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PREDICTIVE DYNAMIC POWER DEMAND CONTROL IN AN EAF STEEL PLANT

DYNAMICZNA PREDYKCJA STEROWANIA ZAPOTRZEBOWANIEM MOCY W STALOWNI ELEKTRYCZNEJ

The demand portion of the electricity bill presents a considerable part of overall energy cost in high-load industrial

installations such as electric arc furnace (EAF) steel plants. In order to keep cost at an acceptable level, power demand

control is applied to avoid exceeding the contracted demand target while optimising load-shedding for the best possible energy

utilisation and productivity. Numerous practical solutions addressing the first aim are already available. Optimised energy

utilisation in demand control for electric steel plants cannot be achieved by conventional methods due to the erratic load

characteristic of EAFs.

This paper deals with the development and installation of an innovative predictive dynamic power demand controller at

the steel plant of ArcelorMittal Hamburg. Models describing the electric load of the EAF in its various states of the production

cycle, the ladle furnace and the so-called basic load, comprising all other plant equipment including the rolling mill, are

developed and utilised to predict the oncoming electric load situation of the plant for the timeframe relevant to the power

demand controller. Thereupon, a power demand control algorithm avoiding unnecessary load-shedding and achieving more

constant energy insertion into the melt is designed and will be verified by practical installation.
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Znaczna część zużycia energii elektrycznej w przemyśle stalowniczym przypada na wysoko-napięciowe urządzenia elek-

tryczne, takie jak stalowniczy piec łukowy (EAF). Aby utrzymać wydatki na energię na określonym poziomie oraz uzyskać jak

najlepszą wydajność energetyczną oraz produktywność, zużycie energii elektrycznej podlega stałej kontroli tak, aby mieściło się

w wyznaczonych granicach. Optymalizacja zużycia energii w elektrostalowni nie jest możliwa do osiągnięcia konwencjonalnymi

metodami z powodu zmiennej charakterystyki EAF.

W artykule przedstawiono prace związane z wprowadzeniem innowacyjnej metody ciągłego sterowania zużyciem energii

w stalowni ArcelorMittal w Hamburgu. Opracowano model opisujący zapotrzebowanie na energię elektryczną pieca łukowego

w różnych stanach technologicznych, zapotrzebowanie piecokadzi oraz innych urządzeń zawierających pozostałe wyposażenie

zakładu, włączając walcownię. Model został zastosowany do przewidywania zapotrzebowania na energię elektryczną zakładu

w odcinkach czasowych odpowiednio do zapotrzebowania na energię przez sterownik. Jak tylko algorytm zapotrzebowania na

energię nie będzie wymagał zbędnych skoków obciążenia i osiągnie bardziej stabilne warunki energetyczne zastanie wdrożony

do sterowania energią topienia oraz zostanie zweryfikowany w rzeczywistych warunkach pracy.

1. Introduction

Industrial installations with a nominal power greater

than a certain limit value (e.g. in Germany this value is

30 kW) are not only charged by their energy supplier

for the amount of electric energy that has been utilised

but also for the power drawn. This is to represent that

the power supplier has to ensure a certain value of pow-

er to be available to the installation at any time. This

power limit – usually called demand target – is agreed

upon in the energy supply contract. As a control mecha-

nism, the average power drawn by the plant is determined

in regular intervals called demand periods. In the case

considered in this paper, the demand period is 15 min.

As the average power values can vary depending on the

offset of these demand intervals in relation to the load

development in the plant, the power supplier sends a

synchronising signal at the onset of every demand peri-

od. This way, actions to observe the actual power util-
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isation in the demand interval and eventually to plan

load-switching in a way to meet the demand target can

be carried out at the plant site. The latter is especially

important because exceeding the contracted demand tar-

get means that the demand portion of the electricity bill

is amended by the corresponding higher average power

value for the whole billing period, which can be as long

as a year. Amendments are made retroactively, causing

extensive extra cost. Power demand control is applied to

address this issue.

Usual high-load installations have a rather constant

load characteristic, meaning there are no or little load

variations. In these cases, power demand control can be

based on the assumption that the power drawn by the

plant does not vary considerably during the individu-

al demand periods. This simplifies the optimisation of

switching actions as there are almost no unpredictable

events to allow energy for. On this basis, numerous more

or less sophisticated solutions are readily available on the

market [1].

In an EAF steel plant, the situation is different. Sev-

eral loads are present here which do exhibit highly er-

ratic behaviour. Therefore, the above mentioned assump-

tion of constant power levels cannot be used for efficient

power demand control. This is the starting point for the

innovative predictive power demand control algorithm

presented in this paper. It is shown how simple but ef-

fective models can be derived to facilitate load prediction

for a steel plant and especially to estimate the remaining

power-on-time of the EAF until tapping. Using these

predictive models, a new power demand control algo-

rithm is developed and implemented at the steel plant of

ArcelorMittal Hamburg.

This steel plant is a typical mini mill equipped with

an AC EAF, a ladle furnace, a continuous caster and

a rolling mill. Additionally, a direct reduction plant is

installed at the site such that the EAF can be fed with

directly reduced iron (DRI) [2].

2. Characteristics of electrical loads in the steel

plant

The EAF in the steel plant has a nominal power of

120 MVA that is switchable in steps of about 5 MW

by the supplying transformer, which is equipped with

an on-load tap switch. During a heat, the active power

drawn by the EAF varies considerably, firstly due to the

stochastic behaviour of the burning arc and secondly be-

cause of the varying conditions the melt goes through

(i.e. foaming slag, DRI feeding etc). Fig. 1 shows a typ-

ical plot of the EAF’s active power during a heat.

Fig. 1. Typical plot of the EAF’s active power during a

one-basket-heat

In further investigations, it can be shown that there

are three relevant stages in each heat that can be quan-

tified by the total specific energy inserted (e.g. 0 –

100 kWh/t, 100 – 300 kWh/t and > 300 kWh/t), as

described in [3].

Moreover, in the steel plant considered, four differ-

ent types of heats are processed, ranging from 100%

DRI-heats over one-basket- up to three-basket-heats.

For the load characteristics of the first basket of

multi-basket-heats, it can be said that it is compara-

ble to the one of a one-basket-heat up to the point

when subsequent baskets are charged. After that, the

meltdown of these additional scrap baskets happens

much more uniformly with less variation in active

power, as shown in Fig. 2. However, as a result of

the multiple scrap-charging and meltdown phases in

multi-basket-heats, there hardly ever occurs a case where

the EAF runs through a complete demand period at full

power. Consequently, utilised energy falls below the de-

mand target in the majority of cases even with a standard

power demand controller, not leaving much potential for

optimising energy utilisation. Therefore, the active power

characteristics of multi-basket-heats are not investigated

in more detail.

In order to predict the near-future power demand of

the EAF, a model describing to some part the stochastic

behaviour as well as correctly estimating the long-term

mean value needs to be found. It can be shown that the

following equation meets these requirements:

P̃elEAF = 0.5 · PelEAFactual + 0.5 · P̄elEAF, (1)

where P̄el EAF is a general mean active power value that

is continuously determined in runtime, dependent on the

actual melting progress and transformer tap. Averaging

follows a PT1-algorithm with a time constant of 170 min
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a) b)

Fig. 2. Typical plot of the EAF’s active power during a heat, a) two scrap baskets, b) three scrap baskets

(roughly 3 heats). Thus, it well represents the required

long-term mean value, whereas the actual active power

value of the EAF (Pel EAF actual in the above equation)

represents the stochastic momentary deviations from the

average power.

Fig. 3 shows the result of equation (1) for a

25-minute-section of a one-basket-heat. The curves show

similar characteristics, although the simulated values do

not exhibit as much stochastic deviations as the actual

values. Nevertheless, the mean values of both curves

(102.3 MW actual vs. 101.8 MW simulated) are almost

identical, confirming that this kind of model is suitable

for predicting the near-future (i.e. the remaining portion

of the demand period) development of the EAF’s ac-

tive power in case the EAF is running amidst a heat. In

cases where the EAF is about to be tapped within the

current demand period, a different approach has to be

followed, allowing for the prediction of the remaining

power-on-time. This is described in chapter 3.

Fig. 3. Comparison between actual and simulated values of EAF

active power

The ladle furnace, as a second major electrical load

in the steel plant, has a nominal power of 25 MVA and is

supplied by a tap-switchable transformer like the EAF.

However, as there is no melting performed within the

ladle furnace, its active power consumption curve shows

less stochastic behaviour than the EAF’s and runs more

smoothly, as shown in Fig. 4.

Fig. 4. Typical plot of the ladle furnace’s active power

In addition to the step-shaped changes in active pow-

er caused by the ladle furnace’s transformer tap switch,

the electrical load of the ladle furnace is characterised

by its variable on and off times, which are due to the

alloying and purifying processes performed in the ladle

furnace and to the short reheating phases necessary for

delivering the melt to the caster at the right temperature.

As control of these processes is carried out independent-

ly of the process control system that the power demand

controller has access to, there are no process variables

available to determine the moments of engaging and dis-

engaging of the ladle furnace. Thus, modelling the ladle

furnace’s active power for a whole demand period or

any time frame in advance is hardly accomplishable. In-

stead, the maximum active power drawn during the last

24 hours is taken as a “worst case”. If the ladle furnace is

on, the later described power demand control algorithm
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allows for an amount of energy corresponding to this

maximum load until the end of the demand period.

Having said that the variable on and off times of

ladle furnace operation hinder load prediction, actively

postponing the engaging of the ladle furnace presents a

means for controlling the power demand of the overall

steel plant, which is described in more detail in chapter 4.

The third electrical load to be characterised here,

the so-called basic load, comprises the remaining plant

equipment, most importantly the casting implements and

the two-train rolling mill. As with the ladle furnace, there

is also no process data available concerning operation of

these installations to base any precise modelling or pre-

diction on. Merely the actual electric power drawn can

be determined from the electric meter connected to the

power demand controller.

Fig. 5. Typical plot of the basic load’s active power

Fig. 5 shows the various load levels of the basic

load ranging from around 25 MW up to about 45 MW.

Each of these load levels relates to a certain state of

the rolling mill (i.e. off, one or two trains running) and

other plant equipment. Not having access to the corre-

sponding control systems and therefore not being able

to determine the exact moment when installations are

going to be engaged or disengaged, it is unfeasible to

predict the exact run of the oncoming load curve for

the basic load. It can also be shown that even if the

oncoming switching were known, the load levels, each

one regarded as a different time series process, cannot

be described or modelled by time series analysis due

to their highly erratic characteristics. However, during

practical measurements, a model similar to equation (1)

is used and results show that it allows for a prediction of

the basic load’s oncoming power levels good enough to

serve as a basis for the predictive power demand control

algorithm.

3. Prediction of the EAF’s remaining power-on-time

As said before, the key issue in developing a pre-

dictive power demand controller is the prediction of the

EAF’s remaining power-on-time until tapping. In [3], a

physical energy model is derived to fulfil this task. It is

based on the assumption that the total amount of electric

energy required for the melt is determined by the charged

amounts of scrap and DRI as well as by their respective

specific energy requirements. Using an estimation for

the near-future active electric power and keeping track

of the amount of electric energy already inserted into

the melt, the remaining time until tapping ∆t can then

be expressed by the model

∆t(t) =

amScrap(t) + bmDRI(t) −
t∫

0

PelEAFactual(τ)dτ

P̃elEAF

, (2)

where a and b represent the before-mentioned specific

energy coefficients for scrap and DRI, which are adapt-

ed after each heat to allow for slow changes in pro-

cess parameters. The estimated total scrap and DRI ton-

nages mScrap and mDRI are marked as time dependent

in the above equation because their corresponding val-

ues are adjusted during the course of the heat to im-

prove prediction accuracy towards tapping. mScrap(t) is

updated whenever subsequent baskets are charged. The

time-dependency of mDRI (t) accommodates the fact that

the final amount of DRI is not known at the beginning of

a heat and can therefore only be estimated using empiri-

cal values from past processes. Thus, at the onset of the

melting process, a statistically estimated quantity of DRI

(i.e. the mean value of total DRI in the last 100 heats) is

used for calculating the remaining power-on-time. In the

steel plant considered here, a characteristic drop in the

DRI feeding rate occurs in the last minutes of the heat.

Fig. 6. Estimated and actual remaining power-on-time and charged

quantities during a one-basket-heat

Measurements show that after this drop is detected, only

6 to 8 tons of DRI are fed into the EAF. Consequently,

the total amount of DRI mDRI(t) can then be updated to

the amount of DRI already charged up to that moment

plus the statistically estimated remainder, which is again

a mean value determined from the last 100 processed

heats. Fig. 6 shows the development of the estimated

remaining power-on-time during a one-basket-heat.
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The estimated remaining power-on-time curve in

Fig. 6 shows the above described algorithm in effect.

At the beginning of the heat (at about 6 min), an esti-

mate is made that is much larger than the actual remain-

ing time. This is due to the fact that melting starts at a

low power level, resulting in a relatively long remaining

time estimate according to equation (2). The following

step-shaped alterations in the curve emerge because the

EAF’s active power is changed according to control dia-

grams that set particular transformer taps depending on

the actual melt progress. By about 24 min, the highest

transformer tap is reached and the estimate curve almost

coincides with the actual remaining time curve. Finally,

at 52 min, the characteristic drop in the DRI feeding

rate occurs (indicated on the respective curve with a

black square), and the estimate is again updated to reach

even better accuracy. From that moment up to tapping,

estimated and actual remaining time curves run equally.

Fig. 7. Estimated remaining power-on-time at tapping over 110

one-basket-heats

Fig. 7 shows the result of similar measurements over

two weeks. Exemplarily, the achieved estimation accu-

racy at tapping is only depicted for one-basket-heats, as

they account for the largest number of heats processed

during the experiment period. Statistically, the measure-

ments show a mean estimation accuracy of -0.7 min,

-0.1 min and –4.0 min for 100% DRI-, one-basket-

and two-basket-heats respectively, accuracy meaning

the difference between estimated and actual remaining

power-on-time at the end of the corresponding heat. The

minus signs imply that the estimated times show a slight

tendency to predict tapping a little earlier than it actually

occurs; this is confirmed by the graph in Fig. 7, which

– on average – runs slightly below the zero line. The

few outliers in the curve give a hint that there can occa-

sionally be unusual processes that lead to inappropriate

estimation results. However, these deviations from the

ordinary have to be taken into account.

For the overall power demand strategy, this means

that a superordinate controller must ensure that the de-

mand target is not exceeded even in cases where the pre-

diction of EAF tapping is unusable due to unpredictable

incidents. For the cases when a heat runs smoothly and

remaining time prediction is feasible, the estimated re-

maining time cannot be taken as such but must be pro-

vided with a safety buffer time. That is because a tapping

after the predicted moment results in more energy than

presumed being drawn by the EAF, which might lead to

unwanted load-shedding or even shut-off. The other way

around, if tapping occurs earlier than predicted, the only

consequence is that the amount of electrical energy that

was allotted to the EAF in the current demand period is

not completely used up. Thus, a buffer the size of the

respective standard deviation is added to the estimated

remaining time to allow for the unavoidable variation

in estimation accuracy that is mentioned above. This

way, assuming a Gaussian distribution, actual tapping

lies within the predicted time frame for 84 % of the

cases.

3.1. Demand Control Strategy

The above described models render it possible for

the predictive power demand controller to calculate esti-

mates for a number of parameters. These are the remain-

ing power-on-time until tapping of the EAF, the electric

energy the EAF will consume during the actual demand

period and in total until tapping and the electric energy

the ladle furnace and the basic load will utilise in the

demand period. Moreover, the power demand controller

monitors the remaining time until onset of the next de-

mand period and the total remaining electric energy to

meet the demand target.

Having these parameters at hand, the following rules

of action are carried out along a decision tree in order

to optimise energy utilisation. This is depicted in Fig. 8.

First, it is decided whether tapping is estimated in

the current demand period. The outcome of this decision

determines which amount of electric energy is allotted

to the EAF: Either the total remaining energy until tap-

ping or until the end of the demand period. In the first

case, EAF transformer tap switching is avoided as far

as possible, such that the EAF is allowed to finish off

the actual heat without being interrupted by power de-

mand control. In avoiding these control actions shortly

before tapping, eventually a higher productivity can be

achieved as tapping is reached as fast as possible at the

highest possible power level. If the EAF is unnecessarily

stepped down shortly before the end of the heat, tapping

might be drawn into the next demand period, increasing

tap-to-tap time. In the second case, i.e. tapping is not

imminent in the actual demand period, the focus lies on

providing for a constant energy insertion into the melt.

Thus, on recognition that the demand target will be ex-

ceeded at the current load level, the EAF is switched

down in small steps early in the demand period in order

to avoid severe control actions towards the end. If load

levels then develop in such a way that the demand target

will not be reached, the EAF is stepped up again.
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Fig. 8. Decision tree for the predictive power demand control algorithm

To support the afore-mentioned objectives, the la-

dle furnace is used as an actuator to the power demand

controller to some extent. It can serve to free a cer-

tain amount of energy that can in turn be used to let

the EAF run through the actual demand period without

load-shedding or allow it to finish off the current heat

within the demand period. Both are desirable features in

order to optimise energy insertion into the melt while

meeting the demand target. This functionality is incor-

porated into the decision tree by observing whether the

ladle furnace is in operation during an adjustable time

window of about 1,5 min towards the end of the de-

mand period. If it is off and the remaining total energy

in the demand period does not allow for it to be switched

on without necessitating load-shedding in the oncoming

minutes, the power demand controller tries to postpone

engaging into the next demand period. This is realised by

displaying a corresponding message in the control room

such that the operator can then either follow the demand

controller’s suggestion or override the suggestion if ladle

furnace operation is imperative instantly in order not to

interrupt the casting process.

4. Implementation

The commercial power demand control solution in-

stalled in the steel plant consists of an embedded PC

and a software package for visualisation, parameterisa-

tion and data archiving. The embedded PC carries out a

parametrically adjustable common power demand con-

trol strategy. Therefore, it is interlinked with the load

switching actuators and relays of the steel plant in an

electric control cabinet. Moreover, it is connected to

the counter impulses and synchronising signals from the

electric meters and to the plant’s process control sys-

tem through a serial interface. The embedded PC is also

linked to an industrial PC via ethernet. This industrial PC

runs the corresponding software package and the new-

ly developed power demand control algorithm, which is

implemented as a Visual C++ programme. Both appli-

cations can interchange data on the PC via OPC (Object

linking and embedding for Process Control). Fig. 9 de-

picts this setup.

The above implementation extends the commercial

power demand control solution by the previously dis-

cussed predictive functionalities. The new power de-

mand control programme is fed with the necessary pro-

cess data and can transmit its output parameters (i.e.

EAF transformer tap, bit-information whether tapping

is imminent, and bit-information whether ladle furnace

switch-on should be postponed) back to the commercial

software through the OPC interface. At the same time,

the required superordinate controller to ensure safe op-

eration of the overall power demand strategy even in

cases of erroneous load prediction is constituted. This is

because the new power demand controller’s output is not

directly fed through to the embedded PC. Instead, these

output parameters are supervised by the intelligent algo-

rithms in the commercial solution software and possibly

altered before transmission to the embedded PC, where

the corresponding switching actions are carried out.
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Fig. 9. Schematic of the implementation setup in the steel plant

This setup has been in operation for several weeks in

the steel plant considered here. However, the output from

the new power demand programme has not been actively

used so far, because the overall system is still undergo-

ing thorough plausibility checks and intensive testing for

stable operation. Future works will include the activation

as intended and an analysis of results to finally evaluate

the achieved optimisation in power utilisation.

5. Conclusion

In the previous paragraphs, an innovative strategy

for power demand control in EAF steel plants is set out.

First, the plant is broken down into its major electric

loads. For each of these loads, a suitable model to de-

scribe the corresponding load characteristics is identi-

fied. In case of the EAF, it is shown that the load model

must be supplemented by a model for prediction of the

remaining power on time in order to estimate the oncom-

ing electric load situation during the actual demand peri-

od. Analysing long-term measurements under real-time

conditions, it is verified that the prediction models yield

reasonable accuracy. This is especially the case due to

the adaptive behaviour of these models.

Second, a new power demand control algorithm is

formulated as a set of rules following a decision tree,

incorporating the ladle furnace as an actuator for the

controller. This concept not only optimises energy util-

isation as a whole, but it also aims at process-specific

objectives, i.e. a more constant energy insertion into the

melt and shorter tap-to-tap times.

Finally, the newly developed algorithm is installed

at the steel plant of ArcelorMittal Hamburg and incor-

porated into an existing parametrically adjustable pow-

er demand solution. Due to time-consuming plausibility

and stability tests, the arrangement has not been tested

actively so far, but preliminary results show considerable

promise for meeting the above-mentioned optimisation

objectives.
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