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Microstructure and Hardness of cu-22sn-xc alloys fabricated by Powder Metallurgy

Cu-Sn alloys have been known as bronze since ancient times and widely used as electrode materials, ornaments, tableware 
and musical instruments. Cu-22Sn alloy fabrication by hot forging process is a Korean traditional forged high-tin bronze. The tin 
content is 22 percent, which is more than twice that of bronze ware traditionally used in China and the west. Copper and tin have 
a carbon solubility of several ppm at room temperature, making Cu-Sn-C alloys difficult to manufacture by conventional casting 
methods. research on the production of carbon-added copper alloys has used a manufacturing method that is different from the 
conventional casting method. in this study, Cu-22Sn-xC alloy was fabricated by mechanical alloying and spark plasma sintering. 
The carbon solubility was confirmed in Cu-Sn alloy through mechanical alloying. The lattice parameter increased from a0 to C2, 
and then decreased from C4. The microstructural characteristics of sintered alloys were determined using X-ray diffraction and 
microscopic analysis. as a result of comparing the hardness of Cu-22Sn alloys manufactured by conventional rolling, casting, and 
forging and Cu-22Sn-xC alloy by sintered powder metallugy, b0 sintered alloy was the highest at about 110.9 hrb.
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1. introduction

Cu-Sn alloys have been known as “bronze” since ancient 
times. They have been widely used as electrode materials, weap-
ons, ornaments, tableware and musical instruments because of 
their high strength, high impact resistance, and good corrosion 
resistance [1-3]. The Sn content varies according to the applica-
tion. in particular, Cu-22Sn alloy manufactured by hot process-
ing is a traditional Korean high-tin bronze. Since in metallurgy, 
to make a quality alloy of copper and tin, the proportion of tin 
must be less than 10%, because by increasing its proportion, it is 
more difficult to make bronze. however, the Korean traditional 
forged high-tin bronze, allowing the strength of materials through 
molding, even if the proportion of tin is increased to 22 wt.%. 

Carbon is the most effective element for increasing hardness 
and strength in Fe-based alloys. it can be thought that the addition 
of carbon contributes to the hardening of Cu-Sn alloys. however, 
copper and tin have a carbon solubility of several ppm at room 
temperature, making it difficult to manufacture Cu-Sn-C alloys 
by conventional casting methods [4,5]. Consequently, research 
on the production of carbon-added copper alloys has employed 
a manufacturing method that is different from the conventional 
casting method.

Powder metallurgy is a bottom-up manufacturing method 
that can overcome the limitations of crystal grain refinement 
process by cold rolling and recrystallization of cast and forged 
bulk materials [6-8]. mechanical alloying (ma) in powder 
metallurgy is performed by mixing amorphous alloy, metal, 
nanocomposite powders using a high-energy ball mill, through 
which nanostructured alloys and compounds are easily manu-
factured [9,10]. Saji et al. [11] and Yamane et al. [12] prepared 
Cu-C supersaturated solid solution using an attrition mill and 
planetary mill. Saji et al. [11] reported that the supersaturated 
solute carbon atoms occupy the interstitial positions in the face-
centered cubic (fcc) α-Cu solid solution, resulting in expansion 
of the lattice parameter of the α-Cu. High-energy ball milling 
increases the solid solubility limit and is used for alloying of 
low solubility or immiscible systems such as Cu-Cr, Cu-nb, 
and Cu-C alloys [13-16]. however, studies on the addition of 
carbon to Cu-Sn alloys with high tin contents are insufficient.

in this study, a Cu-22Sn alloy with added carbon was 
manufactured through the ma and a rapid sintering process. The 
variation in the characteristics according to the amount of added 
carbon were determined using X-ray diffraction (XrD) and 
microscopic analysis. The hardness of cast and forged Cu-22Sn 
alloys was compared with that of Cu-22Sn-xC sintered alloys. 
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The effects of the milling time and amount of added carbon on 
the microstructure and mechanical properties of Cu-22Sn alloys 
were investigated.

2. experimental procedure

Cu powder (alfa aesar, Korea) with a purity of 99.9% 
and an average particle size (APS) of < 44~149 μm, tin powder 
(Alfa Aesar, Korea) with a purity of 99.8% and APS of < 44 μm 
and graphite powder (alfa aesar, Korea) with a purity of 99% 
and APS of < 7~11 μm were used. MA was performed using 
a high-energy ball mill (FriTSCh, Pulverisette-6) to produce 
nanocrystalline Cu-22Sn-xC (wt.%) alloy powder. Cylindrical 
SKD-11 tool steel jar and FeCrC balls with a diameter of 10 mm 
were used for milling. The ratio of balls to powder was set to 
30:1 and 1.0 wt.% stearic acid (alfa aesar, Ch3(Ch2)16Co2h) 
was added as a process control agent to balance cold welding and 
fracture. The ball milling was carried out in pure ar atmosphere 
at 250 rpm for 6 h and 24 h, and the notations and correspond-
ing conditions (milling time and carbon addition amounts) are 
shown in Table 1. a graphite mold with an inner diameter of 
10 mm, an outer diameter of 35 mm, and a height of 40 mm was 
filled with the milled alloy powder prepared by ma, which was 
rapidly sintered by spark plasma sintering (SPS). The sintering 
conditions were heated to 400 ℃ at a heating rate of 1 ℃/s un-
der high vacuum and uniaxial pressure of 80 mPa, where it was 
maintained for 15 min before being cooled in furnace and air. 
The relative density of the sintered alloy was measured using the 
archimedes method. The phase analysis and structural proper-

ties of the powder including grain size and lattice parameters 
were analyzed using XrD (Shimadzu, XrD-6100) with a Cu 
Kα target and a scan speed of 2 °/min at 40 kV and 30 mA. The 
mechanical properties of the sintered alloys were measured using 
a rockwell hardness tester (SSauL beSTeCh, beSTroC-
300n). The microstructures of the sintered alloys were observed 
using optical microscopy (om, Leica, DmC 2900) and scanning 
electron microscopy (Sem, JSm-7100 F, JeoL). The chemical 
composition of each microstructure was analyzed using energy-
dispersive X-ray spectroscopy (eDS, JSm-7100 F, JeoL).

TabLe 1

Chemical composition of the Cu-22Sn-xC alloys with milling time

notation
composition  

(wt.%)
composition  

(at.%)
Mechanical 
milling time 

(h)cu sn c cu sn c
a0 78 22 0 86.88 13.12 0 6
b0 78 22 0 86.88 13.12 0 24
C2 76 22 2 77.72 11.73 10.54 24
C4 74 22 4 70.31 10.62 19.08 24
C6 72 22 6 64.19 9.69 26.12 24

3. results and discussion

Fig. 1 shows the XrD patterns of Cu-Sn-xC alloy powder 
manufactured under for each condition using a high-energy ball 
mill. in a0 with a milling time of 6 h, ma was incomplete and 
Cu and η-Cu6Sn5 phases were observed. Only the β-Cu17Sn3 
phase was observed in b0 with a milling time of 24 h. in C2 

Fig. 1. XrD patterns of the milled Cu-22Sn-xC powders after different milling time and chemical composition. (a) a0 with 6 h, (b) b0 with 24 h, 
(c) C2 with 6 h, (d) C4 with 6 h and (e) C6 with 6 h
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with 2 wt.% of added carbon, the β-Cu17Sn3 phase was observed 
because carbon was dissolved in the matrix. it was confirmed 
that b0 and C2 were mechanically alloyed. C4 and C6 with high 
carbon content were observed with Cu, Sn, C, and η-Cu6Sn5 
phases were observed. Carbon interfered with the welding and 
agglomeration of powders, making ma difficult, and there was 
residual carbon because carbon solubility is saturated [17].

Fig. 2 shows results of the lattice parameters of the milled 
alloy powders according to the carbon content. The lattice pa-
rameter increased from a0 to C2 and decreases after C4. as the 
milling time increased, the lattice parameter of b0 increased 
with the increased milling time because of the formation of 
β-Cu17Sn3 phase, and the lattice parameter of C2 increased 
because of carbon solid solution in the lattice. when more than 
4 wt.% of carbon is added, residual carbon was generated, which 
interfered with ma. Therefore, the lattice parameter decreased 
owing to the formation of Cu phase.

Cu-Sn-xC alloy powder samples were manufactured by 
ma and SPS. The relative densities of the sintered alloys were 
measured using the archimedes method, and relative densities 
were calculated using theoretical density and measured densities. 
The relative densities of a0, b0, C2, C4 and C6 were 97.4, 97.5, 
99.7, 97.6 and 96.9 %, respectively, and measured relative densi-
ties of the samples were close to the theoretical densities owing 
to densification during SPS. Fig. 3 shows the XrD patterns of 
the sintered Cu-Sn-xC alloys. Cu and δ-Cu41Sn11 phases were 
observed in A0, B0 and C2, while Cu, Sn, C and ɛ-Cu3Sn phases 
were observed in C4 and C6. it was confirmed that changed 
as the intermetallic phase and residual carbon occurred as the 
carbon content increased. The residual carbon atoms exist in the 

form of amorphous carbon for C4 and C6, respectively. in C4 
and C6, the η-Cu6Sn5 phase decomposed by thermal diffusion 
during sintering, thereby forming ε-Cu3Sn [18]. The crystallite 
sizes of sintered alloys were calculated by the williamson-hall 
equation (eq. (1)) using the bragg angle and the full width at 
half maximum (Fwhm) of the XrD peak [19].

 cos sinr
k
D
   

    (1)

where βγ is the Fwhm of XrD peak, θ is the bragg angle, λ 
is the wavelength of the Cu Kα source, κ is a constant, D is the 

Fig. 3. XrD patterns of the sintered Cu-22Sn-xC alloys after different milling time and chemical composition. (a) a0 with 6 h, (b) b0 with 24 h, 
(c) C2 with 6 h, (d) C4 with 6 h and (e) C6 with 6 h

Fig. 2. variation of the lattice parameter of Cu with carbon content. 
The lattice parameter increased from a0 to C2 and decreased after C4
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crystallite size and η is the lattice strain. The crystallite sizes of 
the sintered Cu-Sn-xC alloys a0-C6 were approximately 43.8, 
20.9, 38.8, 88.8 and 67.6 nm, respectively.

The om and Sem images and eDS analysis results are 
shown in Fig. 4. Fig. 4(a) shows the om image of Cu-Sn-xC 
alloys for A0-C6. Cu and δ-Cu41Sn11 phases were observed in 
A0-C2, while Cu, Sn, C, and ε-Cu3Sn phases were observed 
in C4 and C6 [20]. Fig. 4(b) shows the results of Sem images 

and eDS point analysis used to distinguish the Cux-Sn100-x in-
termetallic phases of C2 and C6. The Cux-Sn100-x intermetallic 
phase was calculated by excluding the carbon content related to 
the solid solubility of carbon by ma. as a result of eDS point 
analysis, it was confirmed that the δ-Cu41Sn11 phase appeared 
in C2, and the ε-Cu3Sn phase with residual carbon in the black 
region were confirmed in C6. 

(a)

(b

) 

) 

Fig. 4. microstructure analysis of the sintered Cu-22Sn-xC alloys. (a) optical microscope images (×200) of Cu-22Sn-xC alloys. The inset shows 
the high resolution image (×1000) of a0, b0 and C2, respectively. (b) Sem (×5000) and eDS analysis results of C2 and C6
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Fig. 5 shows the hardness of Cu-22Sn alloys manufactured 
by rolling, casting and forging, and the hardness of  Cu-22Sn-xC 
sintered alloys. Sintered alloy b0 had the highest hardness ow-
ing to the influence of the δ-Cu41Sn11 phase, which improves 
the strength and hardness, and the hall-Petch effect due to 
grain refinement [21-23]. a higher the interconnection between 
the Cu and Sn particles provides higher the mechanical inter-
locks in these alloys. however, increasing the carbon content 
weakens the interlocks, leading to a decrease in hardness [24]. 
Consequently, it is confirmed that C4 and C6 with high carbon 
contents fractured during hardness test owing to the brittleness 
of the intermetallic phase.

Fig. 5. Comparison of hardness value between Cu-22Sn alloys manu-
factured by conventional rolling, casting, and forging and the sintered 
Cu-22Sn-xC alloys

4. conclusions

in this study, nanocrystalline Cu-22Sn-xC alloys according 
to the milling times and added carbon were manufactured us-
ing a high-energy ball milling and SPS. Carbon solubility was 
confirmed in Cu-Sn alloy through ma. For the alloy powder, the 
lattice parameter increased from A0 to C2 owing to β-Cu17Sn3 
phase formation and carbon solid solution, and the lattice pa-
rameter decreased owing to the formation of Cu phase in C4 
with a high carbon content. The microstructural characteristics 
of the sintered Cu-22Sn-xC alloys were analyzed by XrD, om, 
Sem and eDS analysis to determine the differences according to 
milling time and carbon content. The hardness of Cu-22Sn alloys 
manufactured by conventional rolling, casting, and forging were 
compared with those of the sintered Cu-22Sn-xC alloys. The b0 
sintered alloy had the highest hardness owing to the hall-Petch 
effect and the δ-Cu41Sn11 phase, which affects strength and 
hardness. C4 and C6 had high carbon contents, which weakened 
the interlock, lowered the hardness, and caused fractured during 
measurement owing to the brittleness of the intermetallic phase.
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