11) and (34), the following expression for
coefficient φ f is established

ϕf =
f̄k
fk,o

=
m

2m + 1
(35)

Dimensionless coefficient ϕ f is equal to the ratio
of average integral surface of coke piece after it is com-
pletely burnt to its surface before the combustion started.

Calculation of average integral modules of coke pieces
in the form of square based prisms

Including (23) and (34) into (4) gives

r̄k=
v̄k

f̄k
=

vk,oϕv

fk,oϕf
= rk,o

ϕ̄v

ϕ̄f
(36)

at which:
rk,o=

vk,o

fk,o
(37)

where:
rk,o – initial module of coke pieces, m.
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Equation (37) can be written for the square based
prisms in the following way

rk,o=
ma

2(2m + 1)
=

a
2
ϕf (38)

where:
a – length of square side of coke piece base, m.
Eq. (35) was included into (38).
Formulas (38) and (24) were substituted into (36)

and after the simplification, the r̄k was obtained

r̄k =
a
2
ϕv=

a
2

(
1
3
− 1

12m

)
(39)

Relations (38) and (39) contain new dependencies
among r̄k, rk,o, ϕv and ϕ f .

5. Structure parameters of combustion zone

The morphology of combustion zone can be de-
scribed with the following parameters: height and vol-
ume of zone, mass of burning coke in the zone, number
of burning coke pieces and their average dimensions, de-
velopment surface of coke pieces, number of coke piece
sequences, their volumes and surfaces and so on.

The calculations start from the height of zone ac-
cording to equation (8).

Number of coke pieces in the combustion zone

The number of burning coke pieces in the zone can
be calculated based on the mass of coke in the zone and
the average integral volume of coke pieces.

The mass of coke M̄k,s (kg) in the zone is calculated
from formula

M̄k,s= HsFr,sρn,k (40)

The number of coke pieces nk in the zone is obtained
from

nk=
HsFr,sρn,k

v̄k
(41)

Number of sequences of burning coke pieces

The burning coke pieces form sequences, whose
number amounts to the number of pieces moving simul-
taneously to the combustion zone across its cross-section
at its upper boundary The number of sequences can be
formulated as

Nc,k=
Fr,s

D2
k

(42)

where, for the square based prisms Dk (equivalent di-
mension of coke pieces, m) is

Dk=
2a + b

3
(43)

Knowing nk and Nc,k , the number of coke pieces in
each sequence as well as their total volume and surface
are calculated from the following expressions

nc,k=
nk

Nc,k
(44)

Vc,k= nc,kv̄k (45)

Fc,k= nc,k f̄k (46)

where:
nc,k – number of coke pieces in each sequence,
Vc,k – volume of pieces in one sequence, m3

Fc,k – surface of pieces in one sequence, m2.
The V̄k and f̄k in formulas (45) and (46), respectively

concern the average integrals i.e. calculated from infinite
number of burning pieces, while the formulas contain fi-
nite numbers of pieces nc,k , so their application requires
the determination of minimal allowed number nc,k .

Minimal number nc,k for equation (45)

In the next step, formulas to calculate a total vol-
ume of coke piece sequence, average volume of pieces
in a sequence, volume of individual pieces and minimal
number nc,k will be derived.

The combustion of coke pieces in a sequence is to
be considered. The pieces in the form of square based
prisms burn at constant linear rate at all surfaces of
pieces. Another assumption is, that in individual se-
quences dimensions of neighboring pieces differ by val-
ue z, obtainable from formula

z =
0, 5a
nc,k

(47)

where:
z – thickness of burnt layer of coke in each sequence

of pieces, m The volume of i-piece in each sequence of
pieces may be expressed with formula

vk,i = (a − 2zi)2(b − 2zi) (48)

After extraction of dimensions a and b out of brack-
ets

vk,i= vk,o

(
1−2z

a
i
)2 (

1−2z
b

i
)

(49)

where
vk,o = a2b.
The following relation is substituted into eq. (49)

δ=
2z
a

(50)
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In this way, eq. (49) acquires form

vk,i= vk,o(1−δi)2
(
1− 1

m
δi

)
(51)

After raising to a square power and the multiplica-
tion, eq. (51) obtains shape

vk,i = vk,o(1 − k1δi + k2δ
2i2 − k3δ

3i3) (52)

where:
k1, k2 and k3 are given with formulas (19)
Using (52) the total volumes of piece sequence sum-

ming from i =1 to i=nc,k and from i=0 to i=ic,k (n= nc,k
for simplification of notations)

V
′
c,n= vk,o

∑i=n

i=1

(
1 − k1δi + k2δ

2i2−k3δ
3i3

)
(53)

V
′′
c,n= vk,o

∑i=n

i=0

(
1 − k1δi + k2δ

2i2−k3δ
3i3

)
(54)

The sum in equation (53) means, that the first piece
of sequence has dimensions lessened by 2z; while the
sum in formula (54) indicates that the first piece of se-
quence has initial size (passing from the melting zone
to the combustion one it does not burn).

The total in equation (53) can be calculated writing
down its first three terms and the last term in the form:

i = 1 1 – k1δ 1 + k2δ
212 - k3δ

313 (a)

i = 2 1 – k1δ 2 + k2δ
222 – k3δ

323 (b)

i = 3 1 – k1δ 3 + k2δ
232 – k3δ

333 (c)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

i = n 1 – k1δ n + k2δ
2n2 – k3δ

3n3 (d)

After summing up the columns of lines (a)÷(d):

First column:
1 + 1 + 1+ . . . . . . . + 1 = n (e)

Second column:
– k1δ (1 + 2 + 3 + . . . . + n ) = – k1δ

n(n + 1)
2

(f)

third column:

k2δ
2 (12 + 22 + 32 + . . . + n2) = k2δ

2 n(2n2+3n + 1)
6

(g)
fourth column:

– k3δ
3 (13+23+33+ . . . . + n3) = – k3δ

3 n2(n2+2n + 1)
4

(h)
The totals in formulas (f), (g) and (h) are written ac-

cording to [7] The result of addition of sums of columns
(e)-(h) is denoted as R1

R1= n − k1δ
n(n + 1)

2
+k2δ

2 n(2n2+3n + 1)
6

−

−k3δ
3 n2(n2+2n + 1)

4

(55)

Relations (19) are substituted into (55) and so is the
following expression resulting from (47) and (50)

δ =
1
n

(56)

After a simplification and transformation we get

R1 =
(4m − 1) n

12m
− 1

2
+

2m + 1
12mn

(57)

Substituting (57) into (53); an equation of the total
volume of coke pieces in a given sequence of pieces is
derived

V
′
c,n= vk,oR1= vk,o

(
(4m − 1)n

12m
−1

2
+

2m + 1
12mn

)
(58)

In order to obtain the formula of average volume of
coke pieces, eq. (58) will be divided by n. In this way
we get

v̄′k,n=
V′c,n
n

= vk,oϕ
′
v,n (59)

at which:
ϕ′v,n=

4m − 1
12m

− 1
2n

+
2m + 1
12mn2 (60)

Based on eq. (60), the value of coefficient ϕ′v,n is
calculated as a function of m, n and the limits of sum-
mation in eq. (53).

The total of eq. (54) will be, in turn, calculated start-
ing from denoting it as R2. It is easy to observe that the
total will be larger by 1 than sum R1, because for i=0
the first term of the sum is 1. Thus, it can be written
down that

R2 = R1 + 1 (61)

Substituting (57) into (61)

R2=
(4m − 1) n

12m
+

1
2

+
2m + 1
12mn

(62)

Inserting (62) into (54)

V′′c,n= vk,oR2= vk,o

(
(4m − 1)n

12m
+

1
2

+
2m + 1
12mn

)
(63)

Let us divide (63) by n

v̄′′k,n=
V′′c,n
n

= vk,oϕ
′′
v,n (64)

at which:

ϕ′′v,n=
4m − 1
12m

+
1
2n

+
2m + 1
12mn2 (65)

From eq. (65) the value of coefficient ϕ′′v,n will be
calculated as a function of m, n and the limits of sum-
mation in eq. (54).

Thus, two formulas for volumes of sequences [(58)
and (59)] as well as formulas to calculate the average
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volume of coke pieces in the sequence [(59) and (60)]
and [(64) and (65)] are obtained It results from the men-
tioned formulas, i.e: V′′c,n > V′c,n; v̄′′k,n > v̄′k,n; ϕ

′′
v,n > ϕ

′
v,n.

Such inequalities yield from different summation limits
in formulas (53) and (54).

Let us calculate arithmetic means of formulas (58)
and (63) as well as (60) and (65):

Vc,n=
V′c,n+V′′c,n

2
= vk,o

4m − 1
12m

n+
2m + 1
12mn

(66)

ϕv,n=
ϕ′v,n+ϕ

′′
v,n

2
=

1
3
− 1

12m
+

2m + 1
12mn2 (67)

The average volume of coke pieces as a function of
n can be written down as

v̄k,n= vk,oϕv,n= vk,o
1
3
− 1

12m
+

2m + 1
12mn2 (68)

As it results from (66), (67) and (68) values Vc,n,
ϕv,n, v̄k,n for a given m, are the functions of coke piece
number in sequence n. For n→ ∞ formulas (67) and
(68) are simplified to the form of formulas (23) and
(24), obtained for the average integrals.

Two groups of formulas of average volumes of coke
pieces in the zone of combustion and other parameters
are obtained. This groups of parameters result from the
assumption of average integral volume, that is for n=∞
and another for n< ∞ The question is, at which minimal
n number the formulas for n=∞ may be applied.

For the quantitative approach to the differences be-
tween the results of calculations according to the two
groups of formulas let us define coefficient ∈v

∈v =
ϕv,n

ϕv
(69)

into which the derived formulas (67) and (24) can be
substituted; after a simplification eq. (70) is obtained

∈v = 1+
2m + 1

(4m − 1)n2 (70)

As it results from (70), the value of coefficient ∈v
decreases with n2 It is also easy to observe, that ∈v de-
creases with the increase of m. For instance, for n=5 and
m=1 ∈v=104, which means that the difference between
ϕv,n and ϕn is only 4%. In the combustion zone the values
of n are not lower than 5, while the m value is higher
than 1. It allows for the application of formulas (23), (24)
and (45) instead of (66), (67) and (68) At the same time
the calculation of volume of coke pieces in sequences
following the differential formula, which results from
averaging formula (53) and (54) is possible.

Calculation of coke piece volumes in sequences

(56) is substituted into (52)

vk,i= vk,o

(
1 − k1

i
n

+k2
i2

n2−k3
i3

n3

)
(71)

The definition of arithmetic mean of volume of coke
pieces in sequences is

v̄k,i=
vk,i+vk,i−1

2
(72)

Eq. (71) is substituted into (72)

v̄k,i= vk,o

[
1 − k1

i − 0, 5
n

+k2
i2+(1 − i)2

2n2 −k3
i3+(1 − i)3

2n3

]

(73)
From eq. (73) the arithmetic mean of volume of

i-piece of coke, can be calculated when number of pieces
is n, fineness ratio is m and initial volume vk,o.
Example: Data: m=1; n=5; k1=2+1=3; k2=3; k3=1.
The calculation acc. to (73):

vk,i=
[
1 − 3

i − 0, 5
5

+3
i2+ (i − 1)2

2 · 25
−1i3+ (i − 1)3

2 · 53

]

i =1; vk,1=vk,o 0,756 m3; i = 2, vk,2=vk,o 0,364 m3; i =3,
vk,3=vk,o 0,140 m3; i = 4; vk,4 =vk,o 0,036 m3; i = 5;
vk,5=vk,o 4·10−3 m3

The total volume of sequence is Vc,5= 13 vk,o m3

The calculation using formula (45) (ϕv=0,25):

Vc =vk,o · 0.25 · 5=1,25 vk,o; difference
1, 3 − 1, 25

1, 25
= 0,04 or 4%.

Minimal number nc,k for formula (46)

Formulas of total surface of coke pieces in the se-
quence, mean surface of coke pieces in the sequence,
surfaces of individual pieces and minimal number nc,k
needed to use formula (46) will be derived in this part.

The surface of i-coke piece in the sequence of pieces
square-based prisms will be written down with formula

fk,i = 4(a − 2zi)(b − 2zi) + 2(a − 2zi)2 (74)

Or after extracting a and b out of brackets

fk,i= 4ab
(
1−2z

a
i
) (

1−2z
b

i
)
+2a2

(
1−2z

b
i
)2

(75)

Substituting relation (50) into (75)

fk,i= 4ab(1−δi)
(
1− δ

m
i
)
+2a2(1−δi)2 (76)

(76) will be transformed into the form

fk,i= fk,o

(
1 − 2

m + 2
2m + 1

δi + 3
1

2m + 1
δ2i2

)
(77)
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at which:

fk,o = 4ab + 2a2 = 2(m + 1)a2 (78)

where:
fk,o – initial surface of coke piece m2

Using (77) the total surface of coke pieces in the
sequence can be written down for two summation limits
i.e. from i=1 up to i=n and from i=0 to i=n:

F′c,n= fk,o

∑i=n

i=1
(1 − k4δi + k5δ

2i2) (79)

F′′c,n= fk,o

∑i=n

i=0
(1 − k4δi + k5δ

2i2) (80)

at which:

k4= 2− m + 2
2m + 1

; k5=
3

2m + 1
(81)

The sum in eq. (79) will be calculated writing three first
terms and the last one of it as:

i = 1 1 - k4 δ 1 + k5 δ2 12(a)
i = 2 1 - k4 δ 2 + k5 δ2 22(b)
i = 3 1 - k4 δ 3 + k5 δ2 32(c)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
i = n 1 - k4 δ n + k5 δ2 n2(d)
After summing up the columns of expressions

(a)÷(d):
column 1:
1 + 1 + 1 +. . . . + 1 = n (e)
column 2:
-k4δ(1 + 2 + 3+. . . + n)= - k4δ

n(n + 1)
2

(f)
column 3:

k5δ
2(12+22+32+. . . ..+ n2)= k5δ

2 n(2n2+3n + 1)
6

(g)
Totals of individual columns are added and denoted as
S1

S1= n − k4δ
n(n + 1)

2
+k5δ

2 n(2n2+3n + 1)
6

(82)

After including relation (56) into (82)

S1= n − k4
n + 1

2
+k5

2n2+3n + 1
6n

(83)

and expressions (81) into (83) we get

S1=
m

2m + 1
n−1

2
+

1
2n(2m + 1)

(84)

Substituting (84) into (79), one can produce the
equation of total surface of pieces in a sequence

F′c,n= fk,o

[
m

2m + 1
n−1

2
+

1
2n(2m + 1)

]
(85)

After dividing both sides of (85) by n, a formula for
average surface of coke pieces in a given sequence can
be derived.

f̄ ′k,n=
F′c,n
n

= fk,oϕ
′
f ,n (86)

at which:

ϕ′f ,n=
m

2m + 1
− 1

2n
+

1
2n2(2m + 1)

(87)

The sum in eq. (80) will be in turn calculated de-
noting it as S2. Since for i=0 the first term is equal to 1,
the S2 sum (from i=0 up to i=n can be written as follows

S2 = S1 + 1 (88)

Eq. (84) will be incorporated into (88)

S2=
m

2m + 1
n+

1
2

+
1

2n(2m + 1)
(89)

After the substitution of (89) into (80) the desired
formula of F′′c,n is derived

F′′c,n= fk,o

[
m

2m + 1
n+

1
2

+
1

2n(2m + 1)

]
(90)

After dividing both sides of eq. (90) by n another
formula for average surface of coke pieces in a given
sequence can be derived

f̄ ′′k,n=
F′′k,n
n

= fk,oϕ
′′
k,n (91)

at which:

ϕ
′′
k,n=

m
2m + 1

+
1
2n

+
1

2n2(2m + 1)
(92)

In that way two sets of formulas [(85) and (90)]
for a total surface of coke pieces in a sequence were
derived. Also two expressions for an average surface of
coke pieces in a given sequence as well as coefficients
ϕ f ,n (87) and (92) were obtained.

The resulting inequalities V′′c,n > V′c,n; V̄′′k,n > V̄′k,n;
ϕ′′f ,n > ϕ

′′
f ,n are due to different limits of sums in formulas

(79) and (80).
Now, arithmetic means of (85) and (90) as well as

(87) and (92) are going to be calculated:

Fc,n=
F′c,n+F′′c,n

2
= fk,o

[
m

2m + 1
n+

1
2n(2m + 1)

]
(93)

ϕf ,n=
ϕ′f ,n+ϕ

′′
f ,n

2
=

m
2m + 1

+
1

2n2(2m + 1)
(94)

As it follows from equation (94) coefficient ϕ f ,n is a
function of n, for a given value of m. The second term
(94) contains n2, which means, that its value decreases
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quickly when m increases and for n=∞ it is simplified
to the form of equation (35).

Based on (94), a mean surface of pieces of sequence
f̄c,n can be obtained

f̄c,n= fk,oϕf ,n= fk,o

[
m

2m + 1
+

1
2n2(2m + 1)

]
(95)

In order to asses the differences of values ϕv,n and
ϕv, coefficient ∈ f will be defined as

∈f =
ϕf ,n

ϕf
(96)

After substituting equations (94) and (35) into (96)
eq. (97) is derived in the form of

∈f = 1+
1

2mn2 (97)

The value of coefficient ∈ f diminishes with the in-
crease of n and m. For n=5 and m=1 ∈ f = 1,02 and it is
lower from the calculated ∈v.

Surface of coke pieces in sequences

Relation (56) substituted into (77) gives

fk,i= fk,o

(
1 − 2

m + 2
2m + 1

i
n

+3
1

2m + 1
i2

n2

)
(98)

The mean arithmetic surface of coke pieces in se-
quences can be defined as

f̄k,i=
fk,i+fk,i−1

2
(99)

Substituting (98) into (99)

f̄k,i= fk,o

[
1− m + 2

2m + 1
2i − 1

n
+

3
2m + 1

i2−i + 0.5
n2

]
(100)

The calculation of coke pieces in a given sequence of
pieces.

Data: n=5, m=1. Calculate f̄k,i and Fc,5.
Let us use Eq. (100)

f̄k,i=fk,o

(
1−2i − 1

5
+

i2−i + 0.5
25

)
; results of calculations

f̄k,i: f̄k,1 =0.82 fk,o; f̄k,2 =0.50 fk,o; f̄k,3 =0.26 fk,o;
f̄k,4 =0.10 fk,o; f̄k,5 =0.02 fk,o. The total surface of pieces
in the sequence is Fc,n = 1,7 fk,o.

Combustion time of coke cartridges applying the height
of the combustion zone

Combustion time of individual coke piece τH,s in
the combustion zone is described by equation (101)

τH,s=
r̄k
µk

(101)

The following proportion can be written down for the
combustion zone

M̄k,s:τH,s= mn,k:τs,n,k (102)

where
mn,k – mass of coke cartridge, kg
τs,n,k – time of coke cartridge combustion, s.
Time τs,n,k is calculated from proportion (102)

τs,n,k=
τH,smn,k

M̄k,s
(103)

After substituting equations (101), (40) and (8) into
(103) a simple formula for time τs,n,k is obtained

τs,n,k=
mn,k

Pc
Lk,4 (104)

Let us compare time τs,n,k with the time of cartridge
melting, which can be calculated from the following for-
mula

τt,n,m=
mn,m

Sc
(105)

where:
τt,n,m – melting time of metal cartridge, s
Sc – efficiency of melting, kgFe/s.
After including the Buzek formula for Sc [8] into

(105) one can obtain equality

τt,n,m = τs,n,k (106)

Equality (106) proves the continuity of the metal
cartridge melting processes and combustion of the coke
cartridges.

6. The height of combustion zone, when the coke
cartridges contain fractions of different masses and

shapes of coke pieces

Model assumptions

Part of earlier assumptions takes the following form:
– the cartridges of charge coke contain contributions

of different masses and shapes of coke pieces; mass and
volume fractions of individual parts in each cartridge are
identical

– the linear rate of coke combustion is the same for
all fractions of cartridges

– the coke pieces, which move to the combustion
zone form sequences of decreasing pieces of individual
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fractions; the number of sequences is equal to the num-
ber of moving simultaneously coke pieces through the
upper cross-section of the zone,

– average volume and surface of coke pieces in each
sequence of every fraction is equal to their mean inte-
grals.

Formula of the combustion zone height

The following formula of mass rate of combustion
can be valid for any number of coke fractions

mk,s=µkρk

∑i=n

i=1
F̄s,i (107)

where:
F̄s,i – total surface in the zone of mean integral

surfaces of i-coke fraction (combustion surface or the
development surface of the combustion zone), m2

n – number of fractions in coke cartridges (1,2,3. . . ).
Surface F̄s,i can be expressed with the help of mean

integral surfaces and volumes of coke pieces of a given
fraction

F̄s,i= nk,if̄k,i=
V̄s,i

r̄k,i
(108)

at which:
r̄k,i=

v̄k,i

f̄k,i
(109)

nk,i=
V̄s,i

v̄k,i
(110)

where:
nk,i – number of coke pieces of i-fraction,
f̄k,i – mean integral surface of individual coke pieces

of i-coke fraction, m2

V̄s,i – total volume in the zone of mean integral
volumes of coke pieces in i-fraction, m3

v̄k,i – mean integral volume of coke pieces in
i-fraction, m3

r̄k,i – mean integral module of coke pieces in
i-fraction, m

Let us substitute (108) into (107)

mk,s=µkρk

∑i=n

i=1

V̄s,i

r̄k,i
(111)

The relative contribution of i-fraction to the total
volume of all coke fractions can be defined as Ūs,i

Ūs,i=
V̄s,i

V̄s
(112)

where:
V̄s – total volume of mean integral coke pieces in

the combustion zone, m3

V̄s,i can be calculated from (112) and substituted
into (111)

mk,s=µkρkV̄s

∑i=n

i=1

Ūs,i

r̄k,i
(113)

The following equation of mass balance can be writ-
ten for the combustion zone, which do not contain pieces
of the metal charge

HsFr,sρn,k = V̄sρk (114)

V̄s is calculated from equation (114) and inserted into
(113)

mk,s=µkρk
HsFr,sρn,k

ρk

∑i=n

i=1

Ūs,i

r̄k,i
(115)

From eq. (115), the height of combustion zone for
the coke cartridges containing fractions of different size
coke pieces

Hs=
mk,sr̄z

µkFr,sρn,k
(116)

at which:

r̄z= 1/
∑i=n

i=1

Ūs,i

r̄k,i
(117)

where:
r̄z – mean integral module of coke pieces of all frac-

tions, m.
After the substitution of relation (7) into (117) the

anticipated height of the combustion zone is obtained

Hs=
PFr̄z

µkCkLc,4ρn,k
(118)

Calculation of contributions Ūs,i

Contributions Ūs,i in formula (117) should be cal-
culated based on the shares of individual fractions in
the cartridges of charge coke and coefficients φv,i. The
formula to calculate Ūs,i for i-fraction can be written
down based on the definition given in (112)

Ūs,i=
V̄s,i

V̄s
=

Vk,o,iϕv,i∑n
i=1

(
Vk,o,iϕv,i

)=
Mk,o,iϕv,i∑n

i=1
(
Mk,o,iϕv,i

) (119)

at which:

ϕv,i=
V̄s,i

Vk,o,i
=

v̄k,i

vk,o,i
(120)

where:
Vk,o,i – initial volume of coke, of which volume V̄s,i

formed at the upper boundary of the combustion zone,
i.e. volume of coke pieces of i-fraction, m3

vk,o,i – initial volume of coke pieces of i-fraction,
m3

ϕv,i – ratio of mean integral volume of coke pieces of
i-fraction in the zone to their initial volume unit fraction

Mk,o,i = Vk,o,i ρk – mass of volume Vk,o,i, kg.
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Let us write (119) for two fractions in the coke car-
tridge (n=2)

Ūs,1=
Mk,o,1ϕv,1

Mk,o,1ϕv,1+Mk,o,2ϕv,2
(121)

where:
Ūs,1 – contribution Ūs,1 in the first fraction, unit frac-

tion
Mk,o,1; Mk,o,2 – initial mass of the first and second

coke fractions in the coke cartridges, kg, respectively
ϕv,1; ϕv,2 – coefficient ϕv,i of the first and second

fractions of coke in the coke, respectively.

Primary height of the filling coke

The primary height of the filling coke can be de-
scribed as the height, of which a combustion zone of
stable height should form after the start of the cupo-
la process. When the combustion zone height is known
from calculations, the primary height of the filling coke
can be calculated from formula

Hk,w=
Hs

ϕv
(122)

where:
Hk,w – primary height of the filling coke, m.
In the case of different values of ϕv their arithmetic

mean should be used in formula (122).

7. Analysis of the Czyżewski’s equation of
combustion zone height

Czyżewski in work [9] derived the following formu-
la to calculate the height of combustion zone (denota-
tions of the present paper; SI unit system)

Hs=
dk

2

√(
PF

3Lkµkρk(1 − fk)

)2
−1 (123)

where:
dk – diameter of coke pieces (precisely: base of coke

cones formed in the zone from burning coke pieces), m
fk – relative space among coke pieces, unit fraction.
Paper [9] was a qualifying work for assistant pro-

fessor. It consisted of two parts; the first one reported
the investigation of linear rate of coke combustion and
their generalization in the form of a formula and diagram
(which was the first report in the world-wide literature
on linear rate of coke combustion); the second one con-
tained the derivation of formula (123).

In work [13] containing the summary of the theory
of cupola process (elaborated by Buzek and Czyżewski)

Czyżewski produced only the following formula for the
calculation of H without any introduction or a comment:

Hs=
PFdk

26700µk
(124)

The data on PF and µk were to be substituted into
formula (124) either in m/s or in m/min; dk in m.

At present the model of combustion zone contained
in equation (123) and its probable assumptions will be
discussed in attempt to obtain formula (124) from (123).

Czyżewski assumed, when deriving formula (123)
that the zone of combustion was filled with cones,
formed from burning coke pieces of base diameter dk
with vertices directed upside down and height Hs Such
an assumption allows writing the following equation of
balance of coke combustion mass rate in the zone

Pc

Lk
=µkfsnsρk (125)

fs – side surface of cone, m2

ns – number of cones in the zone
Let us write fs and ns in a broader form The side

surface can be given as

fs=
π

2
dk

√(
dk

2

)2
+H2

s (126)

According to the assumption, the number of cones
at the zone cross section is given by equation

n
′
s=

Fr,s

d2
k

(127)

Using (127) the relative fraction of free volume in
the zone volume fk can be calculated

fk=
Fr,sHs−n′sVs

Fr,sHs
= 1− n

′
sVs

Fr,sHs
= 1− π

12
= = 0.74 (74% of

volume is occupied with voids)
where: Vs =

π

12
d2

kHs – volume of individual cone, m3.
The equation (127) gives too low the bulk density

of coke in the zone. To increase it, Czyżewski applied
the following equation for the calculation of the cone
number ns

ns=
Fr,sHs

Vs
(1 − fk) =

Fr,s
π

12
d2

k

(1 − fk), (128)

which gives almost a double number of cones compared
to the amount calculated from equation (127)

ns

n′s
=
π

12
(1-fk) = 1.91 (for fk=0.5)

After the substitution of (128) and (126) into (125)
and after a transformation, equation (123) is obtained.

Czyżewski expressed the following opinion about
formula (123) in work [9]: “The equation is without
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doubt good as long as its qualitative aspect is consid-
ered (underlining comes from the author of the present
work). It means that the influence of individual factors
on the height of combustion zone is in accordance with
practice” and that “. . . although it was based on quite
artificial assumption, that the layer of burning fuel con-
sists of cones, it gives quantities quite compatible with
the reality”.

It yields from the presented opinion, that equation
(123) was assessed by its author as a quite precise one.

Equation (123) can be written down as

Hs=
dk

2

√(
PF

3Lkµkρn,k

)2
−1 (129)

where:
ρn,k = ρk (1- fk) – bulk density of coke, kg/m3

Now, the origin of the equation (123) will be stud-
ied. After the elimination of 1 from equation (129) one
can get

Hs=
PF

Lkµkρn,k

dk

6
(130)

The obtained formula is similar to formula (8)
(Lk=Ck Lc); it contains module rk for the coke pieces
in the form of spheres (dk/6) instead of module r̄k. The
calculated Hs height for spheres is higher than the height
of spheres calculated according to formula (8). Leaving
1 in formula (128) decreases the differences of height
Hs, calculated based on formulas (129) and (8).

In turn, equations (8) and (24) can be compared. Let
us substitute eq. (39) into (8)

Hs=
PF

CkLcµkρn,k

a
2

(
1
3
− 1

12m

)
(131)

Equations (131) and (124) can be also compared

PF

CkLcµkρn,k

a
2

1
3
− 1

12m
=

PFdk

26700µk
(132)

After accepting that a=dk , and after a simplification
and transformation the expression to calculate MX takes
the form:

MX=
2CkLcρn,k

1
3
− 1

12m

(133)

where: MX= MCz = 26700 – dimensionless number given
by Czyżewski

The % differences ∆MCz= MX-MCz can be calcu-
lated for: Ck=0,86 kgc/kgk; Lc=8,9 m3

p/kgc (burning of
C into CO2 – assumption in paper [9]; ρn,k=500, 480
and 440 kgk/m3; m=1; 1,25 and 1,5. Calculations: m=1;
ρn,k= 500 kgk/m3; ∆MCz= 14,7%; m=1; ρn,k=440 kgk/m3;
∆MCz=0,9%; m=1,25; ρn,k= 500 kgk/m3; ∆MCz=7,5%;

m=1,25; ρn,k=480 kgk/m3; ∆MCz=3,26%; m=1,5; ρn,k=
500 kgk/m3; ∆MCz=3,2.

It follows from the calculations that the simplified
equation (123) can be applied in industrial calculations.

8. Linear rate of coke combustion

The linear rate of coke combustion is here proposed
to be calculated from the following formula of Podrzucki
[8]:

µk= ew0,85c1,89
o T0,28

d (134)

at which:

w = 1, 05
PF(

1−ρn,k

ρk

)
1, 4

(135)

where
e – coefficient dependent on the kind of coke; for

the foundry coke of first sort e=1,437·10−5

w – velocity of gas flow through the combustion
zone, normal conditions, m/s

co – concentration of oxygen in the blast, m3 of
oxygen/m3 of air,

Td – temperature of blast, K.

9. Calculation of combustion zone height

a) Data: Td=273 + 25 = 298 K, co=0,21 m3/m3;
PF= 1,7 m/s; ρk=1000 kg/m3, ρn,k=500 kg/m3; a=0,1 m,
m=1,5.

Calculations: w= 1,05
1, 7

(
1− 500

1000

)1,4 =4,71 m/s acc. to

(124);
µk=1,437·10−54,710,850,211,892980,28= 1384·10−5

m/s acc. to (123)
Lc,4=4,45(1+0,525)=6,786 m3/kgc acc. to (9);

r̄k=
0, 1
2

(
1
3
− 1

12 · 1, 5
)
=0,0139 m acc. to (39); Hs =

1, 7 · 0, 0139
0, 86 · 6, 786 · 1, 384 · 10−5 · 500

= 0,585 m acc. to (8).

b) Data: a=0,06 m; m=1,2. The remain-
ing data like in example a. Calculation:

r̄k=
0, 06

2

(
1
3
− 1

12 · 1, 2
)
=7,917·10−3 m; Hs=0,33 m.

c) Calculation of Hs acc. to (118) for two coke frac-
tions, 24 kg each.

Calculation: ϕv,1 =
1
3
− 1

12 · 1, 5=0,278 acc. to (24);
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ϕv,2 =
1
3
− 1

12 · 1, 2=0,264 wg(24);

Ūs,1=
24 · 0, 278

24 · 0, 278 + 24 · 0, 264
=0,513 acc. to (121);

Ūs,1=
24 · 0, 264

24 · 0, 278 + 24 · 0, 264
=0,487;r̄k,1= 0,0139m;

r̄k,2 = 7, 917 · 10−3 m;

r̄z=
1

0, 513
0, 0139

+
0, 487

7, 917 · 10−3

=0,0102 m acc. to (117);

Hs =
1, 7 · 0, 0102

0, 86 · 6, 786 · 1, 384 · 10−5 · 500
= 0,429 m acc. to

(118)

10. Conclusions

The work describes the formation of stabilized com-
bustion zone height out of a primary height of the filling
coke and derivation of formulas for the calculation of pa-
rameters typical for the processes of appearance of the
zone structure for pieces of coke in the form of square
based prisms, cubes and spheres (m=1). It also contains
examples of application of the derived formulas.

The derived formulas can be divided into three
groups:
– formulas containing mean integral volumes and sur-
faces of coke pieces, which can be called the basic for-
mulas of the work;
– formulas resulting from the assumption of differences
of finite linear dimensions of coke pieces in individual
sequences of coke, which can be called formulas com-
pleting the model described in the work
– complementary formulas.

The first group contains formulas (1) to (46), which
serve for the calculation of the following parameters of
combustion zone: zone height for the coke pieces of
identical mass and shape; ϕv and ϕ f coefficients for the
calculation of mean integral volume and surfaces of coke
pieces; average integral modules of coke pieces in the
zone (r̄m); the number of burning coke pieces in the zone
(nk); the number of coke pieces sequences (Nc,k); num-
ber of coke pieces in sequences of pieces (nc,k); volumes
and surfaces of sequences (Vc,k and Fc,k).

Formulas from (47) up to (100) belong to the sec-
ond group and its role is dual; they serve to calculate the
minimal number of coke pieces in sequences of pieces,
for which mean integral volumes and surfaces can be still
used. They also serve to calculate volumes and surfaces
of individual pieces in sequences.

It results from the performed calculations, that the
minimal number of pieces in sequences of pieces nc,k=5,
while the volume and surface differences calculated
based on the formulas of the first and second group do

not exceed several per cent (4% in the above-mentioned
examples).

The third group of formulas i.e formula (101) to
(135) stands for the group of complementary formulas
and they serve to calculate:
– the combustion time of coke cartridges using the height
of the combustion zone,
– the height of combustion zone when the coke car-
tridges contain fractions of various weights and forms
of coke pieces,
– the primary height of the filling coke
– the heights of combustion zone according to Czyżews-
ki formulas,
– the linear rate of coke combustion according to the
Podrzucki formula.

A new model of coke cartridge burning in the com-
bustion zone as well as a new model of melting metal
cartridges in the melting zone, taking into account paper
[2], completely different from the models described in
the literature (scarce works e.g. [9-12] was established
in the present paper.

The new model indicates the continuity and fluidity
of melting and burning processes as well as the move-
ment of the material stack in the cupola shaft.

The study was carried out under own research
project no. N N 508 469 234.
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