THE IMPACT OF Al-Ti-B GRAIN-REFINERS FROM DIFFERENT MANUFACTURERS ON WROUGHT AL-AlLOY

To investigate the impact of various Al-Ti-B grain-refiners on solidification and grain-refining performance, a wrought aluminium alloy AA6182 was used. Three different grain-refiners from different manufacturers were used to establish the efficiency, i.e. contact time before casting, on the primary solidification and grain formation size. The primary solidification of α-Al grains at inoculation was observed by using thermal analysis (TA). Differential scanning calorimetry (DSC) was used in order to analyze the quality of various grain-refiners. The size of the primary grains was analyzed using optical microscopy (OM). Scanning electron microscopy (SEM) was used to estimate the size and distribution of Al3Ti and TiB2 particles in various grain-refiners and to establish the best efficiency of the investigated grain-refiners.

Within 1-4 min of inoculation the smallest fine equiaxed grains were achieved when either one of the investigated grain-refiners was added. It was established, that grain-refiner A contains higher content of impurities which do not melt in the experimental temperature range made by DSC method. The most pure grain-refiner turned out to be grain-refiner B, in which the most optimal number of TiB2 particles and particle size distribution was found.

Keywords: Al-Ti-B grain-refiners; aluminium alloy AA6182; TiB2 particles; Al3Ti particles; inoculation potential

1. Introduction

Grain-refinement has become a standard melt treatment practice in aluminium foundries world-wide with well documented technical and economical advantages. Commercial grain-refiners are manufactured from the Al-Ti-B ternary system, often with more Ti than required to form TiB2 particles [1]. The vast majority of grain refining applications employ Al-Ti-B alloys which typically contain 2-10 wt.% Ti and 0.1-2 wt.% B [2]. Hence, the microstructure of these alloys typically comprises, in addition to the insoluble TiB2, the soluble Al3Ti particles dispersed in an aluminium matrix. The former act as heterogeneous nucleation sites while Al3Ti particles readily dissolve in the melt and provide solute Ti that partitioning between the solid and liquid phases during solidification, and in this way slows down the growth process [2].

The very popular Al-Ti-B grain-refiners are known to perform adequately for wrought aluminium alloys except when the alloy to be inoculated contains one or more of the elements whose borides are more stable than TiB2. The mutual presence of Al3Ti and AlB2 particles in Al-Ti-B alloys, on the other hand, could offer to maximize the grain-refining efficiency for aluminium foundry alloys [3,4,7]. A fine equiaxed grain structure leads to several benefits, such as high yield strength, high toughness, improved machinability and excellent deep drawability of the products [3-5].

Various mechanism for grain refinement involving the addition of Al-Ti-B-based grain-refiners are known: carbide-boride particle theory [8], peritectic theory [9-12], peritectic hulk theory [13,14], hypernucleation theory [15], duplex nucleation theory [16] and solute theory [17-19]. Which mechanism takes place in the grain-refined alloy is hard to predict. One of the major challenges in nucleation research is the experimental difficulties in examining the nucleation process in situ since nucleation occurs in liquid medium at high temperature and in an extremely short time scale. A particularly important aspect of grain-refinement is the crystallographic matching across the solid/substrate interface at the moment of heterogeneous nucleation [3]. A popular grain-refinement mechanism has been proposed as TiB2 acts as a substrate for the nucleation of Al3Ti, which then nucleates α-Al grains, i.e., via two steps of heterogeneous nucleation. Without the covering Al3Ti layer, TiB2 are easily contaminated by impurities that have a high tendency to form eutectic microstructures with aluminium and therefore being poor in nucleating α-Al grains [20]. However, the Al3Ti layer must be thinner enough and dynamic to avoid agglomeration to form compounded particles. By considering the high solubility of Al3Ti in aluminium and less than 0.01 wt. % Ti in solution,
a substrate is needed for the nucleation of α-Al$_3$Ti in grain-refinement. Therefore, a dynamic layer of Al$_3$Ti forms on the surface of TiB$_2$ particles, (Ti,Al)$_2$B particles precisely, in solidification and then dissolves into α-Al after nucleating α-Al grains, which is supported by a peritectic reaction in an Al-Ti phase diagram [4]. It is found that the quantities of Al$_3$Ti particles introduced are much lower than those of grains in the as-cast aluminium alloys, while those of introduced TiB$_2$ are higher. Thus it is concluded that the Al$_3$Ti particles in the Al-Ti-B grain-refiners cannot be the primary nucleation sites during solidification of aluminium, TiB$_2$ particles are required [20]. Grain-refiners particles can also nucleate some type of intermetallic phases in 6xxx series of Al-wrought alloys [21].

The ratio between Ti/B in master alloy and the way of processing conditions leads to a different morphologies of the Al$_3$Ti particles which may be resulted from different growth mechanisms. In various Al-Ti-B grain-refines the morphology of Al$_3$Ti particles could be as large blocky Al$_3$Ti particles in the α-Al grain centres while smaller TiB$_2$ particles being pushed into the grain boundaries (Al-5 wt.% Ti-1 wt.% B) or as flaky when the Ti/B ratio is reduced (Al-3 wt.% Ti-1 wt.% B) [22,23,25]. Ti/B weight ratio corresponding to TiB$_2$ stoichiometry is 2.215; refining performance improves sharply as this ratio is exceeded, but wanes at higher titanium contents [23,25].

There are many benefits from the use of grain-refiners in aluminium alloy castings. For example, mechanical properties can be improved, susceptibility tendency to hot cracking is reduced and fluidity is improved [26]. However, it is important to design the addition process to achieve the most effective grain-refinement, e.g. finding the contact time with the highest grain-refinement efficiency. If the contact time is too short, the finest grain size may not be achieved. On the other hand, if the contact time is too long, effectiveness of the grain-refiner will be lowered [3,23]. Many researchers have made an assumption that the fading time resulted from the higher density of TiB$_2$ and Al$_3$Ti lowered [3,23]. It is found that the quantities of Al$_3$Ti particles introduced are much lower than those of grains in the as-cast aluminium alloys, while those of introduced TiB$_2$ are higher. Thus it is concluded that the Al$_3$Ti particles in the Al-Ti-B grain-refiners cannot be the primary nucleation sites during solidification of aluminium, TiB$_2$ particles are required [20]. Grain-refiners particles can also nucleate some type of intermetallic phases in 6xxx series of Al-wrought alloys [21].

The compositions of experimental AA6182 alloy is listed in Table 1 and the grain-refiner Al-Ti-B master alloys designations (named A, B and C), additions and chemical composition, made by Optical emission spectrometer with inductively coupled plasma ICP-OES (Agilent 720) are listed in Table 2. The AA6182 aluminium alloy was melted in an induction furnace in steel crucible coated with BN-foundry coating. The experimental alloy was preheated at 700°C. During the heating and melting the protective gas Ar was purged from the bottom of the steel crucible. When the melting was completed, the Al-Ti-B master alloy was added into the melt, at either 1.2 or 1.5 g/kg. The amounts of master alloy added to the melt in this study were recommendations from the manufacturers. The melt was held for one of seven different contact times (varying from 0 (base alloy), 1, 2, 4, 6, 8 and 10 min). A maximum 10 min contact time was selected as the longest contact time for this study because of the previous reports in various references. The experimental samples were then cast at a temperature of 680-690°C in an Croning measuring cell, whereas the cooling rate was ~7 K/s and cooling curves were recorded. In order to characterize the exact solidification of experimental alloys corresponding first derivatives were obtained from the cooling curves.

The samples for grain size assessment were taken from the specimens after thermal analysis and analyzed in the centre region. Specimens were prepared using a standard metallographic technique. Electropolishing was performed with Barker’s reagent (4% HBF$_4$) to show the grain boundaries. All the samples were examined under polarized light, using Leica MeF4M at 25× magnification. The mean linear intercept technique according to ASTM E112 was used to quantify the grain size.

The DSC tests on all three grain-refiners were carried out with an empty reference corundum pan as scans in a dynamic argon atmosphere. The samples were heated up to 720°C at 20°C/min. The results were recorded and analyzed using a software (Pyris Diamond). The data was then used to calculate the calorimetric values, which were then inserted into the software for the calculation of the Ti/B ratio of the three different manufacturers and to understand the effects of amount of master alloy added and the contact time on the grain-refinement of wrought aluminium alloy AA6182.

2. Materials and methods

The compositions of experimental AA6182 alloy is listed in Table 1 and the grain-refiner Al-Ti-B master alloys designations (named A, B and C), additions and chemical composition, made by Optical emission spectrometer with inductively coupled plasma ICP-OES (Agilent 720) are listed in Table 2. The AA6182 aluminium alloy was melted in an induction furnace in steel crucible coated with BN-foundry coating. The experimental alloy was preheated at 700°C. During the heating and melting the protective gas Ar was purged from the bottom of the steel crucible. When the melting was completed, the Al-Ti-B master alloy was added into the melt, at either 1.2 or 1.5 g/kg. The amounts of master alloy added to the melt in this study were recommendations from the manufacturers. The melt was held for one of seven different contact times (varying from 0 (base alloy), 1, 2, 4, 6, 8 and 10 min). A maximum 10 min contact time was selected as the longest contact time for this study because of the previous reports in various references. The experimental samples were then cast at a temperature of 680-690°C in an Croning measuring cell, whereas the cooling rate was ~7 K/s and cooling curves were recorded. In order to characterize the exact solidification of experimental alloys corresponding first derivatives were obtained from the cooling curves.

The samples for grain size assessment were taken from the specimens after thermal analysis and analyzed in the centre region. Specimens were prepared using a standard metallographic technique. Electropolishing was performed with Barker’s reagent (4% HBF$_4$) to show the grain boundaries. All the samples were examined under polarized light, using Leica MeF4M at 25× magnification. The mean linear intercept technique according to ASTM E112 was used to quantify the grain size.

The DSC tests on all three grain-refiners were carried out with an empty reference corundum pan as scans in a dynamic argon atmosphere. The samples were heated up to 720°C at 20°C/min. The results were recorded and analyzed using a software (Pyris Diamond). The data was then used to calculate the calorimetric values, which were then inserted into the software for the calculation of the Ti/B ratio of the three different manufacturers and to understand the effects of amount of master alloy added and the contact time on the grain-refinement of wrought aluminium alloy AA6182.
10 K/min and then equilibrated at this temperature for 10 min before cooling to room temperature at the same cooling rate, at 10 K/min.

In addition, the grain-refiners were analyzed using JEOL JSM-6500F equipped with EDS, WDS in EBSD analysis techniques in order to analyze the size, shape and distribution of Al3Ti and TiB2 particles in investigated grain-refiners.

3. Results and discussion

Thermal analysis was used in order to determine the liquidus (T_L) and solidus temperature (T_S) of base and grain-refined AA6182 alloy. To determine exact characteristic temperatures first derivative of cooling curves was used as shown in Fig. 1a. The letters A, B and C presents the grain-refiner of certain manufacturer and the number next to the letter the contact time before casting. As it can be seen the most effective is the contact time from 1-4 min, whereas the liquidus temperature shifts to higher value when either of three grain-refiners are added in the alloy. The best effect, when grain-refiner A was added, was observed at contact time 1 min (Fig. 1b), whereas when grain-refiner B and C was added at contact time 4 min (Fig. 1c and d). At longer contact times the liquidus temperature starts to decrease, the impact of refiner is decreased in all experimental samples. In table 3 liquidus and solidus temperatures from measured cooling curves are listed.

Fig. 2 presents the micrographs of experimental samples taken in polarized light after etching.

These grain-refiners were tested for their grain-refining performance and were found to be fast acting grain-refiners with a good efficiency. The smallest fine equiaxed grains were achieved within 1-4 min of inoculation when either one of the grain-refiners was added. The first micrograph in Fig. 2 shows typical as-cast microstructures of AA6182 Al-alloy. In this case, the grain size is very large, approximately 420 μm as listed in Table 3. While in the case of adding of experimental grain-refines, the grain size is much finer, from 220-330 μm at all experimental contact times (Fig. 2 and Table 3). An enhanced grain-refining performance was observed in sample B1-B4, whereas the most efficient was grain-refiner B at contact time 1, 2 and 4 min. At longer contact times the grains form bigger again.
Fig. 2. Micrographs taken in a polarized light for base AA6182 alloy and grain-refined samples at various contact times
In addition DSC analysis was made to identify the course of melting/solidification of various grain-refiners and to establish the difference between grain-refiners of three different manufacturers. Obvious deviations among the grain-refiners occur on heating (Fig. 3a) and cooling (Fig. 3b) DSC curves. The temperatures of melting and solidifying of all characteristic phases (α-Al, α-Al, Al$_3$Ti and Al$_{13}$Fe$_4$), which could be detected in this temperature range, change when various grain-refiners are tested although the grain-refiner A and B contain approximately the same concentration of Ti and B. Another deviation among the grain-refiners could also be seen, this is melting and solidification enthalpy, whereas it is the lowest at the grain-refiner A. This indicates higher content of impurities as non-metallic inclusion, which do not melt in the experimental temperature range. Inclusions are not so effective inoculants as appropriate combination of Al$_3$Ti and TiB$_2$ particles. Moreover, TiB$_2$ are easily contaminated by impurities, therefore are not efficient as a nucleation sites for α-Al crystal grains.

With an aim to establish the efficiency of various grain-refiners Al-Ti-B, microstructural analysis of all three grain-
refiners was made. Figs. 4a-c present typical micro-images of the as-cast grain-refiners. Fig. 4a is from the Al-3 wt.% Ti-1 wt.% B alloy showing large blocky- and flake-like Al3Ti particles which are unevenly distributed in the matrix, while smaller TiB2 particles are fragmented in-between. Meanwhile, Fig. 4b shows the Al-3 wt.% Ti-1 wt.% B alloy showing that the morphology of the Al3Ti particles is much different from grain-refiner A, much more evenly distributed Al3Ti particles in a flake-like shape can be observed. In case of grain-refiner C (Fig. 4c), Al-5 wt.% Ti-1 wt.% B, the Al3Ti particles change from blocky to flaky shape when the Ti/B ratio is reduced. The similar observations were reported also by some other researchers [20,21] as already described in the introduction. Both mentioned particles were analysed using SEM, presented in Fig. 5d.

The size distribution of TiB2 particles in grain-refiners have an essential influence on the grain-refining efficiency. Fig. 5 is showing the number of particles regarding the size (particle surface) in all experimental grain-refiners. Grain-refiner C contains more TiB2 particles of a very small sizes (from 0.02-0.06 mm²) than A and B. However grain-refiner C contains also particles of a very larger sizes (0.5-1.25 mm²). The highest number of TiB2 particles is in grain-refiner C (33298 per mm²), but because of unevenly size distribution it is not the most efficient. Grain-refiner B contains almost twice as much particles (11064 per mm²) as grain-refiner A (6863 per mm²). This is one more reason for the best results of grain-refinement.

The two different morphologies of the Al3Ti particles may be resulted from different growth mechanisms and also from different processing conditions. For most effective inoculation insoluble TiB2 and the soluble Al3Ti particles in suitable shapes and sizes are needed, while TiB2 particles act as a substrate for the nucleation of Al3Ti, where the α-Al nucleates and grow. It is found that the number of Al3Ti particles introduced into the melt from the addition of Al-Ti-B type grain-refiner have lower influence on the inoculation, than number of TiB2 particles. This fact leads to a conclusion that grain-refinement by using Al-Ti-B type grain-refiner are not contributed by Al3Ti particles, but TiB2 as the primary nucleation substrate while the excess Ti has some effects upon the surface of TiB2. Nevertheless, Al3Ti particles in a suitable concentrations and sizes are also needed to achieve the most efficient grain-refining performance.

Fig. 4. Micrographs of investigated grain-refiners: A (a), B (b) and C (c); and SEM-image with EDS analysis of Al3Ti and TiB2 particles (d)
4. Conclusions

TiB₂ and Al₁Ti form coherent crystallographically interface, which promotes the nucleation of Al₁Ti on the surface of TiB₂ particles in an aluminium melt. Without the covering Al₁Ti layer, TiB₂ are easily contaminated by impurities that have a high tendency to form eutectic microstructures with aluminium and therefore being poor in nucleating α-Al grains. In our case presumably latest occurred and following conclusions can be made:

- The smallest fine equiaxed grains were achieved within 1-4 min of inoculation when either one of the grain-refiners was added. An enhanced grain-refinement was observed in sample B1-B4, whereas the most efficient was grain-refiner B at contact time 1, 2 and 4 min. At longer contact times the grains form larger again.
- The melting and solidification enthalpy, analyzed by DSC method, varies regarding the grain-refiner. The lowest was observed at the grain-refiner A, which indicates on a higher content of impurities in the material that do not melt in the experimental temperature range. Inclusions are not so effective inoculants as appropriate combination of Al₁Ti and TiB₂ particles. Furthermore, without the covering Al₁Ti layer, TiB₂ are easily contaminated by impurities that have a high tendency to form eutectic microstructures with aluminium and therefore being poor in nucleating α-Al grains.
- Two different morphologies of the Al₁Ti particles analyzed in this investigation may be resulted from different growth mechanisms and also from different processing conditions. For most effective inoculation insoluble TiB₂ and the soluble Al₁Ti particles in suitable shapes and sizes are needed, while TiB₂ particles act as a substrate for the nucleation of Al₁Ti, where the α-Al nucleates and grow. The most optimal number of TiB₂ particles and particle size distribution was found in grain-refiner B. This is also the reason for the best efficiency of grain-refines B.

Acknowledgements

This work was supported by A Republic of Slovenia, Ministry of Education, Science and Sport and by European Commission, European Regional Development. This work was made in a frame of program Materials and Technologies for New Applications (MARTINA, grand number: C3330-16-529008).

REFERENCES

746

