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MODELING OF THE INTERATOMIC INTERACTIONS IN THE COPPER CRYSTAL APPLIED IN THE STRUCTURE
(111)Cu||(0001)Al2O3

MODELOWANIE MIĘDZYATOMOWYCH ODDZIAŁYWAŃ W KRYSZTALE MIEDZI ZNAJDUJĄCYM SIĘ W UKŁADZIE (111)
Cu||(0001)Al2O3

Atomistic model developed by Rosato-Guillopé-Legrand (RGL) [1] in the application to the copper crystal applied in the
metal/oxide system (111)Cu||(0001)Al2O3 was studied. The parameters of the model were identified with use of the concept of
elastic eigen – states proposed originally in [8]. To test the studied RGL potential, the own program, which uses the code of
the package for quantum-mechanical calculations (CASTEP [10]) was written. It is shown that due to suitable selection of the
parameters the model predicts adequate behaviour within the range of small strains, while for finite deformations the results
are not correct. Therefore, the possibility of the replacement of the studied RGL potential is discussed.

Zbadano zastosowanie potencjału opracowanego przez Rosato-Guillopé-Legranda (RGL) [1] do modelowania oddziaływań
międzyatomowych w krysztale miedzi znajdującym się w układzie metal/ tlenek: (111)Cu||(0001)Al2O3. Parametry modelu
zidentyfikowano za pomocą koncepcji sprężystych stanów własnych zaproponowaną w sposób oryginalny przez J. Rychlewskiego
[8]. Aby zweryfikować badany model opracowano własny program wykorzystujący kod pakietu do obliczeń kwantowo –
mechanicznych (CASTEP [10]). Wykazano, że z uwagi na odpowiedni dobór parametrów, model poprawnie opisuje zachowanie
kryształu w zakresie małych odkształceń, natomiast w przypadku skończonych deformacji wyniki nie są prawidłowe. W związku
z tym rozważono zastosowanie nowego potencjału.

1. Introduction

The aim of the paper is to investigate the atomistic
model developed by Rosato-Guillopé-Legrand (RGL) [1]
in the application to the copper crystal applied in the
metal/oxide system (111)Cu||(0001)Al2O3. Such a mod-
el was used by Dimitriev et al. in a series of papers
concerning the interatomic interactions across the cop-
per/sapphire interface [2], [3], [4]. Similarly to Dimitriev
the coherent interface assumption is employed [5], [6].
In such a case Cu crystal is subjected to the complex
trigonal deformation defined by the Green strain tensor
(fig.1a,b):

Tε =




εxx 0 0
0 εyy 0
0 0 0



, (1.1)

where εxx = εyy =
1
2

[( a
ao

)2 − 1
]

.

If the variable a takes the value of the sapphire
lattice constant as, Cu atoms of the interface will be
placed atop of the oxygen sites (fig1c) and the considered
Cu structure in the metal/oxide system will be obtained.
Within the frame of the applied model, the interatomic
interactions are described by RGL potential. According-
ly, the potential energy per atom is a sum of the repulsive
energy Erep, and the binding energy Eb:
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Fig. 1. Periodic cell of Cu crystal in the metal/ oxide system (111)Cu || (0001)Al2O3: a) the close – packed plane of Cu with assumed
coordination system, b) periodic cell of Cu crystal assumed in ab initio calculations for the complex trigonal deformation path controlled by
the variable a. For a = a0 = 4.428Å fcc structure, for a = as = 4.763Å Cu structure in the metal oxide system c) the base of the periodic cell
of Cu crystal spanned on the oxygen atoms

Erep = A
∑

i

exp
(

−p
(
ri

r0
− 1

))

(1.2)

Eb = −ξ
√

∑

i

exp
(

−2q
(
ri

r0
− 1

))

, (1.3)

where r0 is the distance between nearest neighbors at ze-
ro temperature and ri is the distance of i atom from the

considered central one. The first summand (1.2) is a pair
wise term, while the second one (1.3) is a many body
term. The binding energy is assumed as proportional to
the d band width. Thus the bond is formed by d elec-
trons without participation of s electrons, though s wave
functions localized in different lattice points overlap each
other. Therefore, s electrons as well as d electrons are
present in common inter-node space fig.2.

Fig. 2. Radial charge density distributions for 3d and 4s electrons coming from neighboring Cu atoms [7]
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The considered model requires to determine four
parameters: A, ξ, p, q. In the present study, they are ob-
tained assuming that the model behaviour is correct in
the range of infinitesimal strains but for arbitrary defor-
mation paths. Thus the proceeding of the strain process
ε is characterized by the function of energy density in
the form:

Φ
(
εi j

)
=

1
2

Si jklεklεi j , (1.4)

where Si jkl is elastic stiffness tensor.
In chapter 2, there is shown by means of group theory
and a direct physical analysis, how the crystal symmetry
controls the form of the stiffness tensor S and according-
ly uniquely determines the basis of the eigen-subspaces
of this tensor. The energy density stored in an arbitrary
strain process is a sum of the energy densities belonging
to three eigen-subspaces, as it was shown in the less
known papers by J. Rychlewski [8], [9]. Accordingly, if
the parameters A, ξ, p, q are chosen in such a way that
the model subjected to three strain states defined by basis
vectors of three eigen-subspaces behaves correctly, the
employed assumption will be fulfilled.

To test the studied model the own program which
uses the code of the package for quantum-mechanical
calculations (CASTEP [10]) written. CASTEP is the imple-
mentation of Kohn-Sham method [11], which enables to
determine the total energy of the system formed by the

atoms of given electronic configurations. As a result of
application of the created program the dependence of
the elastic strain energy density on the parameter con-
trolling the process is obtained. The program enables to
carry out the simulations of the finite strain processes in
the case of the cubic crystals (chapter 3).The considered
atomic model is subjected to the process of tetragonal
deformation. As a result two functions Φ(ε) are obtained.
One of them base on RGL potential determined in the
present paper and the second one is used by Dimitriev
[12]. The functions of energy density Φ(ε) are compared
to the results of ab initio calculations obtained by means
of the program written by one of the authors [7].

2. Influence of the crystal symmetry on the form of
RGL potential

Individual atoms of given electron configurations,
forming an ideal crystal, arrange themselves in the most
energetically advantageous structure. The copper crystal
has the face centered cubic structure (fcc). This struc-
ture is characterized by the symmetry group Oh (fig.3),
in which the inversion center and the four-fold symmetry
axes parallel to y, z axes can be assumed as the gener-
ator elements [13]. In the three-dimensional space, the
following matrices represent them [13]:

Fig. 3. The symmetry elements of Cu elementary cell (the point group Oh)

D (i) =




−1 0 0
0 −1 0
0 0 −1



, D

(
C4y

)
=




0 0 1
0 1 0
−1 0 0



, D (C4z) =




0 −1 0
1 0 0
0 0 1




(2.1)
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The elastic strain process is described by function
Φ (ε), where Φ – the elastic strain energy density. In the
range of small strains the harmonic approximation can
be used [14]. According to it:

Φ(ε) =
1
2

Si jklεi jεkl (2.2)

Si jkl (i, j, k, l = 1, 2, 3) is the stiffness tensor. If the course
of the process is considered in the nine-dimensional
strain space, S will take the form of the second rank
tensor. According to Neumann’s principle a quantity de-
scribing a physical property of a crystal remains in-
variant with respect to the operations belonging to the
symmetry group characterizing the given crystal [15].
The representation of the symmetry operator U in the
nine-dimensional space can be created on the basis of

the representation of the symmetry operator U from the
three-dimensional space by means of Cartesian product:

D′ (U) = D (U) ⊗ D (U) (2.3)

If D (U) is the unitary operator then D’ (U) will
preserve this property. Thus the stiffness tensor charac-
terizing the elastic behavior of the crystal has to fulfill
the following conditions:

D′ (U) S D′T (U) = S, U ∈ G (2.4)

where G is the point group of the considered crystal.
In the case of copper, the stiffness tensor is subjected
the restrictions associated with the symmetry elements: i,
C4y, C4z. Their representations D’ (U) can be formulated
on the basis of the relationships (2.1), (2.3). Satisfying
the conditions (2.4) the stiffness tensor takes the form:

S =




S1111 0 0 0 S1122 0 0 0 S1122

0 S1212 0 S1221 0 0 0 0 0
0 0 S1212 0 0 0 S1221 0 0
0 S1221 0 S1212 0 0 0 0 0

S1122 0 0 0 S1111 0 0 0 S1122

0 0 0 0 0 S1212 0 S1221 0
0 0 S1221 0 0 0 S1212 0 0
0 0 0 0 0 S1221 0 S1212 0

S1122 0 0 0 S1122 0 0 0 S1111




(2.5)

So the tensor S has four independent components: S1111,
S1122, S1212, S1221. Symmetry of the strain tensor and the
relationship (2.2) impose on the stiffness tensor addi-
tional restrictions:

Si jkl = Sjikl = Si jlk = Skli j (2.6)

Thus in the case of the copper crystal three independent
components: S1111, S1122, S1212 are obtained.

As it is shown above, the form, which takes the
stiffness tensor with regard to the crystal symmetry, can
be obtained by means of representation theory. The oth-

er way is the analysis of the courses of the appropriate
strain processes. According to Neumann’s principle, the
element belonging to the symmetry group of the con-
sidered crystal associates the states, in which the strain
processes proceed analogically. Thus the energy density
stored in these states is identical. Due to this, the rela-
tions between the components of the stiffness tensor are
obtained. Let’s take into consideration the strain process
described by the tensor ε with one non-zero element ε11
(fig.4a). Under the influence of the symmetry axis C4z
the state ε is transformed into ε’, in which ε

′
22 = ε11

(fig.4b).
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Fig. 4. The elementary cell of the copper crystal subjected to the strain state a) ε with ε11 , 0, b) ε’, which is the state ε transformed by
the symmetry axis C4z

The equality of the energy densities Φ (ε) and Φ (ε’)
allows obtaining of the following relationship:

1
2

S1111ε
2
11 =

1
2

S2222(ε
′
22)

2 ⇒ S1111 = S2222 (2.7)

Likewise one can derive the equalities:

S1212 = S1313, S1122 = S1133 (2.8)

Using of the symmetry axis C4y gives the following re-
lationships:

S1111 = S3333, S1212 = S2323, S1122 = S2233 (2.9)

To show the vanishing of the stiffness tensor components
three strain processes has to be considered simultane-
ously. As an example, let’s take into account the strain
state ε with two non – zero elements: ε12, ε33 (fig. 5a).
The symmetry axis C4y transforms it into ε’, in which
ε′11 = ε33, ε

′
23 = ε12 (fig. 5b). Applying of C4y axis

in the case of ε’ introduces the state ε” with ε
′′
33 = ε33,

ε
′′
12 = −ε12 (fig.5c).

Fig. 5. The elementary cell of the copper crystal subjected to the strain state a) ε with ε12 , 0, ε33 , 0, b) ε’, which is the state ε transformed
by the symmetry axis C4y, c) ε” which is the state ε’ transformed by the symmetry axis C4y

The appropriate energy densities are assigned to these
states:

Φ (ε) =
1
2

[
S3333ε

2
33 + 4S1212ε

2
12 + 4S1233ε12ε33

]
(2.10)

Φ
(
ε′
)
=

1
2

[
S1111ε

2
33 + 4S2323ε

2
12 + 4S1123ε12ε33

]
(2.11)

Φ
(
ε′′

)
=

1
2

[
S3333ε

2
33 + 4S1212ε

2
12 − 4S1233ε12ε33

]
(2.12)

If the relationships (2.9) are taken into account, on the
basis of the equalities of the respective energy densities,
one will obtain:
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Φ (ε) = Φ (ε′)⇒ S1123 = S1233

Φ (ε′) = Φ (ε′′)⇒ S1123 = −S1233

∣∣∣∣∣∣∣
⇒ S1123 = S1233 = 0

(2.13)
The both discussed above approaches: application of the
representation theory to study the influence of the crystal
symmetry on the form of stiffness tensor S and applica-
tion of the energy density in physical approach was not
considered in such a way by other authors and, according
to authors opinion, is rather new.

The symmetry of the copper crystal is so high that
determines the eigen – states (vectors) of the stiffness

tensor independently. The values of the components of
the tensor S do not have influence on their form. In the
case of fcc structure one can distinguish three signifi-
cant eigen-subspaces characterized by the eigen-values,
so called Kelvin moduli [8], [9] which can be calculated
from (2.5) after taking into account (2.6). Thus:

λI = S1111 + 2S1122, λII = S1111 − S1122, λIII = 2S1212
(2.14)

The base of each of the subspaces is formed by the
appropriate set of eigen – vectors:

ωI =
1√
3




1 0 0
0 1 0
0 0 1



, ωII.1 =

1√
6




1 0 0
0 1 0
0 0 −2



, ωII.2 =

1√
2




1 0 0
0 −1 0
0 0 0




(2.15)

ωIII.1 =
1√
2




0 1 0
1 0 0
0 0 0



, ωIII.2 =

1√
2




0 0 1
0 0 0
1 0 0



, ωIII.3 =

1√
2




0 0 0
0 0 1
0 1 0




(2.16)

Using the parameter ε the strain processes can be as-
signed to the particular eigen-states:

εI = εωI, εII.1 = εωII.1, εII.2 = εωII.2 (2.17)

εIII.1 = εωIII.1, εIII.2 = εωIII.2, εIII.3 = εωIII.3 (2.18)

The energy densities stored in the processes belonging
to one of the subspace I, II, III are identical. Therefore
each of the subspaces is characterized by the appropriate
function [8], [9]:

Φi (ε) =
1
2
λiε

2, i = I, II, III (2.19)

An arbitrary strain process can be presented as a linear
combination of the elementary processes related with

three elastic eigen – states (2.17), (2.18). In the same
way the density of elastic energy is decomposed (2.19).
The discussed results show how the crystal symmetry
controls the elastic energy distribution into three additive
terms.

On the basis of above considerations the parameters
of the studied model can be identified from the following
conditions:

d2Φ j(ε)
dε2 = λ j , (2.20)

where λ j are the experimental values of Kelvin moduli
and Φ j(ε), j = 1, 2, 3 are the energy densities stored
in three elementary processes: εI = εω1, ε2 = εωII,I ,
ε3 = ε (ωIII.1 + ωIII.2 + ωIII.3). Using RGL model (1.2),
(1.3) the energy densities take the following form:

Φ j (ε) =



A
∑

i

exp


−p



r( j)

i (ε)
r0

− 1





 − ξ

√√
∑

i

exp


−2q



r( j)

i (ε)
r0

− 1










/

Ω, (2.21)

where r( j)
i is the distance of the i atom from the consid-

ered central one in the deformed crystal subjected to the
j deformation path, while Ω is the volume of the crystal
unit cell. Then the atomic model behaves correctly when
is subjected arbitrary infinite small strains. Additionally
the equilibrium conditions is introduced:

dΦ1 (ε)
dε

∣∣∣∣∣
ε=0
= 0 (2.22)

The identified atomic RGL model behaves correctly if
the aforementioned conditions are satisfied.
The presented way of the parameters identification with
use of the energy densities (2.21), related with three
eigen-spaces of the stiffness tensor S, gives the possi-
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bility of parameter calculation with controlled relative
error. The advantage of the elastic eigen-states approach
is that it provides the high symmetry of deformed crys-
tal, what enables obtaining of the analytic formulae for
r( j)

i (ε). The symbolic and numerical calculations were
carried out with use of MATLAB. An example of cal-
culated parameter values for i = 5 are given as follows:
A=0.0855 eV, ξ=1.224 eV, p=10.960, q=2.278. They are
different from the values assumed by Dimitriev et al. [2],
[3]. He used RGL potential identified by Hecquet et al.
[12], where the parameters are determined according to
assumption that: cohesive energy and lattice parameter
take the experimental values, while the elastic constants
are as near experimental ones as possible.

3. Verification of RGL atomistic model by means of
ab initio simulations of strain processes

The functions of the energy density stored during
different strain processes Φ (ε) obtained by means of ab
initio calculations are the base of verification of creat-
ed atomic models. Accordingly, the own program has
been written, which calling the commercial program
CASTEP (Cambridge Serial Total Energy Package) [10]
performs the simulation of an arbitrary homogeneous
strain process for ideal metal crystals of the cubic sym-
metry [7]. The strain process is defined by Green tensor,
which diagonal elements determine the relative elonga-
tions (stretches) of the edges of the elementary cell and
the off-diagonal elements correspond to the changes of
the angles between the edges (shears). As regards the
homogeneity, each elementary cell is subjected to an
identical deformation. Accordingly, the homogeneously
strained ideal crystal can be still represented by Bravais
lattice. On the basis of Green strain tensor, in the given
iteration step, the created program defines geometry of
the elementary cell with its symmetry and together with
the other parameters determined by user the program
introduces them as the input data into CASTEP code. The
additional parameters are: the cutoff energy Ecut , the
density of Monkhorst-Pack mesh and the type of the
exchange-correlation functional. In the performed simu-
lations the functional in a form proposed by J.P. Perdew
and Y.A. Wang (PW91) [16] obtained by the generalized
gradient approximation (GGA) is used. Because of the
way of operation of CASTEP software the own code is
the Linux shell script written in bash. As a result of the
program application one obtains the set of the total ener-
gies per the elementary cell volume Ec corresponding to
the successive stages of the strain process. On the basis

of the calculated Ec one gets the strain energy density
according to the formula [17]:

Φ (ε) =
Ec (ε) − Ec

(
εeq

)

Veq
(3.1)

where Ec(εeq) is the total energy of the ideal crystal in
the equilibrium state per the elementary cell of volume
Veq.
The developed method of the strain process simulation
was used to characterize the elastic behaviour of Cu crys-
tal in the range of small strains. In this aim, the ideal
Cu crystal has been subjected to the strain processes be-
longing to the particular eigen-subspaces of the stiffness
tensor. As a result the relations Φ (εi), i=I, II, III were
obtained. Approximating them by parabolas, according
to the formulas (2.19), Kelvin moduli λI , λII , λIII were
determined. The calculation parameters: Ecut , density of
Monkhorst-Pack mesh were selected in such a way to
get the total energies Ec(ε) converged to less than 0.1
meV/atom. The comparison of the obtained results to the
experimental data [18] enabled to verify the developed
program.

In the case of the first eigen-state the parameter ε
(2.17) is associated with the relative elongation of three
perpendicular edges of the elementary cell ∆az.I�az.eq
by the following formula:

ε =

√
3

2




(
∆az.I

az.eq
+ 1

)2

− 1


 (3.2)

During the strain process ∆az.I = 〈−0.04 0.03〉 Å with
the iteration step h = 0.001Å. The symmetry of the el-
ementary cell doesn’t change and it is determined by
the symmetry elements shown at the fig.3 The cutoff
energy Ecut=400eV and Monkhorst – Pack mesh den-
sity 13x13x13 were assumed for the calculations. The
total energy of the crystal per the elementary cell Ec
reaches the minimum at the equilibrium configuration.
Thus using the relation Ec (az.I ) obtained from the sim-
ulation, the equilibrium lattice constant az.eq = 3.604Å
was determined. This result differs from experimental
one of 0.3%. The obtained equilibrium lattice constant
enables to present the simulation results in the form of
the relation Φ (εI ). Applying the least-squares method
Φ (εI) has been approximated by a parabola, the dou-
bled coefficient of which is Kelvin modulus λI (fig.6).
The simulation results reveal very good agreement with
the experiment [18]. The square of the correlation co-
efficient R2=0.9981 and Kelvin modulus λI=424.4 GPa
differs from the experimental one of 0.4%.
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Fig. 6. The elastic strain energy density Φ as a function of the parameter ε controlling the course of the process belonging to the first
eigen-subspace of the stiffness tensor

Let’s take into account the first of the considered
states belonging to the second eigen-subspace of the
stiffness tensor (2.15). The parameter (2.17) can be re-
placed by the relative elongation of one of the edges
lying in the base of the elementary cell ∆az.II�az.eq fig.3.
The two quantities are related as follows:

ε =

√
6

2




(
∆az.II

az.eq
+ 1

)2

− 1


 ((3.3)

The course of the strain process is determined by ∆az.II
changing in the range 〈−0.024 0.025〉Å with the itera-
tion step h = 0.001Å. According to Green strain tensor

εII.1 (2.17) the elongation of the edge of the elementary
cell base induces appropriate shortening of the perpen-
dicular edge. Thus, the elementary cell takes the form
(fig.7), which symmetry is characterized by the group
D4h. In the considered range of changes of ∆az.II it can be
assumed that the elongation induces double shortening.
The simulation of the described strain process has been
carried out at the following parameters: Ecut=500eV
and Monhhorst-Pack mesh density 14x14x14. As a re-
sult one has obtained Kelvin modulus λII=51.98GPa
(fig.8). Comparing to the experimental value the error
amounts to 1.3%. The square of the correlation coeffi-
cient R2=0.9975.

Fig. 7. The symmetry elements of Cu elementary cell subjected to the strain process εI I .1 belonging to the second eigen-subspace (the point
group D4h)
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Fig. 8. The elastic strain energy density Φ as a function of the parameter ε controlling the course of the process εI I .1 belonging to the second
eigen-subspace of the stiffness tensor

In the strain process determined by the first
of three distinguished states belonging to the third
eigen-subspace of the stiffness tensor (2.16), there occurs
only change of the angle between two edges in the base
of elementary cell ∆ϕ12 = 90◦ − ϕ12 (fig.9) Thus, one
can relate the parameter ε (2.18) to cos(ϕ12) as follows:

ε =

√
2

2
sin∆ϕ12 (3.4)

The quantity is varied in the range 〈−1.2◦, 1.2◦〉 with
the iteration step h = 0.1◦. During the strain process, the
elementary cell takes the form of much lower symmetry
characterized by group C2h (fig.9).

Fig. 9. The symmetry elements of Cu elementary cell subjected to the strain process εI I I .1 belonging to the third eigen-subspace (the point
group C2h)

Performing the simulation of the described process ana-
logically as in the case of the second eigen-subspace
one has obtained the results shown in fig.10 and so
λIII=151.52 GPa. The error of determination of Kelvin
modulus amounts to 7.4% and R2=0.9999. Thus, de-

spite the low symmetry of the system in the current
configuration and so lowered accuracy of the quantum –
mechanical calculations, the obtained results are highly
consistent with the experiment.
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Fig. 10. The elastic strain energy density Φ as a function of the parameter ε controlling the course of the process εI I I .1 belonging to the
third eigen-subspace of the stiffness tensor

Let’s take into account another process belonging
to the third subspace. This process is defined by Green
strain tensor εtrig being the linear combination of the
states presented in chapter 2:

εtrig =
ε√
6




0 1 1
1 0 1
1 1 0




(3.5)

According to the tensor εtrig there occurs an identical
change of the angles between three perpendicular edges

of the elementary cell ∆ϕ. The parameter ε is related to
∆ϕ as follows:

ε =

√
6

2
sin∆ϕ (3.6)

∆ϕ undergoes changes in the range 〈−2◦, 2◦〉 with the
iteration step h = 0.1◦.
Thus, during the process the cuboid is being replaced
by the rhombohedron. Accordingly, one obtains the el-
ementary cell of much higher symmetry (D3d - fig.11)
then in the early considered process of change of one
angle.

Fig. 11. The symmetry elements of Cu elementary cell subjected to the strain process εtrig belonging to the third eigen-subspace (the point
group D3d)
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Due to this fact, performing the simulation analogical as
previously, one can expect much better results. Accord-
ing to this one has obtained Kelvin modulus λIII=158.3

GPa (fig.12) differing from the experimental value only
of 3.5%.

Fig. 12. The elastic strain energy density Φ as a function of the parameter ε controlling the course of the process εtrig belonging to the third
eigen-subspace of the stiffness tensor

The results obtained in the case of the process be-
longing to the second subspace were used to verify the
considered RGL atomistic model. In this aim the model
was subjected to the tetragonal deformation. The calcu-
lations were carried out for two sets of parameters: A, ξ,
p, q. As a result the functions Φ(ε) depicted in fig. 13
were obtained. Their comparison to the ab initio simu-
lation enables to draw the conclusion that the atomistic
model behaves correctly in the range of small strains.
However the potential RGL formulated in the present
work gives the better results. Unfortunately applying the
considered model in the range of large strains one is not
able to obtain the metastable phase (bcc) [19], which
should appear at ε

√
6/10. According to LCAO method

which allows to formulate the considered model the in-
teratomic bond should be created by d electrons as well
as s- electrons (fig.2). The RGL potential neglects the

last ones. The considered model behaves correctly in the
range of small strains only with regard to suitable selec-
tion of parameters, what was shown in the present paper.
In the range of finite strains the interatomic bond should
base on s-d hybridization. Such a model is the better
approximation of interatomic interactions across copper
crystal and gives a chance for the correct description of
Cu – Cu interactions between interfacial copper mono-
layer and bulk copper in the case of Cu/Al2O3 system.
The other solution is the application of RGL potential
identified in the present paper restricting oneself to small
strains. Dimitriev et al, in the case of bulk Cu, used pa-
rameters arranged by Hecquet et al. [12] and describing
the interaction between the interfacial Cu monolayer and
the rest of Cu crystal identified the parameters by means
of the rigid tensile test, where the strain reached to 3.6
[3]. They did not obtain satisfied results [4].

Fig. 13. Functions of the energy density Φ(ε) characterizing proceedings of the tetragonal strain processes. They are obtained by means of
the atomistic models and ab initio calculations, respectively



522

4. Conclusions

Using crystal symmetry the parameters of RGL po-
tential in the case of copper crystal were identified. One
showed that the formulated model behaved correctly in
the range of small strains. Accordingly it can describe
the interactions across bulk copper being a part of the
system: (111)Cu——(0001)Al2O3 if the system is sub-
jected to small deformations. The data for the model
verifications were obtained by means of own program,
which using the commercial program CASTEP performs
the simulations of homogenous strain processes. In the
paper, there was shown that consideration of finite defor-
mations requires developing of a new model in which the
interatomic bond bases on s – d hybridization. This will
be the subject of further study. Similarly to the present
paper, in the new model, there will be taken into account
crystal symmetry by means of the representation of the
point group operating in the nine dimensional space of
strains. To formulate and test this model the developed
program for simulations of strain processes will be used.
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