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HILBERT-TWIN – NOWA METODA OBLICZEŃ OBWIEDNI DRGAŃ SWOBODNIE TŁUMIONYCH ZAWIERAJĄCYCH
SZUM I LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA W WYSOKOROZDZIELCZEJ SPEKTROSKOPII

MECHANICZNEJ HRMS

In this work, we present a novel Hilbert-twin method to compute an envelope and the logarithmic decrement, δ, from
exponentially damped time-invariant harmonic strain signals embedded in noise. The results obtained from five computing
methods: (1) the parametric OMI (Optimization in Multiple Intervals) method, two interpolated discrete Fourier transform-based
(IpDFT) methods: (2) the Yoshida-Magalas (YM) method and (3) the classic Yoshida (Y) method, (4) the novel Hilbert-twin
(H-twin) method based on the Hilbert transform, and (5) the conventional Hilbert transform (HT) method are analyzed and
compared. The fundamental feature of the Hilbert-twin method is the efficient elimination of intrinsic asymmetrical oscillations
of the envelope, aHT (t), obtained from the discrete Hilbert transform of analyzed signals. Excellent performance in estimation
of the logarithmic decrement from the Hilbert-twin method is comparable to that of the OMI and YM for the low- and
high-damping levels. The Hilbert-twin method proved to be robust and effective in computing the logarithmic decrement
and the resonant frequency of exponentially damped free decaying signals embedded in experimental noise. The Hilbert-twin
method is also appropriate to detect nonlinearities in mechanical loss measurements of metals and alloys.

Keywords: Logarithmic decrement, mechanical spectroscopy, Hilbert transform, envelope, interpolated discrete Fourier
transform

W pracy przedstawiono nową metodę Hilbert-twin, opartą na dyskretnej transformacie Hilberta, do obliczeń obwiedni
wykładniczo tłumionych sygnałów odkształceń sprężystych zawierających w sobie szum oraz do estymacji logarytmicznego
dekrementu tłumienia. Przeanalizowano i porównano wyniki obliczeń uzyskane z pięciu różnych metod: (1) metoda parame-
tryczna OMI (Optimization in Multiple Intervals), dwie metody bazujące na interpolowanej dyskretnej transformacie Fouriera
(IpDFT): (2) metoda Yoshida-Magalas (YM) i (3) klasyczna metoda Yoshidy (Y), (4) nowa metoda Hilbert-twin (H-twin), którą
po raz pierwszy przedstawiono w niniejszej pracy oraz (5) klasyczna metoda obliczeń obwiedni z transformaty Hilberta (HT).

Zaletą i fundamentalną cechą charakterystyczną metody H-twin jest skuteczne usunięcie typowych dla dyskretnej transfor-
maty Hilberta asymetrycznych oscylacji obwiedni. Z tego właśnie względu metoda H-twin zapewnia bardzo dobrą estymację
logarytmicznego dekrementu tłumienia, która jest porównywalna z metodami OMI i YM zarówno dla niskich, jak i wysokich
poziomów tłumienia. Metoda H-twin jest niewrażliwa na szum i jest wyjątkowo skuteczna w precyzyjnym wyznaczaniu lo-
garytmicznego dekrementu tłumienia oraz częstotliwości rezonansowej wykładniczo tłumionych drgań swobodnie tłumionych
zawierających szum eksperymentalny.

Metoda H-twin może również służyć do detekcji i analizy efektów nieliniowych występujących w trakcie pomiarów
rozpraszania energii mechanicznej w metalach i stopach metali badanych metodą spektroskopii mechanicznej.

1. Introduction

In mechanical spectroscopy studies, it is often difficult to
access experimental fine details of mechanical losses, such as
the asymmetrical broadening of the Snoek-Köster peaks in de-
formed Fe-C alloys [1,2] and various steels containing marten-
site, hardly discernable overlapping relaxation peaks [3], phase
transition peaks, other non-linear mechanical losses, transient
internal friction peaks, etc. Accurate analysis of these me-
chanical losses is critical for the understanding of the physical

mechanisms that govern internal friction peaks in metals and
alloys. For this reason, further progress in precise estimation of
the logarithmic decrement is required. New methods and algo-
rithms to compute the logarithmic decrement are obligated to
pave the way for the high-resolution mechanical spectroscopy,
HRMS.

The Hilbert transform (HT) is inherent in the theoreti-
cal concept of mechanical spectroscopy and in the physical
picture of mechanical relaxation phenomena, viz., the real
and the imaginary part of the complex compliance are re-
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lated via the Hilbert transform [4,5]. This paper describes
an endeavor to use the Hilbert transform [6,7] to com-
pute the logarithmic decrement [2,10-13], δ, from exponen-
tially damped time-invariant harmonic oscillations embed-
ded in the experimental noise, εw(t), [10-14] and recorded
in a low-frequency mechanical spectrometer (inverted tor-
sion pendulum [1,2,4,5,8-13]). In this paper, damped har-
monic oscillations containing noise are referred to as the
‘free-elastic decay’. It is demonstrated that the Hilbert trans-
form of free-elastic decay yields deteriorated envelope con-
taining detrimental ripples (oscillations) [15-18]. This then
give rise to substantial scatter of the δ values obtained from
the envelope estimated according to the Hilbert transform. To
circumvent this problem, a novel Hilbert-twin method (herein
referred to as the H-twin) is developed in the present work. The
H-twin method provides the ‘true envelope’, and thus shows
excellent performance in the computation of the logarithmic
decrement, δ. In the present study the δ values are computed
according to the following methods:
(1) the OMI (Optimization in Multiple Intervals) [8,9], (2) the
YM (Yoshida-Magalas) [12-14] and (3) the Y (Yoshida) based
on interpolated discrete Fourier transform, IpDFT [12-14,19],
(4) the H-twin (Hilbert-twin), and (5) the HT (the Hilbert
transform) [6,7]. The estimated values of δ are compared. To
ensure meaningful comparison of the results, all computations
are performed with (1) the same experimental conditions, (2)
the same parameters used in signal processing, such as the
length of the analyzed signal, the number of oscillations Nosc

(the number of periods), the sampling frequency fs, (3) the
signal-to-noise ratio, S/N, (4) the maximal strain amplitude,
A0, and the same signal processing technique [8-14].

2. Experimental

Hitherto computations of the mechanical loss in terms of
the dimensionless logarithmic decrement, δ, and the elastic
modulus, M, in terms of the resonant frequency, f0, (M ∼ f 2

0 )
discard the presence of noise in free decaying oscillations
recorded in resonant mechanical spectrometers. The logarith-
mic decrement, δ, can be determined from Eq. (1) using the
digitized data Ai(t) and ti from free-elastic decay:

A(t) = A0e−δ f0 t cos(2π f0 t + φ) + εw(t) + dc. (1)

Here, A0 stands for the maximal strain amplitude, t states for
a continuous time in seconds, −π < ϕ 6 π is the phase in
radians, and dc denotes an offset or the slow-varying trend.
The zero-point drift (non-harmonic distortion), is neglected
here [10]. The additive white noise, εw(t), is described by the
signal-to-noise ratio S/N [8-14].

The free-elastic decaying signal A(t) is only one of pos-
sible projections, that is, a real part of some analytical signal
z(t) [7]. The quadrature projection of this signal (the imagi-
nary part Â(t)) is conjugated according to the Hilbert trans-
form [6,7]. Instantaneous attributes of the free-elastic decaying
signal A(t), that is, its envelope and instantaneous phase are
discussed in this work to estimate the logarithmic decrement.
The complex analytic signal:

z(t) = A(t) + i Â(t), (2)

can be represented in its exponential form,

Fig. 1. Illustration of the theoretical exponentially damped harmonic signal A(t) (black) (δ = 0.05, the resonant frequency f0 = 1.12345 Hz,
the sampling frequency fs = 1 kHz) and two envelope-lines obtained from the Hilbert transform, aHT (t) (red), and from the Hilbert-twin
method, aH−twin(t) (blue). Persistent ripples on the aHT (t) envelope (red) obtained from the discrete Hilbert transform are aptly demonstrated
for the first six oscillations (Figs. 1b and 1c). The flattened true envelope, aH−twin(t) (blue), is estimated from the H-twin method. (For
interpretation of the references to color in this figure legend, readers are referred to the web version of this article.)
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z(t) = aHT (t) eiϕinst (t), (3)

where aHT (t) is the envelope of the free-elastic decay A(t)
(Fig. 1) and ϕinst(t) denotes the instantaneous phase of the
Hilbert transform. The instantaneous phase ϕinst(t) [6,7] is
given by

ϕinst(t) = arctg
(
Â(t)
A(t)

)
. (4)

The envelope contains information about the energy of
the free-elastic decay A(t). The logarithmic decrement, δ, can
be obtained from the envelope aHT (t) of the free-elastic decay:

aHT (t) =

√
A(t)2 + Â(t)2 = A0 e−δ· f0· t . (5)

The plot of log[aHT (t)] versus t is a straight line. Thus, the
least-squares curve fitting yields the logarithmic decrement
and the maximum strain amplitude A0. The imaginary part
of the free-elastic decay, Â(t), is obtained numerically from
the Fourier transform [7]. It is tacitly assumed that the reso-
nant frequency, f0, is estimated from the YM or Hilbert-twin
method.

Two envelopes obtained from the Hilbert transform,
aHT (t), and from the Hilbert-twin method, aH−twin(t), are
shown in Figs. 1 and 2. Selected parts of the envelopes are
enlarged to demonstrate oscillatory behavior of the envelope
computed from the Hilbert transform, aHT (t), and the true
envelope, aH−twin(t). It is anticipated that two envelopes yield
different values of the logarithmic decrement. The comparison
of the performance of five different computing methods of the
logarithmic decrement is carried out for the same signal, A(t),
characterized by the logarithmic decrement δ =0.05, and the
resonant frequency f0 =1.12345 Hz. The signal, A(t), is dig-
itally sampled with the sampling frequency fs =1 kHz. The
length of the digitized signal A(t) is finite, determined by an
experimentalist.

In the following section it is demonstrated that the log-
arithm of the true envelope, aH−twin(t), yields excellent es-
timation of the logarithmic decrement for the exponentially
damped harmonic strain signal A(t), embedded in noise, as
described by Eq. (1). The results are demonstrated for a theo-
retical signal (Fig. 1) and the signal with white noise, S/N =

32 dB (Fig. 2).

3. The true envelope of exponentially damped
time-invariant harmonic oscillations embedded in noise

Computation of the true envelope, which must be a
straight line in a semi-logarithmic plot of envelope versus
time is a mathematically challenging task. This problem is
unequivocally solved, in this work, by using the ‘twinning pro-
cedure’ (double twinning of the digitized real-time free-elastic
decaying signal A(t) in the time-domain), and further, by com-
puting the imaginary part, Â(t), for the new input data. Thus,
the Hilbert twin method doubles the length of the analyzed
signal and computes the discrete Hilbert transform for the
entire signal. We impose a restriction, that is, the number of
samples in the A(t) signal is equal to the number of samples in
the twinned signal. It is therefore essential to use appropriate

sampling frequency, fs. These have proven to be sufficient to
obtain the logarithmic decrement with the requested negligi-
ble estimation error as required in high-resolution mechanical
spectroscopy, HRMS. The envelope aHT (t) has a maximum
magnitude of oscillatory behavior at the beginning and the
end of the signal A(t), with decreasing oscillatory behavior in
the vicinity of the middle part of the signal. Figures 1b, 2a,
and 2h indicate that the H-twin method eliminates effectively
oscillatory behavior of envelope aHT (t) at both ends. For high-
and very high-damping levels, a slight deviation of the true
envelope, aH−twin(t), is visible at the very beginning of the
A(t) signal (Fig. 2a; green envelope, aH−twin(t), corresponding
to the beginning of the first period).

Figure 2 demonstrates the so-called true envelope,
aH−twin(t), obtained from the H-twin method. The fundamental
feature of the Hilbert-twin method is the efficient elimination
of ‘ripples’, that is, intrinsic asymmetrical oscillations of the
envelope, aHT (t), obtained from discrete Hilbert transform
(HT) of the signal A(t), illustrated by red curves in Figs.
1 and 2. Thereby the logarithm of the true envelope yields
excellent estimation of the logarithmic decrement for low- and
high-damping levels alike. In addition, the least-square linear
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Fig. 2. Two envelope-lines calculated according to the Hilbert transform, aHT (t) (red), and the Hilbert-twin method, aH−twin(t) (green), for
free-elastic decaying signal A(t) (black); δ = 0.05, S/N = 32 dB, f0 = 1.12345 Hz, fs = 1 kHz. Persistent ripples (oscillations) on the
envelope, aHT (t), are clearly shown for a sequence of periods (Figs. 2 a-h). Detrimental effect of ripples is negligible in the middle part of
the signal A(t) (Fig. 2e). The H-twin method yields the ‘true envelope’ aH−twin(t) (green) for all damping levels. (For interpretation of the
references to color in this figure legend, readers are referred to the web version of this article.)
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regression used to compute the logarithmic decrement from
Eq. (5) averages out zero-mean noise.

We note that oscillatory behaviour of the envelope,
aHT (t), for low values of the logarithmic decrement is fairly
easy to be eliminated by the H-twin method.

We should emphasize that the Hilbert-twin method does
not use any low-pass filtering or averaging [20-24]. But nev-
ertheless, the true envelope (straight-line envelope) estimated
from the Hilbert-twin method, depicted in Figs. 1 and 2, is
free of ripples and distortions.

The Hilbert-twin method can also be routinely used to
check whether the envelope analyzed for digitized data ob-
tained in a resonant mechanical spectrometer is accurately ex-
ponential to distinguish nonlinearities either in the mechanical
loss (non-linear internal friction phenomena) or in the mea-
surement system.

4. Comparison of methods

Figure 3 illustrates the performance of the OMI, YM,
H-twin, HT, and Y methods used to estimate the internal
friction, Q−1 = 0.014. Dispersion in internal friction values
around Q−1 = 0.014 is reported in Refs. [25,26] and assessed
in [14]. The relationship between the internal friction, Q−1,
and the logarithmic decrement, δ, is well known [4,10,27].
The conventional Hilbert transform method is available in
many commercial software packages. The HT method, how-
ever, has major drawbacks caused by the oscillatory behavior
of the envelope (i.e., presence of undesirable ripples on the
envelope), which strongly affect calculation of the logarithmic
decrement. It is important to emphasize that the discrete
Hilbert transform method does not yield correct values of
δ for both short and long free decaying signals in the time
scale, as clearly shown in Fig. 3. Note that the HT method un-
derestimates the logarithmic decrement (Fig. 3a). The results
shown in Fig. 3 unequivocally demonstrate that an increase
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Fig. 3. (a) Dispersion of the logarithmic decrement, δ, estimated for 100 free-elastic decays for δ = 0.04398229 (i.e., Q−1 = 0.014 [28,29]),
f0 = 1.12345 Hz, fs = 3 kHz, S/N = 32 dB) according to the OMI ( • , black), YM ( ∆, red ), H-twin ( ♦, green), Yoshida (B, brown),
and HT (¤, blue) methods as a function of the number of free decaying oscillations Nosc (i.e., the number of periods). Each vertical row
comprises 100 points of the estimated logarithmic decrement for each method, from left to right. (b) The relative error in estimation of the
logarithmic decrement. 100 results are illustrated in vertical rows, from left to right. (c) The maximum relative error, |γδ |, of the logarithmic
decrement, δ. (d) The maximum relative error, |γδ |, below the level of 1%, is illustrated with zoom (the largest relative error values obtained
for the Hilbert transform method are outside the figure.)

in the number of oscillations Nosc from 5 to 15 drastically
reduces the relative error in the estimation of the logarithmic
decrement for Fourier transform-based methods. This effect is
strong for the HT and Y methods (Fig. 3c) and less pronounced
for the YM and H-twin methods (Fig. 3d). These features may
be explained by the intrinsic property of the discrete Fourier
transform employed in these methods, that is, the leakage and
distortion effects, which are typical for free decaying signals
that have short time span. The H-twin method is robust against
this phenomenon (Fig. 3d). Further increase in the number of
oscillations from 15 to 35 reduces the relative error, where-
as further increase from 35 to 60 improves precision only
slightly (Fig. 3d). To conclude, the computational precision
of different methods depends on the length of exponentially
damped free decaying oscillations or the number of periods.

Figure 3d indicates that the H-twin method is slightly superior
to the YM method. Note that the relative error is less for the
proposed H-twin method, than the interpolated discrete Fouri-
er transform-based YM method for time span lower than 35
periods. Increasing the number of periods over 30 results in
only modest improvement in the accuracy obtained.

It is important to mention that the parametric OMI
method and the YM method are considered as gold standards
in mechanical spectroscopy. This work demonstrates that, in
certain situations, the Hilbert-twin method shows similar, ex-
cellent performance (e.g., for the length of free-elastic decay-
ing signal higher than 10 periods). It should be mentioned,
however, that the H-twin algorithm is computationally inten-
sive compared to the Hilbert transform and the interpolated
discrete Fourier transform-based methods (YM and Y).
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The OMI and YM methods have been successfully tested
under various experimental conditions [8-14,28]. The H-twin
method has been tested in numerous mechanical loss measure-
ments and investigation of Snoek dislocation-enhanced Snoek
peak and Snoek-Köster peak, since 1996 [2]. Further work is
needed, however, to validate the H-twin method for other ex-
treme experimental conditions, that is, for the low- (Q−1 from
10−4 to 10−5), and extreme low- (Q−1 from 10−8 to 10−9)
damping levels.

In conclusion, it is worthwhile to reiterate the fact that
the OMI, H-twin and YM methods are substantially more re-
liable and precise than the classical methods used to compute
the logarithmic decrement [8-11] and the conventional Hilbert
transform method [6,7].

5. Conclusions

This paper describes practical advantages of the novel
Hilbert-twin method to compute the logarithmic decrement
from the true envelope, aH−twin(t), of exponentially damped
time-invariant free decaying oscillations embedded in exper-
imental noise. A fairly robust numerical procedure is devel-
oped that is based on the use of the twinning procedure in the
time-domain of free-decaying signal, followed by computation
of the Hilbert transform of the original free decaying signal
extended by it’s twinned signal. The H-twin method eliminates
oscillatory behavior of the envelope, aHT (t), computed from
the conventional discrete Hilbert transform. To put it in a dif-
ferent way, the H-twin method yields the true envelope, which
is perfectly linear on a semi-logarithmic plot of the envelope
versus time. Hence, not surprisingly, the performance of the
Hilbert-twin method is comparable to the parametric OMI
method and the interpolated discrete Fourier transform YM
method. It is unequivocally demonstrated that the Hilbert-twin
method outperforms two non-parametric methods such as the
conventional discrete Hilbert transform (HT) method and the
Yoshida (Y) method. The OMI, YM, H-twin, HT, and Y meth-
ods are collected in [28].

It is advocated that the Hilbert-twin method can also be
used to detect nonlinearities in resonant and subresonant me-
chanical loss measurements of a sample (non-linear internal
friction phenomena in solids) or in the measurement system
of a mechanical spectrometer. We have not pursued this line
of investigation in the current work, since non-linear mechan-
ical spectroscopy has not yet established solid theoretical and
experimental backgrounds.
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