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FATIGUE LIFE PREDICTIONS OF METAL MATRIX COMPOSITES USING ARTIFICIAL NEURAL NETWORKS

PRZEWIDYWANIA TRWAŁOŚCI ZMĘCZENIOWEJ KOMPOZYTÓW METALOWYCH PRZY UŻYCIU SZTUCZNYCH SIECI
NEURONOWYCH

In this study, fatigue life predictions for the various metal matrix composites, R ratios, notch geometries, and different
temperatures have been performed by using artificial neural networks (ANN) approach. Input parameters of the model comprise
various materials (M), such as particle size and volume fraction of reinforcement, stress concentration factor (Kt), R ratio (R),
peak stress (S), temperatures (T), whereas, output of the ANN model consist of number of failure cycles. ANN controller
was trained with Levenberg-Marquardt (LM) learning algorithm. The tested actual data and predicted data were simulated by
a computer program developed on MATLAB platform. It is shown that the model provides intimate fatigue life estimations
compared with actual tested data.
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Zastosowano sztuczne sieci neuronowe (ANN) do przewidywania trwałości zmęczeniowej dla różnych kompozytów me-
talowych, parametrów R, geometrii karbu, i różnych temperatur. Parametry wejściowe modelu obejmowały: różne materiały
(M), o różnym rozmiarze cząstek i objętości frakcji zbrojącej, współczynnik koncentracji naprężeń (Kt), stosunek parametru R
(R), naprężenie szczytowe (S), temperaturę (T), natomiast dane wyjściowe składały się z liczby cykli awarii (SSN). Kontroler
ANN był trenowany z użyciem algorytmu uczenia Levenberga-Marquardta (LM). Badane dane rzeczywiste i dane przewidy-
wane symulowane były przez program komputerowy opracowany na platformie MATLAB. Wykazano, że model zapewnia
oszacowanie trwałości zmęczeniowej bliską rzeczywistym danym badanym.

1. Introduction

In engineering terminology, fatigue refers to the progres-
sive mechanical failure of a material subjected to a fluctuating
or repeated stress or strain when applied monotonically would
not result in fracture. Fatigue is the most common mode of
failure in engineering components. Over 80% of service fail-
ures due to mechanical causes can be attributed to fatigue.
The process of fatigue may be considered as consisting of
three main stages: crack initiation, crack propagation and fi-
nal fast fracture. Most of fatigue data are commonly used to
characterize the stress-fatigue life relationship using plain or
notched specimens. Tests can be carried out under various R
ratios. The results are normally plotted using stress amplitude
or maximum applied stress against the number of cycles to
failure, generally known as the S-N curve. The S-N curve is
determined by taking several specimens and subjecting each
one to a different cyclic stress until it fails. Discontinuous-
ly reinforced metal matrix composites (MMCs) are excellent
candidates for structural components in the aerospace and au-
tomotive industries, where they are usually subjected to cyclic

loads. The fatigue behavior of these composites has been re-
ceived quite reasonable attention. The tensile responses [1],
High Cycle Fatigue (HCF) responses [2], and Low Cycle Fa-
tigue responses (LCF) [3] of Al-SiCp composites were ex-
tensively investigated. An extensive review about the fatigue
of materials and structures can be found in detail by Schi-
jve [4]. The fatigue response of these MMCs has been influ-
enced by the following properties: reinforcement type (con-
tinuous, whisker or particulate), volume fraction of reinforce-
ment, composition, heat treatment, notch behavior, elevated
temperatures, environment, processing technique (casting or
powder metallurgy) and R ratios that defines the developed
stress station the specimen [5]. Fatigue analysis has become
an early simulation in the product development process of a
growing number of industries. In general, LCF involves large
cycles with high amounts of plastic deformation and relative-
ly short life. However, HCF is associated with low stresses
and long life in which stresses and strains are largely con-
fined to the elastic region. Fatigue analysis refers to three
methodologies: i) local strain or crack initiation, ii) stresses
life, and iii) crack growth or damage tolerance analysis. Most
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of fatigue life estimations depend on the methodology data
mentioned above. It is almost impossible to avoid the defect,
environment and notches for most of engineering components.
Recently ANN has offered as a new branch of computing,
convenient for applications in a various fields. It is also a
new type of computer system which is based on the prima-
ry understanding of the organization, structure, function and
mechanism of the human brain. ANN were originally devel-
oped to solve pattern based problems but they can be used
as failure analysis, non-destructive testing, welding technolo-
gy etc. Ates [6] showed the possibility of the use of ANN
for the calculation of the mechanical properties of welded
low alloy steel using GMA method. ANN offers to solutions
of multi-variable problems for which a certain mathematical
models do not exist or difficult and time consuming to solve.
The most suitable applications for ANN have a large data, dif-
ficult to solve problems by existing mathematical models and
incomplete data. Fatigue has all of these characteristics and
therefore it seems to be suitable for neural network analysis
[7]. Fatigue life predictions based on the critical strain life
approach for the MMCs under various conditions have been
discussed elsewhere [8]. Although, good predictions can be
obtained at high stress levels by critical strain approach, there
are serious problems at low stress levels. Also, the method can
be applied under the limited conditions. Thus, in this study,
the ANN is used for the modeling fatigue life of metal matrix
composites.

2. Experimental fatigue data

This work addresses the behavior of particulate reinforced
2xxx series aluminum metal matrix composites subjected to
tension-tension fatigue loads. All the fatigue data collected
from a variety of published investigations [1-5] are used to
test the suitability of the ANN in predicting the fatigue lives.
Experimental details, specimen configurations, and materials
characteristics were given in detail in Reference 5. Table 1
shows the materials and variables of the experimental da-
ta used. It is seen that five different materials (LMMC17,
LMMC25, MMC17, MMC25, MMC00), various maximum
stress levels, two different R ratios (0.1, 0.5), three different
temperatures (21, 200, 250oC) were used to predict fatigue
lives of composites. For the materials “L” refers large particles,
only MMC refers small particulate reinforced metal matrix
composites, and 00, 17 and 25 refers to volume percentages
of particles.

2.1. Configuration and designing ANN controllers

ANNs are popular and there are many industrial situa-
tions where they can be easily applied. They are suitable for
modeling various manufacturing functions due to their ability
to learn complex non-linear and multivariable relationships
between process parameters [9]. ANN consists of a combi-
nation of artificial neural cells (neurons). This combination
should be regular and usually is constructed as layers. ANN
consists of three main layers, namely input, hidden and out-
put layers. The neurons in input layer transfer the data from
the external world into hidden layer [10]. The output is gen-
erated using summation and activation functions along with

data transferred from input layer and the neuron called bias in
the hidden layer. The summation function is a function which
calculates the net input of the cell. Summation function used
in this study is given in Eq. 1.

NET i =

n∑

j=1

wi j × x j + wbi (1)

Where NET i is the weighted sum of the input to the ith
processing element. wi j is the weights of the connections be-
tween ith and jth processing elements. X j is the output of
the jth processing element. wbi is the weights of the bias-
es between layers. Activation function provides a curvilinear
match between input and output layers. In addition, it deter-
mines the output of the cell by processing net input to the
cell. Selection of appropriate activation function significantly
affects network performance. The common transfer functions
in ANNs are linear, step/signum, threshold, logistic sigmoid,
hyperbolic tangent sigmoid functions, etc. Recently, logistic
sigmoid transfer function has been commonly used as an ac-
tivation function in multilayer perception models, because it
is a differentiable, continuous and non-linear function. For
this reason, the logistic sigmoid transfer function was used as
the activation function in this study. Logistic sigmoid transfer
function of ANN model used is expressed as follows;

f (NET i) =
1

1 + e−NET i
(2)

The hidden layer may be more than one. In this case, each
hidden layer sends its outputs into the next hidden layer. In the
output layer, the output of network is generated by processing
the data from the last hidden layer and the outputs are sent
to the external world. In this study, the training and testing
data for ANN were prepared by use of 58 experimental data
collected from fatigue life responses of MMCs. These exper-
imental data are shown in Table 1.

TABLE 1
All experimental fatigue data of MMCs

Materials
Maximum
Applied

Stress (MPa)
R ratio K t

Temperature
(◦C)

Tested Nf
(Cyles)

LMMC17

400 0.1 1.8 21 11458

350 0.1 1.8 21 24877

300 0.1 1.8 21 42296

275 0.1 1.8 21 43469

250 0.1 1.8 21 127245

LMMC25

450 0.1 1.8 21 9448

350 0.1 1.8 21 26366

300 0.1 1.8 21 66626

250 0.1 1.8 21 121259

MMC00
450 0.5 1.8 21 32132

400 0.5 1.8 21 44606

350 0.5 1.8 21 117130
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cd TABLE 1

1 2 3 4 5 6

MMC00

400 0.1 1.8 21 3869

350 0.1 1.8 21 14471

300 0.1 1.8 21 67366

275 0.1 1.8 21 70948

250 0.1 1.8 21 140000

MMC00
350 0.1 1.8 250 6450

250 0.1 1.8 250 28222

200 0.1 1.8 250 99500

MMC17

450 0.1 1.8 21 9693

400 0.1 1.8 21 13954

375 0.1 1.8 21 21250

350 0.1 1.8 21 26996

300 0.1 1.8 21 62814

275 0.1 1.8 21 115485

250 0.1 1.8 21 135483

MMC25

450 0.1 1.8 21 5840

400 0.1 1.8 21 12500

350 0.1 1.8 21 29000

325 0.1 1.8 21 83063

300 0.1 1.8 21 131317

275 0.1 1.8 21 180000

250 0.1 1.8 21 950000

MMC25

550 0.5 1.8 21 14571

500 0.5 1.8 21 58735

450 0.5 1.8 21 62723

400 0.5 1.8 21 87461

350 0.5 1.8 21 500000

MMC25

350 0.1 2.7 21 12650

325 0.1 2.7 21 17884

300 0.1 2.7 21 45343

285 0.1 2.7 21 63000

275 0.1 2.7 21 100000

255 0.1 2.7 21 215000

MMC25

530 0.1 1.4 21 6950

500 0.1 1.4 21 12000

475 0.1 1.4 21 28268

450 0.1 1.4 21 30000

400 0.1 1.4 21 37512

375 0.1 1.4 21 55225

365 0.1 1.4 21 699501

MMC25
350 0.1 1.8 200 7248

250 0.1 1.8 200 40406

200 0.1 1.8 200 120000

MMC25
250 0.1 1.8 250 1723

200 0.1 1.8 250 18973

150 0.1 1.8 250 108528

In the construction of the architecture of ANN, deter-
mination of training and testing data ratios has an important
place. In separation of the experimental samples into training
and testing samples, there is no general rule that is followed
to determine the ratio between the amounts of training and
testing samples. The studies performed in the literature used
a certain ratio between training and testing samples for sep-
aration [11-14]. The ratio of training and testing samples in
the literature is taken as 90%: 10% [15,16], 85%: 15% [12],
80%: 20% [17], 75%: 25% [18], 70 %: 30% [19,20]. In this
study, the ratio was taken as 80%: 20%. For this reason, they
were randomly selected 12 testing data and 46 training data
from all experimental data. Number of cycles until failure (Nf)
was selected as the output data, five different materials, var-
ious maximum stress levels, two different R ratios and three
different temperatures were used into the network as input
data. Although all neural network models share common op-
erational features, input requirements and modeling and gen-
eralization abilities are different. Thus, each hypothesis would
have advantages and disadvantages depending on the partic-
ular application and selecting the appropriate network class
with convenient parameters is crucial to ensure a useful appli-
cation. In the back propagation (BP) model, normalization of
input and output data affects the performance of network. The
normalization regularly makes the distribution of values ??of
the samples. This study used logistic sigmoid transfer function
as mentioned above. This function always generates a value
between 0 and 1 only. Therefore, the input and output values
were normalized between 0.1 and 0.9 in this study.

nvi = 0.8 ×
(

vmin − vi

vmin − vmax

)
+ 0.1 (3)

Eq 3 was used to provide the ideal distribution between 0.1 and
0.9 in the normalization of the fatigue life cycles and temper-
atures, since difference between minimum and maximum life
cycles and temperatures of MMCs was very large. The mate-
rials, peak stress, R ratio, stress concentration factor were nor-
malized by dividing with 7, 700, 0.6 and 3.5 respectively. The
digits for the composite material types to be entered into the
artificial neural networks were determined as LMMC17 = 1,
LMMC25 = 2, MMC00 = 3, MMC17 = 4 and MMC25 = 5
because they do not have numerical values. There are many
learning model used to determine the weights in ANN. One of
the most widely used learning models is the back propagation
(BP) model. The BP model performs the updating of weights
based on the difference between the experimental results and
outputs of network. Learning parameter used in the BP model
plays an important role in reaching to optimal results. There
are various learning algorithms that have been applied by the
previous studies, such as SCG (Scaled Conjugate Gradient)
[15, 21] and LM [15, 18, 19]. In this study, in consequence of
a number of trials performed for both SCG and LM learning
algorithms, it was found that LM learning algorithm and ANN
architecture with two hidden layers became the best to train
the network (Fig. 1).
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Fig. 1. ANN architecture with two hidden layers

As shown in the Fig. 1, the ANN model has been set
up for fatigue life predictions using five neurons in the input
layer, eleven neurons in the first hidden layer, five neurons
in the second hidden layer and a neuron in the output layer.
These processing elements or neurons process information by
their dynamic state response to external inputs. After determi-
nation of learning algorithm and architecture, the numbers of
iterations were entered and the training process was started.
Data obtained after training of ANN were compared with data
obtained from experiments to confirm reliability of prediction.
RMSE, AFV and MEP values were used for comparisons [21,
22]. These values are calculated as follows;

RMSE =


(
1
p

)∑

j

∣∣∣t j − o j

∣∣∣2


1
/2

(4)

AFV = 1 −

∑

j (t j − o j)2∑
j (o j)2

 (5)

MEP =

∑
j

(
(t j − o j)/t j

)
×100

p
(6)

Where, t is the goal value, and o is the output value. RMSE
is the root mean square error. AFV is the absolute fraction of
variance, and MEP is the mean error percentage.

3. Results and discussions

The aim of using the ANN model is to test the prediction
capability of fatigue life of metal matrix composites. Compar-
ison and statistical evaluation of tested actual and predicted

fatigue life cycles for testing and training data is shown in
Fig. 2. It is observed in Fig. 2 that AFV values are very
close to 1 for both training and testing data. RMSE values are
smaller than 0.0075. During the training and testing period, the
maximum mean relative errors were found to be 2.203173%
and 4.039562%, respectively. These results show that MEP
values are within acceptable error limits (±5).

Fig. 2. Comparison of tested actual and predicted fatigue life cycles
for testing and training data

Fatigue life formula derived via ANN is given in Eq. 7.
Also, fatigue cycles of MMCs can be accurately calculated by
this formula. It is seen that most of the predicted values are
very close to the experimental results.

N f =
1

1+e−(9.9493×F1+6.7870×F2−8.5051×F3+17.5272×F4+0.1072×F5−0.1866)

(7)
where Nf and Fi are the activation functions and are calcu-
lated with the equations in Table 2. Activation function Fi for
fatigue life predictions is calculated using weights between
first and second hidden layers after calculation of function N j

using weights between input and first hidden layers due to two
layered ANN architecture. The weight values among layers for
fatigue life cycles are given in Table 2.

Depending on the materials type, fatigue life predictions
by ANN are given in Table 3. An increasing volume fraction
of SiC particles from 0% to 25% in the composites has sig-
nificant effects on the fatigue life response. It is clear from
the results that the neural controlled prediction of fatigue life
follows the experimental results very closely. The MEP is as
small as %3.3. In Table 3, both actual and predicted fatigue
life cycles are given. The grayscaled rows show testing data
and others show training data.

TABLE 2
Weights among layers for fatigue life cycles

Weights values between first and second hidden layers

Fi =
1

1 + e−(w1×N1+w2×N2+w3×N3+w4×N4+w5×N5+w6×N6+w7×N7+w8×N8+w9×N9+w10×N10+w11×N11+θi)

i w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 θi

1 1.1468 1.9973 -3.1987 8.4416 2.8185 5.8917 -5.6907 -4.2849 8.3510 1.8492 0.8297 -10.258

2 5.7843 -2.3207 3.2836 -7.5497 -4.5456 2.9591 -2.7651 5.8475 1.1614 -0.8113 -0.4439 1.3841

3 -0.9810 -1.9721 12.2135 -6.8420 1.7349 2.2045 -14.336 2.6462 6.9752 2.4324 2.5216 -2.7403

4 6.2171 -0.5358 9.9621 -20.094 -37.346 -0.1719 6.5075 3.2057 -3.1112 1.5450 1.6760 3.1143

5 -1.7286 0.8961 -2.2724 2.5430 -2.1708 -0.4300 2.7201 0.3266 -2.3212 2.6122 -1.3355 -2.5391
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Weights between input and first hidden layers

N j =
1

1 + e−(w1×M+w2×S+w3×R+w4×Kt+w5×T+θ j )

j w1 w2 w3 w4 w5 θ j

1 -4.4969 -1.1884 -0.8528 2.3030 -10.2732 8.8182

2 0.1502 3.3473 -3.4849 4.4230 3.9960 -11.1368

3 2.2816 20.6636 -6.9340 -0.5252 -6.7692 -4.3309

4 1.9633 20.5162 4.2308 19.7896 -5.3064 -19.3525

5 -20.0306 16.0203 5.3404 29.1958 3.9843 -7.5659

6 2.7358 -0.8131 4.4361 0.1962 2.5030 -7.4714

7 0.7859 -10.3145 -6.9449 0.5783 -2.7124 5.1394

8 1.1360 -11.9094 -0.9475 -2.2060 0.8913 10.5268

9 6.9233 -16.2169 3.0354 8.5648 1.9061 -5.4547

10 -1.9359 5.7881 -1.0552 -4.5398 4.1760 -6.2736

11 1.6483 -3.5112 -2.2898 -2.2776 6.3572 8.9385

TABLE 3
The influence of materials type on actual and the predicted fatigue cycles

Materials Maximum Applied
Stress (MPa) R Ratio Kt Temperature oC Tested Nf (Cyles) ANN predicted

Nf (Cycles)
LMMC17 400 0.1 1.8 21 11458 11711

350 0.1 1.8 21 24877 25336
300 0.1 1.8 21 42296 42262
275 0.1 1.8 21 43469 46086
250 0.1 1.8 21 127245 125784

LMMC25 450 0.1 1.8 21 9448 9266
350 0.1 1.8 21 26366 26163
300 0.1 1.8 21 66626 59718
250 0.1 1.8 21 121259 123858

MMC00 400 0.1 1.8 21 3869 4106
350 0.1 1.8 21 14471 15480
300 0.1 1.8 21 67366 64171
275 0.1 1.8 21 70948 74217
250 0.1 1.8 21 140000 136798

MMC17 450 0.1 1.8 21 9693 9601
400 0.1 1.8 21 13954 13544
375 0.1 1.8 21 21250 20025
350 0.1 1.8 21 26996 26362
300 0.1 1.8 21 62814 68357
275 0.1 1.8 21 115485 110686
250 0.1 1.8 21 135483 136734

MMC25 450 0.1 1.8 21 5840 6023
400 0.1 1.8 21 12500 12477
350 0.1 1.8 21 29000 30336
325 0.1 1.8 21 83063 80491
300 0.1 1.8 21 131317 135865
275 0.1 1.8 21 180000 180007
250 0.1 1.8 21 950000 949493
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The effect of R ratios on the fatigue lives and prediction
are shown in Fig. 3 where the ANN predictions are shown
with continuous lines. In general, the addition of SiC parti-
cles significantly improves fatigue lives at both stress ratios.
Fatigue lives can be improved as much as 50% by addition of
ceramic particles in the matrix material. It was reported that
increasing the number of R ratios improved the accuracy of
the prediction method [7].

Fig. 3. The influence of R ratio on fatigue life and ANN predictions

The effect of stress concentration factor (Kt) on the fa-
tigue life predictions for MMC25 composites are shown in
Fig. 4. The graphs show how the fatigue life of MMC25 com-
posite material decreased with increasing stress concentration
factor. The continuous lines are shown the predictions made
by the ANN. It can be seen that very good predictions can be
obtained by the ANN model. The MEP is only 1.71%. This
means that the ANN model can perfectly predict the fatigue
life of these composites.

Fig. 4. The influence of Kt on fatigue life and ANN predictions

The effect of testing temperature on the fatigue life pre-
dictions for MMC25 composite are shown in Fig. 5. The
downward shift in stress-life curve with increasing temper-
ature is evident. At equivalent values of stresses, the degree
of degradation in cyclic fatigue life was in the range 50-500%.
The reduction in fatigue response is consistent with decreased
values of the tensile properties. The MEP is 2.5%.

Fig. 5. The effect temperature on the fatigue life and predictions

All the figures show that the proposed neural network
model successfully predicts fatigue life with the least error.
The figures also show shift between the experiments and the
predicted values along the fatigue lives. This might be due
to the significantly different failure modes, number of tested
specimens and materials characteristics etc. With the larger
number of experiments used in the training, this could cause
the ANN, not only predict the trend of fatigue behaviour but
also the many variations within the experimental data used in
training. Different neural network architectures using a vari-
ety of functions resulted different amount of the MEP values
prediction of fibber reinforced composite materials [23]. Al-
so, the neural networks can be used as an alternative way
for calculating the gas mixtures according to the presented
conventional calculation method [24]. In general it was noted
that the reliability of the network was improved by increasing
the number of variations for which training data were used.
However, the ANN method using experimental data from two
different material system and proved that constant life dia-
grams which are very useful for the design of structures can be
efficiently modelled using a much smaller set of experimental
data compared to that needed for the development of life dia-
grams by the conventional way [25]. It is interesting to notice
that a generalization of ANN using only three S-N curves. It
showed that the ANN has great potential in predicting the life
at fatigue of composite materials [26].

4. Conclusions

The applicability of ANNs for the fatigue life predictions
of metal matrix composites was investigated. To train the net-
work, the particle size and volume fraction of reinforcement,
stress concentration factor, R ratio, peak stress and tempera-
tures are used as the input layer, while the output is a number
of failure cycles. Using some of the experimental data for
training, an ANN model based on standard back-propagation
algorithm for the fatigue life predictions was developed. Then,
the performance of the ANN predictions were measured by
comparing the predictions with the experimental results which
were not used in the training process. It is shown that AFV
values are 0.999615 and 0.997442 for the training and testing
data respectively; RMSE value is equal to 0.007251; and mean
error is equal to 4.039562% for the testing data. It is observed
that the results are within the acceptable error limits. The rela-
tionships between input and output variables for metal matrix
composites can be determined by using the network. For this
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reason, the usage of ANNs can be considerably recommended
to predict the failure cycles instead of expensive, complex and
time-consuming experimental studies. This study shows that
the ANN can be used to precisely predict the failure cycles of
metal matrix composites.
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