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METHODS OF DETERMINATION OF MAXIMUM AMPLITUDES IN THE TRANSIENT RESONANCE OF VIBRATORY
MACHINES

METODY WYZNACZANIA AMPLITUD MAKSYMALNYCH MASZYN WIBRACYJNYCH W REZONANSIE
PRZEJŚCIOWYM

The development of methods of the determination of maximum amplitudes in a transient resonance of over-resonance
vibratory machines and vibroinsulating systems is presented in the hereby paper.

The classic approach as well as the modern investigations of these problems are discussed and the estimation of
their practical suitability – on the basis of the authors own investigations – is performed.

A uselessness – in practical applications – of methods based on the rotor angular velocity assumed in advance
was indicated in the paper. It was also pointed out, that during the transient resonance of vibratory machines with a
drive utilizing the self-synchronisation effect, a disphasing of vibrators occurs, which is related to the character change
of the excitation forces and challenges the assumed in references models of this effect.

Keywords:

W pracy przedstawiono rozwój metod wyznaczania amplitud maksymalnych w rezonansie przejściowym nadrezo-
nansowych maszyn o ruchu drgającym i układów wibroizolacji.

Omówiono zarówno podejście klasyczne jak i najnowsze badania w tym zakresie i dokonano oceny przydatności
praktycznej poszczególnych rodzajów metod opierając się na oryginalnych badaniach autorów.

W szczególności w pracy wskazano na nieprzydatność w praktyce metod opartych na założonym z góry przebiegu
prędkości kątowej wirnika. Wykazano również, że w trakcie rezonansu przejściowego maszyn wibracyjnych o napędzie
z wykorzystaniem zjawiska samosynchronizacji, zachodzi rozfazowanie wibratorów, co wiąże się ze zmianą charakteru
sił wymuszających i podważa przyjmowane w literaturze modele tego zjawiska.

1. Introduction

Vibratory machines applied in metallurgical in-
dustry, for a classification of loose materials (vibra-
tory screens), short-distance transport of hot mate-
rials (vibratory conveyers), crushing operations or
loose materials compaction etc., constitute often
problems due to high values of maximum ampli-
tudes during start-up and rundown operations, which
can be exceeding, by several dozen times, the work-
ing amplitudes values. This results from the fact, that
over-resonance machines (the most commonly used)
are excited to resonance vibrations at their start-up
and rundown since at that time the vibrator rotations
frequency passes through the natural frequency of
machine on its system of elastic suspension. Such
situation can cause loosing of feed, collisions with
machines cooperating at the same technological line,
or an excessive load on a floor or frame of building
or supporting structures on which they are installed.

On account of the problem significance, it was
analysed many times in references and in effect there
are several calculation formulas or nomograms for
the determination of maximum amplitudes in the
transient resonance. However, these methods pro-
vide various results, and in the most disadvantageous
case (it means for a free rundown of a machine)
usually very different from the actual values [2].

Currently known estimation methods of maxi-
mum amplitudes in transient states of vibratory ma-
chines can be divided into some categories due to
the assumed model and the applied determination
method.
a) Methods based on the harmonic oscillator model

of the excitation performed by the a priori giv-
en quasi harmonic force of a linearly variable
frequency and a constant or variable amplitude;

b) Methods of energy balance;
c) Nomogram methods based on numerical calcu-
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lations of machine motion equations of a recti-
linear or circular trajectory;

d) Simulation methods for systems of several de-
grees of freedom.

2. Methods based on the harmonic oscillator
model

Historically, the first solution of the transient
resonance problem was obtained by F. Lewis in 1932
[7]. He analysed the system shown in Figure 1, at
the excitation by a quasi harmonic force of a lin-
early variable angular velocity ω(t) and a constant
amplitude P.

P(t)

Fig. 1. Calculation model

He solved the equation of motion:

Mẍ + bẋ + kx = P sin(ϕ0 + ω0t ± ε · t
2

2
) (1)

for the case of start-up (+) and rundown (-) by the
impulse transfer function method, obtaining the so-
lution envelope and determining the maximum value
of the vibration amplitude.

The solution of the problem, being nearer to
practice, when the amplitude of the exciting force is
not constant, but proportional to the rotational ve-
locity square P = cω2(t), as in the case of machines
excited for vibrations by an unbalance of a rotor or
piston, was given by Kac [8] in 1947.

His solutions enabled the preparation of nomo-
grams (Fig. 2) for the determination of maximum
amplitudes [10], which are currently the most broad-
ly applied tools for this type of determination [15].

The presented model was analysed by other
methods also (details can be found in [5]). The paper
of R. Markert and M. Seidler [9] is quite interesting,
since they provided solution of a more general case,
enabling to take into account a tangent component
of an unbalanced rotor force of inertia.

The similar model, in respect of describing ex-
citing forces operations, but more resembling prac-
tical situations, was analysed by J. Goliński [15],

who introduced a machine body plane motion as
well as some forms of a general motion in a linear
perspective.

The problem of a transient resonance of un-
damped system in a flat motion was also analysed
by W. Bogusz [14], who uncoupled vibrations into
their main forms and applied an equivalence of a
differential equation and a relevant integral of the
Volterra equation. This allowed to estimate the am-
plitude in any time section.

Simpler dependencies for machines in a flat mo-
tion and uncoupled forms of progressive and rota-
tional vibrations, obtained without taking into ac-
count damping, are given for start-up and rundown
of vibratory machines by T. Banaszewski and W.
Turkiewicz [12, 13]. In a similar fashion as all dis-
cussed previously approaches, these authors’ solu-
tion requires the a priori determination of the vi-
brator angular velocity during passage through a
circum-resonant range. However, such determina-
tion, in practice, is only possible on the basis of the
analysis of the vibrator rotational motion under the
influence of the driving moment and the anti-torque
moment in bearings.

Fig. 2. Nomogram for the determination of the ratio of the
maximum amplitudes to the far over-resonance amplitudes

p =ε
M
k
,ξ=

b

2
√

kM
, s =

Amax

Aω=∞,ξ=0
(2)

A common feature of the described above analy-
ses is also the dependence of the maximum ampli-
tude in the transient resonance on the expected value
of angular acceleration ε of the unbalanced rotor,
constituting a source of excitation forces. For weak-
ly damped systems this dependence corresponds, in
approximation, to formula:

Amax ≈ a
1√
ε

(3)

where: a – constant value.

Drawbacks of these group of methods.
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It was shown in reference [2], that all those
methods demonstrate a systematic error, which can
be equal to 300% and even higher percentage for a
free rundown. The fundamental cause of such errors
constitute – according to [2] – an incorrect estima-
tion of the angular acceleration on the grounds of
the driving and anti-torque moments acting on the
unbalanced rotor. Actually this rotor motion depends
mainly on - intensifying in resonance – machine
vibrations, which are the source of an additional
moment (the so-called vibratory moment Mv [1])
influencing the rotor.

In order to explain this effect, the model – in
which instead of the a priori applied exciting force
the physical way of generating this force in unbal-
anced vibratory machines is taken into account –
will be considered (Fig. 3).

Fig. 3. Model of the system

where: M – mass of a machine body,
m, e – mass and eccentric of an unbalanced

rotor, respectively,
Mel – moment acting on a rotor from the side

of a driving motor,
k, b – constants of elasticity and damping of the

machine supporting system, respectively,
Mo – resistance to motion moment.
Dynamics of this system is determined by equa-

tions (4):

(M + m)ẍ + bẋ + kx = ϕ̇2me sin ϕ − ϕ̈me cosϕ (4a)

Jϕ̈ = Mel − Mo − ẍme cosϕ (4b)

where: expression −ẍme cosϕ – describes the vibra-
tory moment,

J – moment of inertia of a vibrator together with
engine, calculated versus the axis of rotation,

An example of the time-history of the unbal-
anced mass angular velocity determined for the free
rundown is shown in Figure 4:

a) When the vibratory moment was omitted,
b) When the machine vibration influence on the

angular motion of the rotor was taken into account.

Fig. 4. Vibratory moment influence on the angular motion of
the unbalanced rotor during the free rundown

As can be clearly seen, coupling in between
body vibrations and the rotational motion of the ro-
tor causes in a circum-resonant zone a sudden col-
lapse of the rotor angular velocity, which can not be
taken into account by methods based on the model
of the system with one degree of freedom. This col-
lapse is decisive for the transient resonance and the
obtained amplitudes.

3. Methods of energy balance

First works taking into consideration the vibra-
tory moment influence were based on the energy
balance of the system directly before the resonance
and in the moment of upmost vibrations appearance,
obtaining ’top estimations’ of maximum amplitudes.
Thus, e.g. in papers [2, 3] the kinetic energy of the
vibrators set in the moment of entering the reso-
nance zone of the ith form of vibrations was com-
pared with the machine vibration energy, which was
vibrating in accordance with this form of vibrations.
In a general case this leads to equation:

n · 1
2
Jzrω

2
0i =

1
2
q̇T

max i ·M · q̇max i (5)

where: n – number of identical, synchronous driving
systems,

Jzr – moment of inertia of an unbalanced vibra-
tor reduced on an engine shaft,

ω0i – angular velocity, at which an exchange
of energy occurs (in general, only in a small range
different from the ith frequency of natural vibrations
of a machine body on an elastic suspension system),

q = colxs, ys, zs, ϕx, ϕy, ϕz – coordinates vector
in the central co-ordinate system describing small
body vibrations versus a static equilibrium position,

M – inertia matrix
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M =



mΣ 0 0 0 0 0
mΣ 0 0 0 0

mΣ 0 0 0
Jxx −Jxy −Jxz

sym. Jyy −Jyz

Jzz



(6)

mΣ – mass of a body with vibrators,
Ji j – relevant elements of tensor of inertia in

the central system Sxyz.
This allowed to obtain the formula for the max-

imum amplitude of the kth coordinate during the
system passage through resonance with the ith
frequency of natural vibrations:

qmax ki =

√
n · Jzr

aT
ki ·M · aki

(7)

where: aki – normalized, in consideration of the kth

coordinate, modal vector of the ith vibration form.
In special cases, formula (7) leads to simple

equations of maximum amplitudes [2], such as e.g.
for the system shown in Figure 3:

Amax =

√
Jzr

M + m
(8)

The energy balance was also applied in paper
[11], however, the vibrator kinetic energy was not
compared to the body kinetic energy but to the max-
imum potential energy of the suspension system.

The problem, in this type of energy method,
constitutes the necessity of the determination of the
vibrator angular velocity, at which an exchange of
energy occurs, while this velocity does not comply
directly with the natural vibrations frequency of the
system [15] and the method does not explain how it
can be determined.

Drawbacks of energy methods
Energy methods can be successfully applied for

various structural schemes of machines. However,
they provide ’top estimation’ of real values, which
can – in special cases – lead to over-estimating of
the real values of the machine vibrations amplitudes
in the transient resonance.

4. Nomogram methods based on numerical
solutions of equations of machine motion of

rectilinear or circular trajectory

G. Cieplok [5] considered the transient reso-
nance for the symmetric system shown in Figure 5.

On the bases of the transformation of equations
of symmetric machine motion into the coordinate

system rotating with the velocity of unbalanced mass
it was possible to define the relative units and to
decrease two times the number of parameters de-
scribing the system motion.

Fig. 5. Vibratory machine model

Thus, the set of six physical parameters
mc,me, J zr, Mel, k, b needed for presenting the ma-
chine dynamics in natural coordinates was reduced
to three parameters σ, q, γ when the relative pa-
rameters were applied:

σ =
m2e2

(mk + m)Jzr
(9)

q =
Mel

Jzr

1
ω2

0

(10)

γ =
b

2
√

(mk + m)k
(11)

where: mc = mk + m – total mass,
mk – mass of the machine body,
me – static unbalance of the unbalanced mass

m,
Jzr – moment of inertia of the driving system

and the unbalanced mass, reduced on the vibrator
shaft of the unbalanced mass

k – coefficient of elasticity of the machine sup-
port,

b – coefficient of the viscositic damping of the
machine support,

Mel – driving moment of the constant value.

ωo =

√
k

mk + m
(12)

Forms of equation obtained in the new notation
allow for the clear graphical presentation of a large
number of numerical solutions of the system motion
equations. The nomogram obtained in such way for
the rundown phase is presented in Figure 6.

There is also a possibility of adaptation the
nomogram for the machine of a lineary trajectory
of the body motion. In this case it is enough to use
– at reading the nomogram – two times lower value
of parameter σ than it results from the formula (9).
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Fig. 6. Coefficient of the amplitude multiplication of the ma-
chine body vibration at vibrator rundown, α = Amax

me/mc

Drawbacks of the method
In cases when the analysed real system corre-

sponds to one of the two schemes, assumed in this
method (a symmetric machine – Fig.5, or a machine
of a rectilinear motion – Fig.3), this method provides
accurate estimations both for the start-up and run-
down as well as in the expanded version [16] where
it is possible to take also into account the resistance
to motion during rundowns.

However, there are two causes limiting the range
and accuracy of this method:
1◦ Real objects of a flat motion usually do not com-
ply with the scheme shown in Fig. 5, since they
have different elastic constants in x and y direction.
The numerical experiments indicate that the system
motion is highly sensitive to the diversification of
these constants and due to this – the model of a
symmetric machine is not suitable.
2◦ In cases of machines of a rectilinear trajectory,
the excitation rectilinearly oriented is obtained by

the application of two counter running inertial vi-
brators, which achieve the proper cophasal on the
grounds of a free synchronization [1].

As it was pointed out in paper [3], the cophasal
running ceases to be stable at the rundown when
the oscillatory vibrations frequency of the body is
exceeded. Since, as can be proofed, this frequency is
– in the real systems – the highest, vibrators have a
tendency to disphasal when entering the resonance
range of translatory motions. Thus the scheme of
the system is fundamentally changed in relation to
the one assumed in the discussed method.

The above problem will be investigated below
by the numerical simulation method.

5. Numerical simulation method

In order to indicate that the effect of changing
the exciting force character – in the circum-resonant
zone – occurs in the real systems the vibratory ma-
chine with two vibrators will be discussed (Fig.7).
This scheme corresponds to several over-resonance
vibratory machines such as screens and conveyers,
self-discharge grating shake-out machines etc.

The mathematical model of the system, which
will be applied for the numerical simulation of the
machine motion, is presented in paper [4].

On the grounds of this model the transient res-
onance course, including time history, will be inves-
tigated:

a) body displacement in the direction of work-
ing vibrations µ,

b) body displacement in the direction ν perpen-
dicular to µ,

c) body angular oscillations α,

Fig. 7. Calculation model of the over-resonance two-vibrator vibratory machine with loose feed
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d) Angle of a mutual dissynchronising of vibra-
tors ϕ1 − ϕ2 during the free coasting.
Simulations were performed in the following vari-
ants:
A.Courses obtained when analysing the machine
motion without taking into account the feed influ-
ence and without the gravity forces influence on un-
balanced masses are presented in Figures 8, 9.

Diagrams showing body angular oscillations α,
without taking into account the influence of feed
and the gravity forces and angle of a mutual dis-
synchronising of vibrators ϕ1 − ϕ2, without taking
into account the influence of feed and the gravity
forces are not included, since these values – during
the simulation – are at the zero level, in a similar
fashion as displacement in the ν direction (Fig. 9).

Fig. 8. Body displacement in the direction of working vibrations µ, without taking into account the influence of feed and the gravity
forces

Fig. 9. Body displacement in the direction ν perpendicular to µ, without taking into account the influence of feed and the gravity
forces
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B.Courses obtained when analysing the machine
motion without taking into account the feed influ-
ence but with taking into consideration the gravity

forces influence on unbalanced vibrators masses are
presented in Figures 10, 11, 12 and 13.

Fig. 10. Body displacement in the direction of working vibrations µ, without taking into account the influence of feed but with taking
into account the gravity forces

Fig. 11. Body displacement in the direction ν perpendicular to µ, without taking into account the influence of feed but with taking
into account the gravity forces
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Fig. 12. Body angular oscillations α, without taking into account the influence of feed but with taking into account the gravity forces

Fig. 13. Angle of a mutual dissynchronising of vibrators ϕ1 − ϕ2, without taking into account the influence of feed but with taking
into account the gravity forces

C.The same courses – as above – for the ma-
chine loaded with feed of a mass being 0.5 of a body
mass and with taking into account the gravity forces

of unbalanced masses are shown in Figures 14, 15,
16 and 17.
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Fig. 14. Body displacement in the direction of working vibrations µ, when taking into account the influence of feed and the gravity
forces

Fig. 15. Body displacement in the direction ν perpendicular to µ, when taking into account the influence of feed and the gravity forces
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Fig. 16. Body angular oscillations α, when taking into account the influence of feed and the gravity forces

Fig. 17. Angle of a mutual dissynchronising of vibrators ϕ1−ϕ2, when taking into account the influence of feed and the gravity forces

The analysis of the enclosed results of simu-
lation investigations leads to the following conclu-
sions:
1◦ In the case of a total symmetry of driving sys-
tems and when there are no disturbances caused by
the different influence of feed and the gravity forces
on both vibrators, the machine in the transient res-
onance behaves in accordance with the model as-
sumed in paper [5], which allows to obtain the ac-

curate results on the bases of nomograms included
in this elaboration.
2◦ In real cases, when such factors as gravitation, in-
fluence of feed and the diversification of anti-torques
of both driving systems, cause a certain asymmetry
of the system, vibrators are loosing synchronization
as was of their cophasal configuration, expected in
paper [3]. This decreases amplitudes in the transient
resonance in the direction of working vibrations and
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causes the appearance of intensive resonance rota-
tional vibrations of the machine as well as vibra-
tions in the direction perpendicular to the working
motion.
3◦ The method described in paragraph 4 can be
recommended, for the determination of maximum
amplitudes in the transient resonance, for the re-
al systems corresponding with the schemes shown
in Fig. 3 and 5. For systems with more degrees of
freedom or driven by two or more vibrators operat-
ing on the basis of self-synchronisation, estimation
of amplitudes at circum-resonant various vibration
forms can be obtained on the grounds of energy
dependencies (as described in paragraph 3).
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