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MODELLING AND NUMERICAL ANALYSIS OF HARDENING PHENOMENA OF TOOLS STEEL ELEMENTS

MODELOWANIE I ANALIZA NUMERYCZNA ZJAWISK HARTOWANIA ELEMENTÓW ZE STALI NARZĘDZIOWYCH

This research the complex model of hardening of tool steel was shown. Thermal phenomena, phase transformations and
mechanical phenomena were taken into considerations.

In the modelling of thermal phenomena the heat transfer equations has been solved by Finite Elements Method by
Petrov-Galerkin formulations. The possibility of thermal phenomena analysing of feed hardening has been obtained in this
way. The diagrams of continuous heating (CHT) and continuous cooling (CCT) of considered steel are used in the model of
phase transformations. Phase altered fractions during the continuous heating (austenite) are obtained in the model by formula
Johnson-Mehl and Avrami and modified equation Koistinen and Marburger. The fractions ferrite, pearlite or bainite, in the
process of cooling, are marked in the model by formula Johnson-Mehl and Avrami. The forming fraction of martensite is
identified by Koistinen and Marburger equation and modified Koistinen and Marburger equation. The stresses and strains fields
are obtained from solutions by FEM equilibrium equations in rate form. Thermophysical values in the constitutive relations
are depended upon both the temperature and the phase content. The Huber-Misses condition with the isotropic strengthening
for the creation of plastic strains is used. However the Leblond model to determine transformations plasticity was applied. The
numerical analysis of thermal fields, phase fractions, stresses and strain associated deep hardening and superficial hardening
of elements made of tool steel were done.

Praca przedstawia kompleksowy model hartowania stali narzędziowej. W rozważaniach uwzględniono zjawiska termiczne,
przemiany fazowej i zjawiska mechaniczne.

W modelowaniu zjawisk cieplnych równanie przewodnictwa rozwiązano metodą elementów skończonych w sformułowaniu
Petrova-Galerkina. Istnieje zatem możliwość analizowania zjawisk hartowania posuwowego.

W modelowaniu przemian fazowych wykorzystano wykresy ciągłego nagrzewania CTPa i ciągłego chłodzenia CTPc
rozważanej stali. Ułamek fazy przemienionej podczas ciągłego nagrzewania (austenit) wyznaczono w modelu równaniem
Johnsona-Mehla i Avramiego oraz zmodyfikowanym równaniem Koistinena i Marburgera. Ułamek ferrytu, perlitu lub ba-
initu, w procesie chłodzenia, wyznacza się równaniem Johnsona-Mehla i Avramiego. Ułamek martenzytu wyznaczany jest
równaniem Koistinena i Marburgera oraz zmodyfikowanym równaniem Koistinena i Marburgera. Pola naprężeń i odkształceń
otrzymano z rozwiązania metodą elementów skończonych równań równowagi w formie prędkościowej. Wielkości termofizyczne
i związki konstytutywne uzależniono zarówno od temperatury jak i od składu fazowego. Do wyznaczenia odkształceń pla-
stycznych wykorzystano warunek plastyczności Hubera-Misessa ze wzmocnieniem izotopowym. Do wyznaczenia odkształceń
transformacyujnych zastosowano model Leblonda. Przeprowadzono analizę numeryczną pól temperatury, przemian fazowych,
naprężeń i odkształceń towarzyszących głębokiemu hartowaniu oraz przypowierzchniowemu elementów wykonanych ze stali
narzędziowej.

1. Introduction

Heat treatment is a technological process, in which
thermal phenomena, phase transformations and mechan-
ical phenomena are dominant. Models, which describe
processes mentioned above, do not take into consider-
ation many important aspects [1-6]. As a result of the
complexity of phenomenon of heat treatment process,

there are many mathematical and numerical difficulties
in its modelling. For this reason there is no model which
would include phenomenon accompanying heat treat-
ment, and therein and hardening.

The correct prediction of the final proprieties is pos-
sible after defining the type and the property of the
nascent microstructure of the steel-element in the pro-
cess of heating, and then the cooling treated thermally.
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To achieve this, it is necessary to establish equations
describing temperature fields, phase transformations in
the solid state, as well as strains and stresses generated
during the heat treatment [1,6-9].

Representant of mechanical phenomenon in process
of heat treatment are mainly stress, and their determina-
tion is depend on accuracy computing temperature fields
and from kinetics of phase transformations in solid state.
The kinetics of phase transformations has significant im-
pact on temporary stresses and then on residual stress-
es [1,6,8-11]. Numerical simulations of steel hardening
process need therefore to include thermal strains, plas-
tic, and structural strains and transformations plasticity
in the model of heat treatment [9,12,13].

The last decade showed strong evolution of numer-
ical methods in order to in a greater or smaller extent
design processes of heat-treatment. Every paper dealing
with this topic should contain thermal, microstructural
and stress analysis. To implement this type of algorithms
one usually applies the FEM, which makes it possible to
take into account both nonlinearities and inhomogene-
ity of thermally processed material [2,4,7-9,14]. Special
emphasis put on the development of this branch of nu-
merical methods is inspired by the industry, which de-
mands tools improving heat-treatment processes because
of modern technologies and costs reduction trends.

2. Temperature felds and phase transformations

In the modelling of the heat phenomena, convec-
tion effects are in many cases significant and cannot be
skipped in the conductivity equation. The arguments of
the wanted field of the temperature are then space co-
ordinates (Euler coordinates). This approach is comfort-

able when refers problems of the heat flow in moving
objects, or thermal load generated is moving sources of
the warmth [7,11,14].

Fields of the temperature determined from equation
solution of the transient heat flow with the convection
term:

div
(
λgrad (T )

) −C
(
∂T
∂t
+ v · grad (T )

)
= −qv (2.1)

where λ = λ(T ) is the heat conductivity coefficient,
C = C(T ) is an effective heat capacity, qv is intensity
of internal sources (one takes into account in him heat
of phase transformations), v is a velocity vector of the
small parts (points) of the element (object).

Superficial warming is realised in the model with
the boundary condition of the Neumann (heat source
q̃n), and superficial heating is modelled with internal
sources generating himself eg. during induction heating.
The cooling is modelled by a Newton boundary condi-
tion with temperature dependent a convection coefficient:

−λ ∂T
∂n

∣∣∣∣∣
Γ

= q̃n = α
T (T ) (T |Γ − T∞) (2.2)

On the boundary touching with air (the cooling in
air) in the Newton condition one founded, that the coef-
ficient of taking over of the heat took into account both
the radiation as and the convection [1,14]:

α∗ (T ) = α0
3
√

T |Γ − T∞ (2.3)

where α0 is coefficient of the heat exchange established
experimentally [1,14], Γ is surface, from which the heat
is taken over, T∞ is temperature of the cooling medium.

The finite element method in the Petrov-Galerkin
formulation is used to solve the problem. The system of
equations to numerical solves is in the form [7,14]:(

β
(
Ki j + Vi j + BN

i j

)
+ Mi j

)
Ts+1

j =
(
Mi j − (1 − β)

(
Ki j + Vi j

))
Ts

j+

+βBN
i j
∞Ts+1

j + (1 − β) BN
i j

(
Ts

j − ∞Ts
j

)
+ βQs+1

i + (1 − β) Qs
i − βq̃s+1

i + (1 − β) q̃s
i

(2.4)

where coefficient β represents the schema of the inte-
gration with respect to time, (β = 1 – backward schema
Euler, β = 3/4 – schema Petrov-Galerkin, β=2/3 - schema
Galerkin, β=1/2 - schema Crank Nicolson, β = 0 –
schema forward Euler) [7,14], symbol “s” signed the
time t, however symbol “s+1” – time t + dt.

Matrixes and vectors (2.4) are calculated like:

Ki j =
M∑

e=1
Ke

i j =
M∑
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∫
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M∑

e=1
Qe

i jq
v
j , q̃i =

MB∑
e=1

Be
i jq̃ j

(2.5)
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where Ke
i j, Qe

i j i Be
i j are symmetrical matrix of finite el-

ements called: conductivity matrix, internal source and
boundary elements matrix (but in BN

i j condition boundary
Newton considered was), Me

i j is symmetrical matrix of
heat capacity (bear also the name – matrix of mass), Ve

i j

is convection matrix, M is number of elements, MB is
number of boundary elements, wi = wi(xα) are weights
functions, ϕi = ϕi(xα) are approximations functions [14].

Heat of phase transformations is considered in the
term source of the conductivity equation (2.1) and is
calculated with the example [7,10,15-17]:

qv =
∑

k

Hηk
k η̇k (2.6)

where Hηk
k is volumetric heat (enthalpy) k – phase trans-

formations, η̇k is the rate of change k – phase fraction.
The algorithm of the solving of the conductivi-

ty equation in the form (2.4) with suitable initial and

boundary conditions and his implementation, gives the
possibility of the simulation of the temperature distri-
bution both in Lagrange and Euler coordinates. In this
second case one provide v(xα, t) = 0.

The implementation the algorithm of presented
above of solution of the conductivity equation with the
finite element method lets on the simulation of ther-
mal loads in axisymmetrical and flat elements (problem
2D) and in axisymmetrical disks and spherical elements
(problem 1D). In problems 2D the bilinear approxima-
tions functions were used for quadrangular elements,
however in problems 1D – linear and square functions.
In both case, the weight – functions are shift weigh func-
tions, so-called “upwind function” [14].

In the model of phase transformations diagrams of
continuous heating (CHT) and cooling (CCT) are used
(fig. 1) [8,18].

Fig. 1. The Time-Temperature-Transformation graphs (CHT) and (CCT) for steel C80U [7,8]

The phase fraction transformed during continuous
heating (austenite) is calculated in the model using the
Johnson-Mehl and Avrami formula and modification
Koistinen and Marburger formula, for rate heating >100
K/s [9], fractions pearlite or bainite are determined in
model by Johnson-Mehl and Avrami formula. The frac-
tion of the martensite formed, is calculated using the
Koistinen and Marburger formula [1,8,9]:

η
A

(T, t) = 1 − exp(−b
(
ts, t f

)
(t (T ))n(ts ,t f )

η
A

(T, t) = 1 − exp
(
− ln(ηs)

TsA−T f A
(TsA − T )

)
, Ṫ > 100 K/s

ηM (T ) = ηm
(
1 − exp

(
−

(
Ms−T

Ms−Mf

)m))
, m = 3.3

η(·) (T, t) = ηm
(
1 − exp (−b (t(T ))n)

)
ηm = η

%
(.)ηA

for η
A
> η%

(.) and ηm = ηA
for η

A
< η%

(.)
(2.7)

where b(ts, t f ) and n(ts, t f ) are coefficients calculated as-
suming the initial fraction (ηs=0.01) and the final frac-
tion (η f =0.99), η%

(·) is maximal phase fraction for estab-
lished cooling rate estimated with CCT diagrams, η

A
is

a fractions of the initial austenite, TsA is temperature
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start austenite transformations, T f A – final temperature
of this transformations [9], m is constant from experi-
ment; for considered steel m = 3.3 if for considered steel
the temperature start transformations martensite amount
Ms=493 K, and final this transformations is in tempera-
ture Mf =173 K [7,18].

The purpose of the dilatometric research was to
analyse phase transformations during heating and contin-
uous cooling of steel considered. Dilatometric research

was done in the Institute for Ferrous Metallurgy in Gli-
wice by means of a dilatometer DIL805 produced by
Bähr Thermoanalyse GmbH. Results of these simula-
tions and appropriate comparisons to the experiment re-
sults are presented in pictures [7,8]. The example com-
parisons are presented the figure 2, the kinetic of trans-
formations established cooling rate are presented on the
figure 3 (see [8]).

Fig. 2. Experimental and simulated dilatometric curves (see [8])
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Fig. 3. The kinetic of transformations for established cooling rate (see [8])

The coefficient of thermal expand of pearlite struc-
ture is for considered depended from temperature (see
fig. 2), so approximation of this coefficient to square
function was applied [7,8].

Based on comparisons of experimental and simu-
lator dilatometric curves for the considered steel, values
of thermal expansion coefficients and isotropic structural
strains of each micro-constituents were determined, they
equal: 22, 10, 10 and 14.5 (× 10−6) [1/K] and 1.0, 4.5,
8.3 and 1.5 (× 10−3) for austenite, bainite, martensite
and pearlite, respectively [7,8].

The simulated dilatometric curves were obtained by
solving the increment of the isotropic strain in the pro-
cesses of heating and cooling using the formula:

dεT ph =
∑k=5

k=1

(
αkηkdT − sgn (dT ) εph

k dηk
)

(2.8)

where αk = αk(T ) are thermal expansion coefficients
of: austenite, bainite, ferrite, martensite and pearlite,
ε

ph
k = ε

ph
k (T ) is an isotropic strain accompanying the

conversion of the initial structure into austenite, austen-
ite into bainite, ferrite or cementite fraction, austenite

into martensite or austenite into pearlite respectively,
sgn (.) is function of sign. In the group of considered
steel (C80U, C90U and C100U) ferrite is not performed,
therefore η3 = dη3 = 0 [8,18].

3. Stresse and strain filds

The equilibrium equation and constitutive relations
are used in rate form [7,8,11,14], i.e.:

divσ̇ (xα, t) = 0, σ̇ = σ̇T , σ̇ = D ◦ ε̇e + Ḋ ◦ εe (3.1)

where σ = σ(σαβ) is stress tensor, D = D(v, E) is the
tensor of material constants (isotropic materials), v is
Poisson ratio, E = E(T ) is the Young’s modulus de-
pendent on the temperature, however εe is tensor elastic
strains.

Application equilibrium and constitutive equations
in rate form permitted change of material property from
temperature and phase compositions.

Additivity strains was assumed, i.e. total strains in
the around considered points are result of the sum:
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ε = εe + εT ph + εt p + εp (3.2)

where εT ph are isotope of temperature and structural
strains (see. (2.8)), εt p are transformations plasticity, and
εp are plastic strains.

In order to calculate plastic strains a model of
non-isothermal plastic flow with the Huber-Misses plas-
ticity condition and with the isotropic strengthening is
used, where the actual effective stress depends on phase
composition, temperature and plastic strain [1,7,14].
Flow function ( f ) have the form:

f = σe f − Y
(
T, η, εp

e f

)
= 0 (3.3)

where σe f is effective stress, εp
e f is effective plastic

strains, Y is a plasticized stress of material on the phase
fraction η in temperature T and effective strains εp

e f :

Y
(
T, η, εp

e f

)
= Y0 (T, η) + YH

(
T, εp

e f

)
(3.4)

where Y0 = Y0(T, η) is a yield points of material depen-
dent on the temperature and the phase fraction, however
YH = YH (T, εp

e f ) is a surplus of the stress resulting from
the material hardening.

After considerations (3.4) scalar multiplier of plas-
ticity representation effective plastic strains (εp

e f ), solved
by formula [7]

ε̇
p
e f = 2Y

3S ·
((

D ◦
(
ε̇ − ε̇T ph − ε̇t p

)
+ Ḋ ◦ εe

))
− 2Y

(
κT Ṫ +

∑
k κ
η
k η̇k

)
9S · (D ◦ S) + 4κYY2 (3.5)

where S is the deviator of stress tensor, κY = κY (T, εp
e f ) is

the hardening modulus, κT = κT (T, η, εp
e f ) is the thermal

softening modulus, κηk = κ
η
k (T, εp

e f ) is the modulus of
structural softening or hardening [2,3,5].

Can we remark, that rate of effective plastic strain
(ε̇p

e f ) describe (3.5) is depend from value surplus stress,
thermophysical gradient of values and of kind output
materials structure.

Individual modules are determined following:

κY = ∂Y
∂ε

p
e f
=
∂YH

(
T,η,εp

e f

)
∂ε

p
e f

κT = ∂Y
∂T =

∂Y0(T,η)
∂T +

∂YH

(
T,η,εp

e f

)
∂T

κ
η
k =

∂Y
∂ηk
=
∂Y0(T,η)
∂ηk

+
∂YH

(
T,η,εp

e f

)
∂ηk

(3.6)

The accessible thermophysical values obtained from
experiment are Young’s modulus E = E(T, η) and tan-
gential modulus Et = Et(T, η). Take advantage of unaxial
curves tension or compression, and make use of strains
additivity, solved hardening modulus (κY ), the thermal
softening modulus (κT ) and the hardening modulus or
structural softening (κηk )[7].

3.1. Transformations plasticity

Numeric simulations of process heat treatment of
steel require taking into consideration in models of
transformation plasticity. This phenomenon is a reason
of irregular, plastic flow metals, which appears during
the phase transformations in solid state, especially dur-
ing transformation austenit to martensit (A→M) cooling
iron. In the literature there two different mechanisms,
one which has been proposed by Greenwood and John-
son and second by Magge [8,12,13]. In the interpretation
of Greenwood-Johnson the transformation plasticity is

microplasticity which appear in weaker austenite phase
of has caused by difference of volumetric between phas-
es. Magee’s interpretation (fundamentally for marten-
sitic transformations), this is the result of change in the
orientation of grain martensite which have been newly
formed by external load. Priorities of these mechanisms
depend on materials and of kind of transformations.
Greenwood-Johnson mechanism is priority in diffusiv-
ity transformations, and also in bainitic and martensitic
transformations when big difference volumetric between
phases is.

In this work Leblond’s model has been used to es-
timate transformations plasticity [12]. In the literature
there are some other models estimations transformations
plasticity (comp. [4,13,19]). However, Leblond’s model
takes into consideration all transformations and it is used
by authors working on modelling heat treatment the most
frequently.

Using the Leblond model, completed by decreasing
functions (1 - η) which has been proposed by the authors
of the work [12], transformations plasticity are calculated
as following:

ε̇tp =


0, for ηk 6 0.03,
−3

∑k=5
k=2 (1 − ηk) εph

1k
S
Y1

ln (ηk) η̇k , for ηk > 0.03
(3.7)

where 3εph
1i are volumetric structural strains when the

material is transformed from the initial phase “1” into
the k-phase, Y1 is a actual of phase output (in cooling
process is austenite).

Current point of plasticity output phase is calculated
by formula

Y1 = Y0
1 + κ

Y1ε
t p
e f (3.8)
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where Y0
1 is a yield points of output phase, κY1 is the

hardening modulus of materials about austenite struc-
ture, and εt p

e f is effective transformations plasticity. Be-
cause no existing suitable date, assumption, that κY1 =

κY .
The equations (3.1) are solved by means of the FEM

[7,8,14]. The system of equations used for numerical
calculation is:

[K]
{
U̇
}
=

({
Ṙ
}
+

{
ṫT ph

}
−

{
ṫe
})
+

{
ṫptp

}
(3.9)

where K is the element stiffness matrix, U̇ is the vector
of nodal displacement, Ṙ is the vector of nodal forces
resulting from the boundary load and the inertial forces

load, ṫT ph is the vector of nodal forces resulting from
thermal strains and structural strains, ṫe is the vector of
nodal forces resulting from the value change of Young’s
modulus dependent on the temperature, ṫptp is the vector
of nodal forces resulting from plastic strains and trans-
formation plasticity.

The rate vectors of loads in the brackets are calcu-
lated only once in the increment of the load, whereas
the vector ṫptp is modified in the iterative process [14].

Have marked rate of displacement solved rate stress-
es to result to gradient of displacement rate. The final
displacements, strains and stress are resulting integration
with respect to time, from initial t = t0 to actual time t,
i.e.

U (xα, t) =

t∫
t0

U̇ (xα, τ) dτ, ε (xα, t) =

t∫
t0

ε̇ (xα, τ) dτ, σ (xα, t) =

t∫
t0

σ̇ (xα, τ) dτ (3.10)

Using one step scheme integration’s and marked
by index “s” time t, however by index “s+1” – time
ts+1 +∆ts+1, summation discrete value functions “f” ob-
tain from solutions, in following time steps, carry out
following:

f
(
xα, ts+1

)
=

k=s∑
k=0

ḟ
(
xα,∆tk

)
∆tk+

ḟ
(
xα,∆ts+1

)
∆ts+1

(3.11)

In interactions process in following “i” steps are
solved the system of equations

[K]
{
δiU̇

}
=

{
δi ṫptp

}
(3.12)

and updating successively displacements, strains and
stresses

f
(
xα, ts+1

)
=

k=s∑
k=0

ḟ
(
xα,∆tk

)
∆tk +

(
ḟT ph

(
xα,∆ts+1

)
+

∑i

k=1
δk ḟ

)
∆ts+1 (3.13)

4. Examples of calculation

Numerical simulations of hardening of the elements
made of the carbon tool steel were performed. The ther-
mophysical coefficients λ and C were assumed as con-
stants: 35 [W/(mK)], and 5.0 ×106 [J/( m3K)]. These are
the average values calculated on the basis of the data in
the work [5]. Because in work was presented feed hard-
ening assumed that the heats of phase transformation are
assumed to zero. Heat transfer coefficient assumed con-
stant equal αT=4000 [W/(m2K)] (cooling in fluid layer
[20]) and α0=30 [W/(m2K−4/3)]. The cooling was mod-
elled with the Newton condition. The temperature of the
cooling medium equalled T∞ =300 K.

Young′s and tangential modulus (E and Et) were
dependent on temperature, whereas the yield stress (Y)
was dependent on temperature and phase composition.
Assumed, that Young′s and tangential modulus are equal

2×105 and 4×103 [MPa] (Et=2×10−2E), yield points
150, 480, 1150 and 300 [MPa] for austenite, bainite,
martensite and pearlite, respectively, in the temperature
300 K. In the temperature of solidus Young′s modulus
and tangential modulus equalled 100 and 10 [MPa], re-
spectively, whereas yield points equalled 5 [MPa]. These
values were approximated with the use of square func-
tions (fig. 4) using the following assumptions based on
the work [2]. Fig. 4
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Fig. 4. Diagrams of functions E(T ), Et (T ) and Y0(T, η)

4.1. Example 1

The axisymmetrical object with the following size
φ30×60 mm with mouth φ10×mm (fig. 5) underwent
hardening simulation. After heating it had an even tem-
perature equalling 1150 K, and the output microstructure
was austenite. Fig. 5.

Fig. 5. Scheme of the system and boundary conditions (example 1)

Hardened zones in the cross sections and the kinetic
of transformations in the superficial points 1 and 2 of the
element are presented in figures 6 and 7, respectively.

Fig. 6. Hardened zones in the cross sections

Fig. 7. Kinetic of transformations in the superficial points 1 and 2 of
the element (fig. 5)

Exemplary residual stresses distributions and plastic
strains after hardening, with and without transformation
plasticity: (εt p = 0) and (εt p , 0) are presented in figures
8 and 9, respectively.
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Fig. 8. Residual stresses in the cross sections (fig. 5), without and
with considering transformation plasticity

Fig. 9. Plastic strains after hardening, with and without considering
transformation plasticity

4.2. Example 2

The axisimmetrical object with the following size
φ30 mm with mouth φ10 mm, made of carbon tool steel
C80U. The control region (Euler coordinates) is assump-
tion equal 100 mm. The locations of source, zone inten-

sity cooling and boundary conditions, for conductivity
equations (2.1), presented figure 10.

Fig. 10. Scheme of the considered system (example 2)

The heating executed by volumetric source (simu-
lations inductive heating) operate on length 10 mm to
depth 1.5 mm. To assume that is depth and harden-
ing superficial. The cooling executed by flux to result
from difference of temperature between side surface and
medium of cooling (condition Newton) (fig. 10). The ini-
tial temperature of hardened model and cooling medium
amount 300 K. The thermophysical coefficient accruing
in conductivity equations assumed same heavy how in
example 1. The solutions investigated for rate of travel
v=36 m/h. Power of heating source, to assure maximal
of temperature on surface ≈ 1500 K (Fig. 11), equal 4.1
kW. Average density of power equal ≈ 3 [W/mm3].

The calculations investigate in series system, i.e.
the heating simulations to follow to moments of estab-
lished temperature distributions in control region, and
after calculation phase fractions, thermal and structural
strains, and then stresses, plastic strains and transforma-
tions plasticity.

Because the geometry oh hardened elements is ax-
isymmetrical, to move object in model of mechanical
phenomenon of equilibrium equations (3.1), expressed
in polar coordinates, reduced to one equations. Prob-
lem 1D is solving. To assumed strain plane state, but to
modify to, so that obtain reset resultant of force normal
(N |Γ = 0) in cross-section (Γ). This condition obtain in
interactions process to assure conditions [7,11]:

R∫
0

σ̇zrdr = 0,

R∫
0

σzrdr= 0 (4.1)
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After to use constitutive equations on axial stresses
(σ̇z) [1,7,14]

σ̇z = (2µ + λ)ε̇e
z + λ(ε̇

e
r
+ ε̇e
θ) + 2µ̇εe

z
+ λ̇ee, ee = εe

r + ε
e
θ+ε

e
z (4.2)

to obtain the formula on average rate of total axial strain:

ε̇z =

− ∫
r
λ(ε̇e

r + ε̇
e
θ)rdr − ∫

r

(
2µ̇εe

z + λ̇e
e
)
rdr +

∫
r

(2µ + λ)
(
ε̇

p
z + ε̇

T ph
z + ε̇

t p
z

)
rdr

∫
r

(2µ + λ)rdr
(4.3)

where λ = λ(E, v) µ = µ(E, v) are constants Lamé [1,14].
The assumption in stress model modified plane state

of strain established, that in freely selected disc about
differentiable thickness “δ” (see Fig. 10), it can be as-

sumed the loss of deformations of its lateral surface, for
the reason of thermal load asymmetrical.

The results of numerical simulations presented in
turn figures.

Fig. 11. Temperature distributions on the side surface of the hardening element

Fig. 12. Temperature distribution in the cross-section of the hardened element
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Fig. 13. Hardened zone

Fig. 14. Kinetic of austenite decay and martensite formation in the superficial point

Fig. 15. Residual stresses after hardening, with and without considering transformation plasticity
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Fig. 16. Plastic strains after hardening, with and without considering transformation plasticity

5. Conclusions

After deep hardening (example 1) the hardened zone
is diversified. The mixture of bainite, martensite and
pearlite occurs (fig. 6). However nearby the frontal sur-
faces bainite, martensite and retained austenite occurs.
The martensite fraction in frontal layer is very high
(∼90%) (figs 6 and 7). The internal stress distributions
are advantageous (fig. 8). Depositions of negative cir-
cumferential and axial stresses is superficial, but deep
enough (fig. 8). The meaningful influence on results of
calculations of transformations plasticity is observed. It
means that in the model taking into consideration the
phenomenon of transformation plasticity is not to omit.
The results of stress and strain simulations, after such
hardening, with and without taking into account trans-
formations plasticity are significantly different (figs. 8
and 9). There is still the problem of reliability of the
results, but it could be confirmed with very expensive
experiments only.

The plastic strains are in all volume of hardened ele-
ment, but the obtained distributions are more convincing
after taken into account transformations plasticity. The
larger strains are in superficial external layer, and not
inversely (fig. 9).

Analysing the results obtained in example 2, it was
found that in case of feed hardening of element made
of tool steel the hardened zone after complex thermal
load is comparable to results obtained in the process
of inductive hardening [1,14]. The hardened zone with
very large martensite fractions is not deep (figs. 13 and
14). The obtaining such hardened zone is the result of
suitable thermal load and cooling (figs. 11 and 12). The
distributions of stresses after such hardening are advan-
tageous too (compression in surface layer). They are the
most different on the limit of hardened zone (fig. 15) in

comparison to stress distributions obtained in example
1. The influence on results of transformations plastici-
ty simulation is also observed (figs. 15 and 16) and is
smaller than in case of deep hardening (comp. figs 15,
16 and 8, 9).

The presented model of phase fractions calculations
in cooling process could by used to simulations of hard-
ening elements made of tool steel C80U, C90U and
C100U, because the diagrams CCT for this steel, in
terms of shape are similar [18].
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