
Arch. Metall. Mater. 63 (2018), 3, 1109-1113

DOI: 10.24425/123783

M. BRAMOWICZ*, S. KULESZA**, T. CHROSTEK*, C. SENDEROWSKI*#

APPLICATION OF FRACTAL ANALYSIS METHODS FOR LIFT HEIGHT OPTIMIZATION 
IN MAGNETIC FORCE MICROSCOPY MEASUREMENTS

The paper presents results of a research on simulation of magnetic tip-surface interaction as a function of the lift height in the 
magnetic force microscopy. As expected, magnetic signal monotonically decays with increasing lift height, but the question arises, 
whether or not optimal lift height eventually exists. To estimate such a lift height simple procedure is proposed in the paper based 
on the minimization of the fractal dimension of the averaged profile of the MFM signal. In this case, the fractal dimension serves 
as a measure of distortion of a pure tip-surface magnetic coupling by various side effects, e.g. thermal noise and contribution of 
topographic features. Obtained simulation results apparently agree with experimental data.
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1. Introduction

Scanning Probe Microscopy (SPM) is a powerful surface 
characterization tool on the atomic level for a wide range of 
natural and engineering materials. It is sensitive to a large variety 
of interactions occurring between the scanning tip and the probed 
surface maintained at a distance from 10 pm to 1 mm. Apart 
from 3-dimensional topographical maps, SPM images can also 
contain spatially resolved information on physical properties of 
the surface, for example: friction coefficient, adhesion forces, 
reduced Young’s modulus, spontaneously magnetized domains 
etc. Obtained data in the form of 2-dimensional matrices are fur-
ther processed numerically to investigate geometrical, statistical 
and functional properties of the surface. Since the early 1990’s, 
extended numerical analysis based on correlation and fractal 
methods has gained increasing attention [1], although so far it 
is still mainly used for description of topographical features of 
the surface of various materials: from engineering to medical 
ones [2,3]. It might be interesting to extend this technique into 
studies on magnetic domains and stray magnetic fields, spatial 
modifications of the friction coefficient, adhesion forces etc.

Fractal analyses of images of magnetic interactions were 
firstly attempted in the studies of the Barkhausen noise observed 
in silicon steel sheets [4], and in the multiscale analysis of the do-
main walls in the Pt/Co/Pt trilayer systems obtained using polar 
Kerr microscopy [5]. Our previous works in this field involved 
fractal characterization of the magnetic domains in maraging 
steel samples [6], largely extended into fractal studies of the de-
cay of the magnetic stray field [7]. Magnetic stray field turned out 

to decay very slowly with increasing tip-surface separation (lift 
height), and could be extracted from the background noise even 
up to 1 mm from the surface. At very low lift heights, however, 
topographic features of the surface were found to emerge from 
magnetic interactions. This naturally raised the question about 
optimal settings for the lift height, and eventual procedure of 
its estimation. In the following paragraphs a simple method is 
proposed that relies on calculations of the fractal dimension of 
the maps of magnetic interactions recorded at various lift heights.

2. Methods

Fractal analysis can be carried out using, for example, 
structure function, autocorrelation function, roughness data, 
and the cube-count method, which were compared in details 
in previous work [8]. Here, the three-step method is employed 
that involves: (1) calculation of the autocorrelation function 
(ACF) R(t), (2) calculation of the structure function (SF) S(t), 
(3) estimation of the fractal parameters F (fractal dimension), 
and K (quasi-topothesy).

Assume a 2-dimensional MFM data matrix containing phase 
shifts φ between the tip oscillation and its driving piezo signal. 
The profile ACF is an averaged sum of terms each of which is 
the product of the entries with their delayed counterparts:
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where: τ – denotes the discrete spatial lag between matrix en-
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tries, φz – is the averaged phase shift, while N – is the number 
of profile samples. Now, the profile structure function S(t) can 
be computed according to [9]:

 22 1S R   (2)

where: σ – is the root-mean-square of the MFM signal. Within 
the limit of the self-similar behavior, any profile of the structure 
function is assumed to obey the scaling law:

 2 1 2 2D DS   (3)

where D – is  the profile fractal dimension, while Λ – is the to-
pothesy. Fractal parameters can then be estimated from a log-log 
plot of the above structure function vs. separation length. For 
more or less isotropic surfaces, their areal fractal dimension DA 
is simply profile fractal dimension D plus one. Unfortunately, 
the topothesy often turns out to be smaller than the instrumental 
resolution, and even goes below the atomic scale lengths, hence 
it is replaced with the K parameter referred to as the pseudo-
topothesy defined as [10]:
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where: G – is a scale-dependent constant, while Γ – is the Euler’s 
function. In such a case, the structure function is given as:

 2(2 )DS K   (5)

Similar to Eq. (3), f ractal parameters can be estimated from 
a log-log plot of the structure function vs. separation length.

3. Model of a noisy MFM signal

Suppose we have a sample containing a series of parallel 
stripe domains as in, for example, amorphous magnetic materi-
als (Fig. 1). Upon scanning with magnetized tip, sinusoid-like 
phase shift signal is produced, the period of which corresponds 
to the domain widths.

 
Fig. 1. Schematic picture of stripe domains probed by the magnetized 
tip. Sinusoid profiles above the surface correspond to phase deviation 
of the main signal from the driving piezo due to magnetic tip-surface 
interactions in the presence of stripe domains.

Fig. 2. Simulated maps of phase shifts of pure magnetic signal (a), and 
a signal with strong background noise (b)

The signal amplitude obviously depends on the tip-sample 
distance due to varying overlap between the tip coating and 
magnetic stray field. At small lift heights, however, the tip can 
be interfered by non-magnetic residual forces (for example: 
electrostatic, capillary etc.), the effect of which is enhanced 
by the inevitable horizontal drift of the piezoelectric scanner. 
Magnetic interactions are usually imaged using the two-pass 
method that involves completion of the topography profile in 
the first scan, and then mapping magnetic forces tracking the 
tip along the recorded surface profile (i.e. maintaining constant 
tip-surface distance). Such a procedure is believed to separate 
short-range non-magnetic Van der Waals forces from long-
range magnetic forces as if the surface were flat. Unfortunately, 
unavoidable thermal drift shifts the scanner with respect to the 
stored profile, which results in increasing contribution of the 
surface topography to the recorded phase shift. On the other 
hand, the tip also suffers from thermal noise so that at larger 
lift heights main magnetic signal vanishes being replaced by its 
white-noise counterpart.

Obtaining an exact equation that describes observed phase 
shifts of the MFM signal as a function of the lift height including 
the effects of thermal noise, drift of the piezo driver, quality fac-
tor and others, is a very difficult task, and therefore we propose 
a simple model. Assuming that the material is made of parallel 
stripe domains, in-plane components of the stray magnetic field 
are governed by sinus-like functions, whereas the normal compo-
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nent vanishes exponentially. This periodic signal corresponds to 
a fundamental domain period, which is additionally modulated by 
a high- frequency component corresponding to the thermal noise 
(initially set at 2 per cent of the amplitude of the main signal). 
According to Kong et al. [11], gradient of the stray magnetic field 
influences the phase shift between driven and actual tip oscil-
lations. Maps and profiles of these two components are shown 
in Fig. 2. It was noted that the topographic contribution to the 
MFM signal, which is seen at small lift heights, is not included 
in the presented model.

4. Results and discussion

In our previous paper [7], results of fractal analysis of the 
magnetic domains recorded at various lift heights (i.e. the tip-
sample distances) were reported. Fig. 3 schematically depicts 
most important results presented therein.

MFM images were recorded using MESP probe (Bruker) 
with the tip curvature radius about 35 nm, and the coercivity 
400 Oe. The scan length was 20 m2 with 256 equidistant sam-
ples along each scan axis. The wear resistant martensitic steel 
(XAR400) was cut off and taken as a sample.

As seen in Fig. 3a, the plot of fractal dimension vs. lift 
height is a curve bent downward, approaching its minimum 
value Dmin at the lift height h0. What is even more surprising, 
the profile fractal dimension falls at h0 = 350 nm below one 
(Dmin = 0,966) despite the fact that it should remain somewhere 
between 1 < D < 2 according to previous statements [10]. Re-
maining curves behave in a quite different manner since none 
of them exhibits any extreme. Fig. 3b shows that the plot of the 
pseudo-topothesy exponentially decreases with increasing lift 
height, whereas Fig. 3c actually exhibits the opposite trend of 
the correlation length.

Having experimental data, Fig. 4 presents results of the 
fractal analysis of simulated MFM signal plotted as a function of 
the lift height. In order to find out whether or not the lift height 
itself affects the estimation process, a comparison between noisy 
and noise-free signals is made. Fig. 4a shows that the fractal 
dimension computed from a noisy signal exponentially increases 
with increasing lift height from Dmin = D(h0) up to around 1.53, 
which establishes asymptotic limit of the fractal dimension for 
a pure pseudo-noise. This agrees very well with experimental 
data shown schematically in the right-hand side in Fig. 3a, that 
is in the range h > h0. Without the noise, however, the signal 
remains constant at Dmin approximately equal to 0.93, which 
means that changes in D observed previously are indeed caused 
by increasing contribution of the pseudo-noise to the overall 
MFM signal. Similar behavior can be observed looking at the 
plot of the correlation length. Open dots in Fig. 4c corresponding 
to a noisy signal follow a curve that exponentially increases with 
increasing lift height in agreement with data in Fig. 3c. On the 
other hand, open triangles corresponding to a noise-free signal 
form an almost flat line, exhibiting significant influence of the 
pseudo-noise on final estimations.

Fig. 3. Schematic plots of changes in fractal parameters, respectively: 
profile fractal dimension, pseudo-topothesy, and correlation length, 
versus lift heights (source data published in [7])
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Unfortunately, calculations of the pseudo-topothesy seen 
in Fig. 3b confirm these findings only in part. As before, results 
for the noisy signal are in accordance with experimental data in 
Fig. 3b, that is they asymptotically decrease upon increasing lift 
height. However, pseudo-topothesy of a noisy signal is actually 
identical to that of a noise-free signal. According to Eq. (5), the 
topothesy is a scaling factor that defines the intercept in a log-
log plot of the structure function vs. separation length. Then, it 
should characterize the variability in data series in a way that 
neither depends on the signal magnification nor describes any 
spatial organization. Hence, simulated MFM signals composed 
of several sinusoids of different periods cannot be separated 
using the topothesy itself.

According to the statements given in the preceding para-
graph, despite the fact that the model does not cover changes in 
the MFM signal occurring at small lift heights (h < h0), the tip 
oscillations in this range are likely to deviate due to non-magnetic 
short-range forces such as Van der Waals ones. However, these 
interactions gradually become weaker with the lift height increas-
ing up to h0, where it evens with a bunch of long-range forces 
(magnetic, capillary etc.) Further increase in the lift height results 
in raising contribution of the thermal noise.

Results discussed above allow us to propose a simple and 
efficient procedure for optimizing lift height settings in the MFM 
measurements, which relies on recording MFM maps at several 
different lift heights h1 < h2 < … < hk, followed by an estimation 
of their fractal dimension D(h) using the autocorrelation method. 
Note, however, that various relations between obtained pairs 
(hk, Dk) are possible, hence approximation of h0 requires further 
numerical processing. Simplest algorithm assumes parabolic 
dependence of the fractal dimension D on the lift height h:

 D(h) = a + b · h + c · h2 (6)

where: a, b, and c are unknown coefficients of the least-squares 
parabola. To find these coefficients, only three MFM measure-
ments at three different lift heights (h1 < h2 < h3) are required, 
which ends up in three fractal dimensions D1, D2, and D3, 
respectively. Coefficients of the best fitting curve D(h) can be 
obtained by solving a set of linear equations in a matrix form:
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Providing that given lift heights are different (h1 ≠ h2 ≠ h3), 
this system has unique solution. Optimum lift height h0 cor-
responds to the x-coordinate of the vertex, hence it is given by 
the equation:
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Fig. 4. Changes in fractal parameters of the simulated MFM signal as 
a function of the lift height of the scanning probe
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In such a case, optimum lift height can be expressed ex-
plicitly as follows:
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Obtained result allows us to scan the MFM signal at 
a height, which is a compromise between inevitable drift of the 
scanner and thermal noise.

5. Conclusions

Summarizing, the main point of this paper concerns the 
problem of estimation of optimal lift height settings in a two-pass 
MFM scanning mode. Presented simulation results agree well 
with experimental data published elsewhere [7] that confirms the 
usability of proposed rough model of the MFM signal.

Performed simulations proved that probing noise-free mag-
netic signal at various lift heights neither affects the fractal di-
mension nor correlation length, but exerts strong influence on the 
pseudo-topothesy. Observed decay in the latter upon increasing 
lift height casts some light into vanishing long-range magnetic 
interaction between the tip of a scanning probe and magnetic 
stray field. On the other hand, fractal analysis of noisy signals 
exhibited quasi-parabolic dependence of the fractal dimension, 
and monotonic although opposite trends in the pseudo-topothesy 
and correlation length as a function of the lift height.

Observed minimum fractal dimension, which temporarily 
fell below 1, that is below lower limit for a profile, drawn our 
special attention. Most likely explanation for that laid in una-
ware peculiarity of the method used for estimation of the fractal 
dimension, though, numerical accuracy appeared to have no 
influence on the procedure of estimation of optimal lift height 
proposed in this paper.

Further investigation will be driven towards expansion of 
the presented model of the MFM signal into the effect of short-
range forces and explain observed changes in fractal properties 
covering the whole range of possible lift heights.
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