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DIAGNOSTICS OF SYNCHRONOUS MOTOR BASED ON ANALYSIS OF ACOUSTIC SIGNALS WITH APPLICATION OF LPCC
AND NEAREST MEAN CLASSIFIER WITH COSINE DISTANCE

DIAGNOSTYKA SILNIKA SYNCHRONICZNEGO OPARTA NA ANALIZIE SYGNAŁÓW AKUSTYCZNYCH Z ZASTOSOWANIEM
LPCC I KLASYFIKATORA NEAREST MEAN Z METRYKĄ KOSINUSOWĄ

Paper presents method of diagnostics of imminent failure conditions of synchronous motor. This method is based on a
study of acoustic signals generated by synchronous motor. Sound recognition system is based on algorithms for data processing,
such as LPCC and Nearest Mean classifier with cosine distance. Software to recognize the sounds of synchronous motor was
implemented. Studies were carried out for four imminent failure conditions of synchronous motor. The results confirm that the
system can be useful for detecting damage and protect the engines. System can be useful in inspection of metallurgy products.
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Zaprezentowano metodę diagnozowania stanów przedawaryjnych silnika synchronicznego. Metoda ta oparta jest na bada-
niu sygnałów akustycznych generowanych przez silnik synchroniczny. System rozpoznawania dźwięku oparty jest na algoryt-
mach przetwarzania danych takich jak algorytm LPCC i klasyfikator Nearest Mean z metryką kosinusową. Zaimplementowano
oprogramowanie do rozpoznawania dźwięków silnika synchronicznego. Przeprowadzono badania dla czterech stanów przeda-
waryjnych silnika synchronicznego. Wyniki badań potwierdzają, że system może być przydatny do wykrywania uszkodzeń i
zabezpieczania silników. System może być przydatny w kontroli wyrobów hutniczych.

1. Introduction

There is a lot of research on mechanical properties
of materials [1-8]. Mechanical properties of materials
are very important for the diagnostics. Technical diag-
nostics concerns with the assessment of technical con-
dition of the machine through the study of properties
of work processes. Diagnostics is particularly important
for mining, metallurgy and processing industry. There
are three factors stimulating the development of diagnos-
tics. The first is the complexity of production systems,
where failure of one machine will cause damage of the
entire production in large economic losses. The second
factor is the large number of machines, which are also
in constant movement and without any supervision. For
example: the average refinery or steelworks, operated at
the same time several thousands small and medium-sized
engines. Maintenance and repair of such a vast assem-
bly of machines causes a lot of trouble, if we can not
predict the period of repair correctly. The third factor is
the high level of reliability required for certain one-time

or seasonal use. For example vehicles such as aircraft,
where the machine is expected throughout the year for a
period of several weeks of work. The main methods of
diagnostics of imminent failure conditions of machines
are based on the study: magnetic field of machine, ultra-
sound of machine, electric signals of machine, acoustic
signals of machine, visually selected parts of machine,
vibroacoustic signals of machine.

In recent years, the methods of sound recognition
were developed [9-14]. Hence the idea to use them for
machines. Studies concern selected synchronous motor
that generates acoustic signals. These studies can be used
to application of diagnostics based on acoustic emis-
sion in the electrical machines, mechanical machines,
hydraulic machines, pneumatic machines. Measurements
were made by sound card with microphone OLYMPUS
TP-7.
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2. Sound recognition process of synchronous motor

Sound recognition process of synchronous motor
contains pattern creation process and identification pro-
cess (Fig. 1). Soundtrack is recorded and split. At the be-
ginning of pattern creation process signals are sampled,
normalized and filtrated. Afterwards data are converted
through the Hamming window (window size 256). Next

data are converted through the LPCC algorithm. LPCC
algorithm creates feature vectors (75 features). Four av-
eraged feature vectors are created. Steps of identification
process are the same as for pattern creation process. Sig-
nificant change occurs in the classification. In this step,
feature vectors are compared with each other (averaged
feature vector and new feature vector).

Fig. 1. Sound recognition process with application of LPCC and Nearest Mean classifier

2.1. Recording of acoustic signal

Sound card with analogue-digital converter is able
to record sound. Recording of the acoustic signal is the
first part of the identification process. Acoustic signal is
converted into digital data by the microphone and the
sound card. This wave file contains following parame-
ters: sampling frequency is 44100 Hz, number of bits is
16, number of channels is 1.

2.2. Soundtrack division

System divides data. New wave files are obtained.
New wave files are used in the identification process.

There are following advantages of such solution: precise
determination of sound appearing, precise sound identi-
fication, application does not have to allocate so much
memory in identification process.

2.3. Sampling

Sampling is a technique to convert an analog sig-
nal into a digital signal. It periodically samples an input
signal and transforms into a sequence of intensity values.

2.4. Quantization

Quantization is a technique to round intensity val-
ues to a quantum so that they can be represented by a
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finite precision. Precision of sample depends on num-
ber of bits. Common applied number of bits is 8 or 16.
Sound recognition application uses 16 bits because it
gives better precision. There is a choice of number of
bits depending on input data and calculations speed of
the sound recognition process.

2.5. Normalization of amplitude

Normalization is the process of changing of the am-
plitude of an audio signal. Often sounds aren’t recorded
at the same level. It is essential to normalize the am-
plitude of each sample in order to ensure, that feature
vectors will be comparable. All samples are normalized
in the range [–1.0, 1.0]. The method finds the maximum
amplitude in the sample and then scales down the ampli-
tude of the sample by dividing each point by maximum.

2.6. Windowing

Hamming window is used to avoid distortion of the
overlapped window functions. It is defined as:

w(n) = 0.53836 − 0.46164 · cos(
2πn

m − 1
(1)

where: w(n) is the new sample amplitude, n is the index
in the window, m is the total length of the window.

2.7. Feature extraction

LPCC (Linear Predictive Cepstral Coefficients) is
used as a feature extraction algorithm. LPCC is based on
LPC (Linear Predictive Coding). LPC analyzes the sound
signal by estimating the formants, removing their effects
from the sound signal, and estimating the intensity and
frequency of the remaining buzz [15, 16]. It determines
a set of coefficients approximating the amplitude ver-
sus frequency function. These coefficients create feature
vectors which are used in calculations. The model of
shaping filter is defined as:

H(z) =
1

1 −
p∑

k=1
akz−k

(2)

where p is the order of the filter, ak is prediction coef-
ficient.
Prediction a sound sample is based on a sum of weighted
past samples:

s′(n) =
p∑

k=1

ak · s(n − k) (3)

where s′(n) is the predicted value based on the previous
values of the sound signal s(n).

LP analysis requires estimating the LP parameters for
a segment of sound. Formula (3) provides the closest
approximation to the sound samples. This means that
s′(n) is closest to s(n) for all values of n in the segment.
The spectral shape of s(n) is assumed to be stationary
across the frame, or a short segment of sound. The error
between the actual sample and the predicted one can be
expressed as:

e(n) = s(n) − s′(n) (4)

The summed squared error E over a finite window of
length N is defined as:

E =
1

N − p

N−1∑
n=p

e2(n) (5)

The minimum value of E occurs when the derivative
is zero with respect to each of the parameters ak. By
setting the partial derivatives of E, a set of p equations
are obtained. The matrix form of these equations is:



r(0) r(1) · · · r(p − 1)
r(1) r(0) · · · r(p − 2)
...

...
. . .

...

r(p − 1) r(p − 2) · · · r(0)





a1

a2
...

ar


=



r(1)
r(2)
...

r(p)


(6)

where r(i) is the autocorrelation of lag i computed as:

r(i) =
1

N − p

N−1∑
m=p

e2(n) (7)

where N is the length of the sound segment s(n).
The Levinson-Durbin algorithm solves the n-th order
system of linear equations.

R · a = r (8)

For the particular case where R is a Hermitian, positive
definite, toeplitz matrix and r is identical to the first
column of R shifted by one element.
The autocorrelation coefficients r(k) are used to com-
pute the LP filter coefficients ai, i = 1,. . . p and
k=1,. . . p. These coefficients are used in calculations.
The Levinson-Durbin algorithm is used to estimate the
linear prediction coefficients from a given sound wave-
form. This method is efficient, as it needs only the order
of M2 multiplications to compute the linear prediction
coefficients.
To obtain Linear Prediction Cepstral Coefficients it is
necessary to use equation (9):
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c(n) =


an +

n−1∑
k=1

k
nc(k)an−k 1 6 n 6 p

n−1∑
k=n−p

k
nc(k)an−k n 6 p

(9)

where c0 = r(0), p – order of the filter, n – number of
cepstral coefficients.
75 coefficients were calculated for each sample (Fig.
2-5).

Fig. 2. LPCC values for sound of faultless synchronous motor after normalization

Fig. 3. LPCC values for sound of synchronous motor with shorted stator coils after normalization
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Fig. 4. LPCC values for sound of synchronous motor with one broken coil after normalization

Fig. 5. LPCC values for sound of synchronous motor with three broken coils after normalization

2.8. Nearest mean classifier

In the literature there are many methods of clas-
sification [17,18]. Nearest Mean classifier is based on
training set and identification set. Training set contains
averaged feature vectors. Identification set contains new
feature vectors. Next the least distance is calculated be-
tween feature vectors (feature vector of new sample and
averaged feature vector of specific category). Cosine dis-
tance is the measure of distance between two points (vec-
tors). For vectors x and y with the same length n it is
defined as:

dcos(x, y) = 1 −
n∑

i=1
xiyi

√
n∑

i=1
x2

i

√
n∑

i=1
y2

i

(10)

8 where x and y are feature vectors with the same
lengths, x=[x1, x2,. . . ,xn], y=[y1, y2,. . . ,yn].

3. Results of sound recognition

Synchronous machine worked as synchronous mo-
tor. Short circuit and broken coils were located in the
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stator circuit (Fig. 6). Synchronous motor had following
operation parameters:

– sound of faultless synchronous motor, URS = 100
V, IR = 30.9 A, nN = 1500 rpm, Iw ≈ 0 A,

– sound of synchronous motor with shorted stator
coils, URS = 100 V, IR = 31.2 A, nN = 1500 rpm, Iw ≈
0 A, Rz=2.5 Ω,

– sound of synchronous motor with one broken coil,
URS = 100 V, IR = 24 A, nN = 1500 rpm, Iw ≈ 0.3 A,

– sound of synchronous motor with three broken
coils, URS = 100 V, IR = 36 A, nN = 1500 rpm, Iw ≈
0.245 A,

Investigations were carried out for sound of faultless
synchronous motor, sound of synchronous motor with
shorted stator coils (U3-X3), sound of synchronous mo-
tor with one broken coil (X1-X4), sound of synchronous
motor with three broken coils (X1-X4, Y1-Y4, Z1-Z4).

Fig. 6. Scheme of stator winding for synchronous motor with three broken coils in stator circuit (X1-X4, Y1-Y4, Z1-Z4)

Pattern creation process was carried out for ninety
five-second samples for each category. New samples
were used in the identification process. The system

should determine the state of synchronous motor cor-
rectly.

Fig. 7. Efficiency of sound recognition of synchronous motor depending on length of sample
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Efficiency of sound recognition is defined as:

E =
N1

N
(11)

where: E – sound recognition efficiency, N1 – number of
correctly identified samples, N – number of all samples.
Efficiency of sound recognition of synchronous motor
depending on length of sample is presented in Fig. 7.

4. Conclusions

Sound recognition system was implemented for syn-
chronous motor. Results of sound recognition were very
good for LPCC and Nearest Mean classifier. Sound
recognition efficiency of synchronous motor was 100%
(1-5 second sample).

Time of performance of identification process of
five-second sample was 0.562 s for Intel Pentium M
730 processor (normalization of amplitude, LPCC, NM
classifier with cosine distance). Time of performance of
identification process of one-second sample was 0.203
s. Sound recognition system can be useful for detecting
damage and protect the engines. The system can be use-
ful in inspection of metallurgy products. In the future, the
sound recognition system of synchronous motor can be
applied with other effective data processing algorithms.
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