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DEVELOPMENT OF AN APPROXIMATION MODEL OF SELECTED PROPERTIES OF MODEL MATERIALS USED 
FOR SIMULATIONS OF BULK METAL PLASTIC FORMING PROCESSES USING INDUCTION OF DECISION TREES

The article discusses the development of an approximation model of selected plastic and mechanical properties obtained 
from compression tests of model materials used in physical modeling. The use of physical modeling with the use of soft model 
materials such as a synthetic wax branch with various modifiers is a popular tool used as an alternative or verification of numerical 
modeling of bulk metal forming processes. In order to develop an algorithm to facilitate the choice of material model to simulate 
the behavior of real-metallic materials used in industrial production processes the induction of decision trees was used. First of all, 
the Statistica program was used for data mining, which made it possible to determine / find the relationship between the percentage 
of particular constituents of the model material (base material and modifiers) and yield strength, critical and maximum strain, and 
provide the opportunity to indicate the most important variables determining the shape of the stress – strain curve. Next, using the 
induction of decision trees, an approximation model was developed, which allowed to create an algorithm facilitating the selection 
of individual modifying components. The last stage of the research was verification of the correctness of the developed algorithm. 
The obtained research results indicate the possibility of using decision tree induction to approximate selected properties of modeling 
materials simulating the behavior of real materials, thus eliminating the need for costly and time-consuming experiments carried 
out on metallic material.
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1. Introduction 

A proper elaboration of an industrial metal forming process 
requires that numerous tests and trials on the actual material 
should be performed, which is connected with enormous costs as 
well as a big investment of time. The most important designing 
stage is the final verification of the elaborated metal forming 
process performed on the actual material. 

At present, there is a search for methods which, on the one 
hand, would facilitate the designing of metal forming processes 
and, on the other hand, would eliminate the experiment on the 
actual material as a verification tool [20,30]. The search is being 
conducted in two main directions. One, based on mathematical 
methods as well as new calculation techniques, makes it pos-
sible to construct mathematical models of various metal forming 
processes and phenomena occurring in the deformed material. 
Here, one should mention numerical modelling based on FEM, 
etc. [2,19,20,25,32], as well as a whole spectrum of IT tools 
[2,21,18,32]. The popularity of numerical modelling in the analy-
sis and design of industrial processes results, on the one hand, 
from the increasing availability of computers with high comput-
ing powers, and, on the other hand, from the increasingly simple 
use of programs applying such numerical methods. Despite the 

unquestionable usability and the inevitable implementation of 
numerical modelling in the analysis and design of processes, 
one should remember both the potential and the limitations of 
this method. In turn, the modern IT technologies constantly 
provide new methods and tools making it possible to partially 
replace the costly and time-consuming material experiments 
with a virtual one. Also, more and more new formalisms of 
knowledge representation in computer systems are being created 
and developed, e.g. graph theory, fuzzy logic, artificial neural 
networks, regression trees and genetic algorithms, thus making 
it possible to construct expert systems supporting various areas 
of human activity [28,33]. The basic limitation of a direct use 
of techniques based on mathematical methods in the designing 
process is the lack of certainty that the obtained results are cor-
rect. This uncertainty can be caused by improper assumptions, 
an inappropriate model or calculation errors, which make the 
obtained results more or less correct. Despite the fact that nu-
merical modelling and IT tools significantly reduce the role and 
scope of the experiment on the actual material, it is the stage 
which remains the most expensive and time-consuming in the 
whole designing process [3,26].

As it turns out, an alternative for numerical modelling and 
IT tool verification can be physical modelling methods, with the 
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use of soft modelling materials (based on plasticine and synthetic 
waxes with modifiers), which are much cheaper and faster, 
constituting another direction in the development of methods 
supporting the analysis and design of metal forming processes. 
This method can be an independent tool in the design and 
analysis of metal forming, which considers both the shape and 
properties of the ready product, or it can work in combination 
with numerical modelling, providing it with the necessary infor-
mation on the behaviour of the deformed material, the boundary 
conditions and the structural changes; it can also play the role 
of a verification tool [17,30]. The physical modelling methods 
make it possible to shorten the designing time and reduce the 
costs of the actual experiment, owing to the use of non-metallic 
soft modelling materials, which, through various modifier ad-
ditions, provide the possibility to obtain the characteristics of 
most metals and their alloys. For example, synthetic wax filia 
very well simulates the behaviour of lead formed at ambient 
temperature, or typical steel, e.g. C45, undergoing a hot defor-
mation process [20,34]. The literature provides a large number 
of physical modelling applications in the analysis of specific 
industrial (mainly volumetric) processes, in which compres-
sion is the dominant stress state. Non-metallic soft modelling 
materials, owing to their unique construction, have found their 
application in the simulation of forging, extrusion, pressing and 
upsetting processes [2,4,21]. In turn, it is very rarely that one 
can come across a study which discusses the tests results of 
a simulation of processes involving other states of stress. Those 
infrequent cases include: physical modelling of tube blank roll-
ing [8], longitudinal rolling of metal sheets [24], longitudinal 
rolling of sections [5] and bending thick metal sheets [21], or 
helical rolling of tubes [23]. The selection of the modelling 
material also strongly depends on the simulated phenomenon, 
while being less dependent on the measurement method. For 
example, in a simulation of cracking, paraffin wax is used as 
the modelling material, which very well reveals the surface 
micro- and macro-cracks [4,16]. In turn, when the experiment 
requires significant plastic deformations, a ductile modelling 
material should be applied [1], e.g. plasticine. By modifying 
the composition of modelling materials based on plasticine and 
synthetic wax filia (through additions of kaolin, lanolin, paraffin, 
chalk, etc.) and changing the deformation rate and temperature, 
one can obtain models of flow stress-strain curves for differ-
ent actual materials [15]. It is assumed that, if the shape of the 
work-hardening curve for the modelling material is close to the 
shape of the curve for the given metallic material, it means that 
the plastic similarity condition has been fulfilled, guarantee-
ing a proper representation of the physical modelling result in 
the industrial process. Usually, such a selection of particular 
modifying components added to the base material (plasticine, 
synthetic wax filia) has been made based on the many years 
of experience and knowledge of the researcher performing the 
studies. Despite the fact that the general rules and effect of the 
operation of particular modifiers are well-known, the available 
literature hardly provides studies on the use of even selected 
IT tools which assist in such a choice in a more standardized 

way, not based on the researcher’s experience. It turns out that, 
for the approximation of mechanical properties and thus the 
prediction of the stress-deformation curves of modelling materi-
als with modifiers, IT tools can be suitable, especially decision 
tree induction [3,10,11,14,29]. And so, conducting research and 
studies concerning the use of such type of IT tools to support 
the selection and prediction of the shape of stress-deformation 
curves seems to be fully justified.

The aim of the study is to develop an appropriate approxima-
tion model of the properties of modelling materials enabling the 
support of the decisions made in the selection of modifiers for the 
base material with the use of decision tree induction. 

This should contribute to shortening the time of modifier 
selection through time-consuming physical modelling experi-
ments. In turn, supporting the analysis of the modelling material 
properties will enable a faster and better matching of the actual 
metallic materials (steel, and its alloys, aluminum, titanium, 
etc.) with the work-hardening curves. And so, the application 
of physical modelling results will become more efficient and 
more frequently used, as a tool which is more reliable and which 
better reflects the reality than the virtual computer simulations.

1.1. Characteristics of modelling materials 

The commonly used plasticines and filia-based waxes char-
acterize in low Young modulus, high elastic deformation, high 
sensitivity to deformation and temperature and, usually, defor-
mation weakening. Such materials exhibit not only the desired 
elastic properties, but they are also suitable for the modelling of 
hot physical deformation of actual metals. The modelling of cold 
metal forming process is much more difficult. While it is already 
possible to produce materials with work hardening, they are still 
very sensitive to the deformation rate and temperature, which 
makes physical modelling difficult [21,12,13,36]. Modelling 
materials based on plasticines exhibit higher structural heteroge-
neity, and so they are used mainly in the qualitative evaluation of 
the examined processes, especially the material flow images. In 
turn, modelling material based on waxes characterize in a lower 
degree of structural heterogeneity, thus exhibiting more stable 
properties. Because of this, they are applied in tests of the force 
parameters of the analyzed processes [30,36].

The possibility to transform the physical modelling results 
into the industrial processes is determined by the preservation 
of the similarity conditions, mainly in the plastic, elastic and 
geometrical scope, as well as the thermal and dynamic friction 
conditions [30]. In practice, the selection of the modelling mate-
rial is determined by the modelled process – through the selection 
of those similarity conditions which are the most crucial from the 
perspective of the process, as ideal preservation of all the condi-
tions is impossible. In plastic processing, such a condition is the 
material’s similarity condition in the plastic scope. It is fulfilled 
when the modelling material during deformation behaves in the 
same way as the actual material. The work-hardening curve is 
a graphic representation of the material’s behaviour during de-
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formation. And so, the selection of the modelling material can 
be based on the criterion of the shape of the work-hardening 
curve, which should be as close to that of the actual material as 
possible [21,30]. A well-known plastic similarity criterion is the 
work-hardening curve model according to Hollomon [9] and the 
yield stress-deformation curve model by Alder and Phillips [7]. 
In their studies [21,35], the authors also discuss a new approach 
to the evaluation of the material’s similarity in the plastic scope, 
in which a quantitative evaluation of the matching degree of the 
shape of the flow stress-strain curves of the modelling material 
and the actual material is assumed. These papers also demon-
strate that the degree of similarity of the modelling material to 
the actual one determines the succeeding experiment results 
and the value of error of the elaborated model. In the case of 
modelling materials, in order to determine the work-hardening 
curves, the upsetting test is usually performed, while for actual 
materials, both the upsetting and tensile tests are conducted. The 
preparation of the appropriate modelling material is not difficult, 
and the literature provides information on several technologies 
of modelling material preparation. In fact, the latter are very 
similar, while requiring access to appropriate devices, usually 
found in special physical modelling laboratories [21].

Presented below are exemplary results of the use of a mod-
elling material data base for the physical modelling of operta-
tion II of extrusion in a multi-operational process of producing 
a constant velocity joint boot (CVJB). Figure 1 shows the work-
hardening curves for the base material – filia with an addition 
of paraffin and lanolin, as well as their reference to the actual 
material – steel UC1, used for CVJB forgings. Table 1 presents 
the values of coefficients t and C and the chemical composition 

of the modelling materials applied for the modelling of the 
extrusion process of a CVJB made of steel UC1, described in 
detail in the studies [34]. This new description of the condition 
of plastic similarity has been repeatedly verified and a very good 
agreement. Two parameters are used in the proposed description:
– a scale coefficient (factor)
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where:
 σi

rz – the flow stress of a “real” material at the point i 
 σi

m – the flow stress of a model material at the point i 
 k – the number of points on the flow curves of the model 

and “real” materials, for which the similarity coef-
ficient is determined.

According to such a quantitative evaluation of the matching 
degree of the shape of the yield stress-deformation curve of the 
modelling material and the actual one, the closer to 0 the value 
of coefficient t, the better matching of the modelling material to 
the actual one. In a theoretical case of an ideal matching of both 
curves, this coefficient should equal zero [21].

Based on the presented results, one can see that the low-
est similarity coefficient value t was obtained for filia, which 
means that the work-hardening curve for this material is the 
best matched to the flow curve of UC1 of all the preliminarily 
selected materials. 

Fig. 2a shows a comparison of a forging after the second op-
eration obtained from physical modelling (filia wax) and a forg-
ing from the multi-operational process of forging a CVJB (steel 
UC1). Fig. 2b presents the tools used in the physical modelling 
and the samples (preforms) made of filia (Fig. 2c). For which, on 
the surface of symmetry, straight horizontal lines of a different 

Fig. 1. Courses of yield stress in the function of deformation of selected wax mixtures and steel UC1 

TABLE 1
Values of parameters t and C and chemical composition of modelling 

materials used for lead deformation modelling 

Chemical composition t C
fi lia + 5% paraffi n + 5 % lanolin 0.06 269.3
fi lia + 10 % paraffi n + 5 % lanolin 0.07 250

fi lia + 5% paraffi n 0.26 285
Filia 0.023 366.7
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colour were plotted at the distance of 5 mm from each other, in 
order to provide the possibility to perform an evaluation of the 
manner of material flow based on their deformation.

1.2. Decision trees 

Data mining techniques is a very broad concept. It includes 
statistical tools [6], but also algorithms of rule induction with the 
use of decision trees (CART, CHAID and others) [10,14,29] and 
rough sets or fuzzy logic, as well as artificial neural networks, 
a support vector machine SVM and classifiers such as k near-
est neighbours (kNN) or the Bayesian classifier [27]. All these 
methods have been repeatedly verified and applied in various 
industrial areas. In the discussed problem, only some of the 
mentioned tools were used, of which the most important ones 
are decision trees and regression trees (CART).

The CART algorithm is one of many algorithms of decision 
tree induction. It is based on hierarchic, binary divisions of a data 
set for a better segregation of the cases being representatives of 
the dependent variable value. The algorithm aims at an ideal 
situation, when the created partition (leaf) includes cases of the 
same dependent variable value. CART is a universal algorithm 
in respect of the type of dependent variable – for quantitative 
variables, regression trees are constructed, in which the division 
criterion is based on the quantitative feature variance, whereas 
for discrete dependent (qualitative) variables, a classification 
tree is built on the basis of the selected node purity index (Gini 
index, G2 – maximum likelihood statistical significance or Chi2) 
[3,11]. These methods are, however, not as effective in predic-
tion as neural networks or the support vector machine. They 
do not achieve as good results, mainly because of the fact of 
discretization of the quantitative variables and thus the enforced 
generalization. Decision trees are a graphic representation of the 
rules obtained based on the data structure analysis. However, 
these algorithms enable not only the creation of rules, but also 
the determination of the significance of the particular variables 
in the model, which is sometimes as important as the model 
itself. A variable is described as significant in the classification 
process, i.e. one which provides information on the class, de-
pending on its readiness for the participation in the dependent 
variable divisions, which is measured during the construction of 

the tree. The established significance makes it possible to create 
a ranking of independent variables in respect of the effect on the 
dependent variable. The significance is the degree of covariance 
with the dependent variable. 

The undoubted advantages of classifiers based on trees 
are: their graphic representation, legible and easy to interpret 
and verify based on the domain knowledge; a possibility to de-
termine the significance of predictors; insensitiveness to noise 
and outliers; the result in the form of a set of rules possible to 
use in other applications. 

A decision tree is a graphic method of supporting a decision 
process; it is a tree-like structure, in which the internal nodes 
contain tests on the attribute values, and the leaves describe the 
decisions about the classification of objects. A decision tree 
is a graphic encasement of a series of conditional statements. 
Decision trees constitute an advanced form of knowledge 
representation, which provides a wide range of interpretation 
possibilities, both at the stage of knowledge acquirement itself 
(data mining) and in the phase of its application in the decision 
process. The aim of the studies is finding a relation between the 
particular components of the modelling material and the selected 
mechanical properties [9,30]. 

Each internal vertex of the tree contains the so-called sepa-
ration point, i.e. a test on the predictor variable, which divides the 
data set into partitions. The division of nodes in decision trees, 
as in the discussed case, takes place based on the least square 
criterion (LSD – Least Significant Difference).
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where: 
 Nw(t) – weighted number of cases in the node t, 
 wi – value of weighting variable for case i, 
 fi – value of frequency variable, 
 yi – value of response variable, 
 y(t) – is the weighted average in the node t.

The constructed and selected tree makes it possible to create 
the rules. The tree interpretation is direct: for each leaf (conclu-
sion), we track all the consecutive branches (graph arc). Each 
encountered vertex represents a test, thus being a basis for the 
creation of a rule premise. 

a) b) c)

Fig. 2. a) Comparison of a forging made of steel after II extrusion operation with a forging made of filia wax, b) a tool set: a punch, two matrix 
halves, tightening belts, c) preforms made of modelling materials with horizontal flow lines
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2. Test methodology

In order to achieve the objective of the study, the research 
was divided into 4 following stages.

2.1. Elaboration of modelling material 
data base

In order to construct a modelling material data base, the 
authors, based on the research procedures, prepared samples 
of base materials with modifiers, in the form of cast cylinders, 
which underwent upsetting tests performed on a specially con-
structed press for physical modelling experiments. The work-
hardening curves of the modelling materials were determined by 
means of upsetting tests on made on cylinder samples, 60 mm 
high and 60 mm in diameter. The basic tests were performed at 
the temperature of 22°C and at the deformation rate of 0.01 s–1. 
Technical vaseline was used as the lubricant, placed in specially 
prepared openings. The tests were conducted on a specially con-
structed press, whose power device is the motoreducer produced 
by Lenze, power 1 kW and output torque 15 Nm. The measure-
ment system is equipped with a computer and an inverter with 
a 16-bit measurement chart and Hottinger amplifiers together 
with an application written in the Labview environment, which 
enables control, measurement and archivisation of data. The 
force was measured by means of the sensor ZEWPN with the 
range of 0-5 kN, and the displacement – with the use of an in-
duction sensor with the range of 0-200 mm. Based on the force 
measurement and the displacement, the yield stress-deformation 
flow curve diagrams were elaborated for the selected material 
compositions. For a given material composition, a minimum 
of 3 repetitions were made, from which the averaged run was 
selected [21].

2.2. Statistical analysis of work-hardening curve results 
for modelling materials

The creation of a precise model is always preceded by 
collecting data. Experimental data is always the basis for the 
process of machine learning, regardless of the assumed data 
mining technique. Decision trees, neural networks, the support 
vector machine, Bayesian classifiers, kNN and the discriminant 
analysis – all these tools are based on training data, which, in 
the analyzed case, are the results collected from laboratory ex-
periments. The preliminary tests confirmed that one of the most 
available IT tools frequently applied in related areas is decision 
tree induction, owing to its not very extensive scope of data and 
a small size of data sets. Artificial neural networks, also popular 
in the field of approximation, require much larger volumes of 
training vectors, especially when a larger set of input parameters 
is examined, that is, a larger number of independent variables is 
taken into consideration. It should also be emphasized that, from 
the perspective of acquiring knowledge of the relations present 

within the scope of a given phenomenon, neural networks are 
useless, as they operate according to the black box rule – they 
are capable of predicting, yet, to a human, this knowledge is 
unavailable, as opposed to the rules obtained by means of trees, 
which can be used in a universal manner, independent of the 
model itself. 

2.3. Construction of a model of approximating 
the values of modelling material mechanical properties 

based on decision trees followed by an algorithm 
of base material modifier selection 

Another stage of the studies of the decision support tool 
based on decision tree induction in the scope of selecting the 
proper material will be a construction of the appropriate model 
capable of approximating the mechanical property values de-
pending on the additions. This stage is scheduled to consider the 
three main properties of modelling materials: σmax – maximal 
yield stress, εkr – critical deformation, εgr – limit deformation, 
which are the ones which mostly determine the shape of the 
yield stress-deformation curve, depending on the three basic 
base material modifiers: kaolin, paraffin and lanolin.

The property approximation model aims at answering the 
questions: In which way do the mechanical properties of the 
base modelling material – synthetic filia wax – change after 
the introduction of a given amount of a specific modifier? Is 
it possible to use the given model to quantitatively determine 
the mechanical properties of the modelling material by point-
ing to the percentage composition of the additions? The role 
of the approximation model is to replace the mathematical 
function when the determination of the function form seems 
impossible.

Based on a properly constructed model, it will be pos-
sible to create an algorithm capable of selecting the additions 
(base material modifiers) in such a way so that the most similar 
modelling material to the given actual material can be created, 
when the modelling material representation is based on the ap-
proximation model. 

2.4. Verification of the elaborated algorithm 
with the use of decision tree induction – physical modelling 

experiment in an upsetting test

An additionally performed laboratory experiment, consist-
ing in physical modelling, will be a way to validate the results 
obtained by means of the elaborated model. The rules obtained 
from the decision tree induction algorithm will enable the de-
termination of the desired material composition – establishing 
the addition content. Under laboratory conditions, the planned 
modelling material with modifiers was created and its properties 
were examined, which made it possible to determine the quality 
of the approximation model.
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3. Discussion of results

3.1. Modelling material data base

Fig. 3 shows exemplary results obtained in the upsetting test 
on the effect of modifiers: kaolin and kaolin with lanolin, on the 
level of stress and deformation for the base material – filia wax. 
The yield stress for filia, with the deformation rate of 0,01 s–1, 
after the maximal values is reached with the deformation of 
0,35, slightly lowers. Adding kaolin to filia causes an increase 
of its reinforcement, which grows together with the increase of 
the kaolin content.

For mixtures containing over 8% kaolin, an increase of 
stress was obtained in the whole deformation scope. Such curves 
can be used to model the deformation process of actual materials 
under the conditions of cold metal forming. In turn, in the case 
of adding only lanolin to pure filia, the obtained curves exhibit 
a significant decrease of yield stress after it reaches its maximal 
value. This decrease intensifies with the decrease of strain rate, 
as well as for filia with paraffin. But addition of paraffin caused 
simultaneously increase of σmax. The lanolin content increase 
also causes a reduction of critical deformations (Fig. 4a). Such 
mixtures can be used for the modelling of hot metal forming 
processes. A similar effect on the shape of the flow stress-strain 
curves for filia is demonstrated by paraffin, the difference being 
that the latter causes a significant increase of the stress level 
(Fig. 4b).

In the performed research, the effect of the deformation 
rate on the shape of the flow stress-strain curves of the exam-
ined mixtures was also determined. It can be inferred from the 
courses presented in Fig. 5 that a change in the deformation rate 
from 0,01 to 0,1 s–1 does not cause a change in the character 
of the work-hardening curves of the examined mixtures, while 
causing quite a significant increase of the yield stress. In turn, 
Table 2 presents compilatory results of the elaborated data base, 
which includes the maximal stress, the critical deformation and 
the limit deformation.

From the point of view of the behaviour of modelling ma-
terials, σmax describes the maximal recorded force value in the 
upsetting test, εkr describes the deformation value after which 
a weakening of a given material composition was observed (no 
given value in this column means that, for the given modelling 
material, the critical deformation was not reached), εgr – the limit 
deformations were determined at the moment of the occurrence 
of cracks on the surface of the side surface of the cylinder).

The investigations performed on the modelling materials 
showed that by modifying their composition (with additions of 
kaolin, lanolin, paraffin) and changing the deformation rate and 
temperature, one can obtain models of flow stress-strain curves 
for different actual materials. For example, an addition of kaolin 
causes a clear increase of the yield stress level and a simultaneous 
increase of yield point. Increasing the content of these additions, 
e.g. kaolin in the amount over 20%, lowers the limit deforma-

a) b)

Fig. 3. The flow stress-strain curves for filia with: a) different kaolin contents, b) kaolin and lanolin

a) b)

Fig . 4. The flow stress-strain curves for filia: a) with different lanolin contents, b) with different paraffin contents
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tions, and such a material cracks faster that the actual material. 
Also, increasing the kaolin content is limited; with the content 
of this powder filler above 20% of the total weight of the model-
ling material, we observe percolation, that is tacking of modifier 
particles. Percolation makes proper mixing impossible, and thus, 
also, the appropriate distribution of the filler particles in the 
matrix of the modelling material. It can also affect the intensity 
of the sedimentation phenomenon, which causes anisotropy of 
the modelling material. Reducing the percolation phenomenon 
or obtaining higher limit deformations in the mixtures with 
a high kaolin content is possible through the introduction of 
a small amount of lanolin. On the other hand, it is difficult to 
find materials for which, in the whole deformation scope, an 
intense increase of yield stress is observed. In turn, an addition 
of lanolin or paraffin causes the obtained curves to exhibit a 
strong decrease of the yield stress after it reaches its maximal 
value. A change of deformation rate by one order of magnitude, 
e.g. from 0.01 to 0.1 s–1, and of temperature by a few degrees 
Celsius, does not cause a significant change in the character of 
the work-hardening curves of the examined mixtures, while only 
causing a change in the level of the yield stress. The collected 
results of experimental tests performed on the modelling material 
(Tab. 2) makes it possible to quantitatively describe the proper-
ties of the examined modelling materials: σmax – maximal yield 
stress value, εkr – critical deformations, εgr – limit deformations. 
These properties can constitute the basis for the selection of the 
modelling material for any actual material [21]. 

3.2. Statistical analysis of work-hardening curve test 
results for modelling materials 

In the first place, a statistical analysis will be performed 
on the results obtained in the upsetting tests for one of the base 
modelling materials. For the examinations, filia was selected, 
owing to a larger number of experimental data and the observed 
higher repeatability and stability of the properties. Next, the 
material test results were collected and analyzed for each content 
of this base material with the introduced modifiers. For each set 
of data, a correlation matrix was constructed, based on which 
a preliminary evaluation was performed. Of those two base 
materials, for the further examinations, the one was selected for 
which the results were properly verified based on the experience 
of a scientist working with physical modelling with the use of 
soft modelling materials. 

The performed preliminary statistical analysis of the 
obtained results shows that, in order to teach the approxima-
tion model (in the succeeding stage of investigations) how the 
properties of the modelling material are formed, one should 
methodically approach the study of the effect and amount of the 
particular modifying additions. And so, the particular modifiers 
were introduced and considered in the elaborated model with the 
selected step, where their percentage composition was succes-
sively changed. In the case of unsatisfactory results, caused e.g. 
by the lack of data for the given scope, additional investigations 
are planned in the area of physical modelling and supplementa-

a) b)

Fig. 5. Effect of a strain rate change on the work-hardening curves: a) for filia and filia with 16 % kaolin, b) for filia with 4-10% lanolin

TABLE 2
Properties of filia-based modelling materials – summary results [36]

Base 
material Modifi er

Test conditions Properties
T [oC] ε• [s–1] σmax[MPa] εkr εgr

fi lia kaolin 2-4 % 22 0.01 0.128-0.136 0.38-0.39 1-1.05
fi lia kaolin 8-24% 22 0.01 0.209-0.507 — 0.8-0.9
fi lia kaolin 12-28% + lanolin 2-4% 22 0.01 0.182-0.505 0.91 0.95-1.05
fi lia lanolin 4-14% 22 0.01-0.1 0.083-0.095 0.03-0.29 1.2
fi lia — 22 0.01-0.1 0.13-0.17 0.3-0.41 0.9-1
fi lia kaolin 16% 22 0.01-0.1 0.385-0.47 — 0.8-0.95
fi lia paraffi n 5-10% 22 0.01-0.1 0.176-0.356 0.03-0.09 0.9-1.05
fi lia — 17-22 0.01 0.13-0.18 0.3-0.36 0.9-1.1
fi lia kaolin 20% 18-24 0.01 0.41-0.46 — 0.8-0.9



1080

tion of the data base for the missing compositions of the model-
ling materials. The considerations of the effect of the particular 
additions on the properties of the modelling material were based 
on the data referring to the laboratory plastometric tests for filia, 
of which a fragmentary compilation is presented in Table 3. As 
it was mentioned before, this material was selected for the tests 
owing to the stability of its properties under the conditions of 
a changing composition. 

104 samples for different filia contents were laboratory 
tested. Such a number is high enough to point to certain exist-
ing relations. A good way of starting the tests is generating the 
matrix of the scatter diagram, presented in Fig. 6. 

TABLE 3

Exemplary test results of modelling material properties: filia with 
constant test conditions: T = 22°C; ε = 0.01 s–1

Modifi er content [%]: Properties 
Kaolin Lanolin Paraffi n σmax εkr εgr

0 0 0 0.13 0.35 0.7
2 0 0 0.17 0.71 0.71
4 0 0 0.22 0.72 0.72
6 0 0 0.25 0.73 0.73

20 4 2.5 0.55 0.042 0.88
20 4 5 0.58 0.043 0.93
20 4 7.5 0.6 0.046 0.96
20 4 10 0.65 0.5 0.97

Fig. 6. Scatter diagram matrix for filia components and mechanical 
properties: σmax – maximal yield stress value, εkr – critical deformation, 
εgr – limit deformation

These diagrams (Fig. 6) make it possible to establish that 
there is a strong relation between the kaolin content and σmax – 
the maximal yield stress value as well as εgr – limit deformation. 
Other two pairs of relations between paraffin and σmax and εgr 
are also clearly represented. Increasing the content of kaolin and 
paraffin causes a simultaneous increase of σmax and εgr. On the 
diagram, one can also notice another experimental data char-

acteristic – histogram εkr – of the critical deformation pointing 
to a strong disproportion in the existing values, which results 
from the material characteristics. It can also be seen that the set 
of samples has a weak representation in the scope of elevated 
lanolin contents, which makes it difficult to draw conclusions 
on the effect of this component. 

The correlation matrix explicitly demonstrates those com-
ponents which significantly affect the properties (Tab. 4). 

TABLE 4
Correlation matrix of modelling material components 

and properties 

Kaolin Lanolin Paraffi n

σmax 
0.69 –0.26 0.56

p = 0.000 p = 0.008 p = 0.000

εkr
0.34 –0.08 –0.38

p = 0.000 p = 0.407 p = 0.000

εgr
0.30 0.18 0.58

p = 0.002 p = 0.063 p = 0.000

Fig. 7. Compilation of 3-D scatter diagrams showing the total effect of 
the selected components on the particular properties

We can point out (Tab. 4) a statistically significant effect of 
kaolin and paraffin on the maximal value of yield stress (σmax). 
Also, kaolin raises the value of critical deformation. An elevated 
paraffin content lowers the critical deformation value (εkr). The 
effect of lanolin should not be considered due to the lack of 
statistical significance. 

With the aim of a simultaneous examination of different 
effects of the particular components on the properties, one can 
create a compilation of 3-D diagrams, shown in Fig. 7.
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3.3. Construction of a model of approximating the values 
of modelling material mechanical properties based 

on decision trees followed by an algorithm of base material 
modifier selection 

In the case of the discussed data, the effect of the percent-
age compositions of the components on the particular properties 
was examined. The CART algorithm was used to generate three 
regression trees, one for each dependent variable. Fig. 8 shows 
the arrangements of these trees for each dependent variable. The 
tree structure graphically presents the division of the training set 
into value classes, depending on the test functions, which are 
the value scopes of explanatory variables. 

The tree arrangements confirm the significant feature of the 
CART algorithm ― it generates binary trees, owing to which 
the division into partitions according to one explanatory variable 
(e.g. paraffin content) can be repeated with the use of another 
test function value. The more expanded the tree, the bigger the 
number of rules, and the higher the number of division levels in 
the tree, the bigger the number of premises in each rule. Each 
leaf (final node) denotes one decision rule. The tree structure 
visualizes the knowledge base for the model of parameter value 
approximation. The tree for σmax has 16 final nodes, which means 
that, on its basis, it is possible to generate 16 decision rules point-
ing to the expected value σmax depending on the chemical com-
position of the modelling material. The tree for εkr generates 10, 
and the tree for εgr – 13 rules. In total, the generated knowledge 
base contains 39 decision rules. Each final node characterizes 
in a mean value and a variance value of the dependent variable. 
The quality of the rules can be determined with the use of the 
variance value – the lower the variance, the more reliable the 
rule. Unfortunately, the variance value is not an absolute value, 
which means that the rule quality can be measured in this way 
only within one tree. 

Table 5 presents the results in the particular nodes for each 
tree. The diagrams of these characteristics, shown in Fig. 9, en-
able the selection of the nodes depending on the expected values 
of dependent variable, that is a specific plastic property. Knowing 
the expected value, we select the node number which fulfills 
the specific conditions, and next, based on the tree, we read out 
the rules which enable the adaptation of the factor composition. 

TABLE 5

Characteristics of final nodes in regression trees for each variable

σmax εkr εgr
Mean Variance Mean Variance Mean Variance

8 0.09 0.0008 4 0.27 0.0047 8 0.75 0,0016
9 0.15 0.0002 6 0.73 0.0007 9 0.83 0,0004
12 0.26 0.0017 8 0.82 0.0005 7 0.89 0,0005
13 0.20 0.0010 9 0.96 0.0051 12 0.84 0,0010
11 0.29 0.0013 12 0.07 0.0090 13 0.90 0,0005
14 0.28 0.0039 18 0.03 0.000005 16 1.02 0,0010
16 0.38 0.0006 19 0.03 0.000002 17 0.95 0,0024
17 0.50 0.0013 17 0.04 0.000001 18 0.87 0,0002
20 0.27 0.0128 15 0.04 0.000006 19 0.94 0,0001
22 0.39 0.0049 11 0.45 0.0109 22 0.95 0,0004
23 0.49 0.0026 23 0.97 0.0003
26 0.55 0.0040 24 1.01 0.0004
27 0.64 0.0050 25 0.98 0.0002
30 0.72 0.0018
31 0.79 0.0012
29 0.65 0.0063

For example: Let us assume that we want to obtain the 
highest maximal value of yield stress – and so, we select node 
no. 31, for which the mean σmax is the highest. We read out the 
composition from the tree: kaolin >11%; paraffin >8.75%; lanolin 
< = 3% (the tree fragment which makes it possible to read out 
such a rule was shown in Fig. 9). If we are interested in the high-

Fig. 8. Arrangement of decision trees for particular dependent variables: a) σmax, b) εgr, c) εkr
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est εgr – limit deformation, we choose node 16 in the third tree. 
From the tree, we read out the composition: kaolin >9%; 1.25% 
> paraffin > 6.25%; 0.5% < lanolin < = 3%. Unfortunately, the 
conditions for paraffin are contradictory to the rules from the first 
tree. And so, we can try to select another node – the closest one 
in respect of the mean value is node 24 (the difference between 
them being only 0.01). In the case of node 24, the conditions are 
as follows: kaolin >6%; paraffin >8.75%. This means that there 
is no contradiction to the rules for the tree σmax. Also, the user can 
use the tree model in order to determine the composition of the 
additions. Each tree leaf represents a class of cases with similar 
values of the parameter being the dependent variable. The cases 
within one leaf (class) have the same composition – that is, the 
content of additions for each case within this class is the same [32]. 

Fig. 11. Significance of particular components for each property

The significance results for lanolin have not been presented 
because, as it was established before, an insufficient number 
of measurements for different contents of the same component 
causes the lack of statistical significance for the correlation with 
other variables. Expanding the training data set can certainly 
lead to a change in the form of the trees, thus changing the rank 
of the particular variables. 

3.4. Verification of the elaborated algorithm with the use 
of decision tree induction – physical modelling experiment 

in an upsetting test 

With the aim to verify the decision tree model, the work-
hardening curves were determined for materials with different 
compositions than those used for the modelling. The comparison 

 

εkr

εgr

σmax

Class number

Class number

Class number

a)

b)

c)

Fig. 10. Characteristics diagrams for final nodes in regression trees for 
variables: a) σmax, b) εkr, c) εgr

Fig. 9. Regression tree fragment enclosing three out of sixteen leaves 
for dependent variable σmax

The user can apply the tree to determine the addition compo-
sition in order to obtain the desired level of stress or deformation. 
With the purpose of a simpler selection of the desired level of 
each parameter, it is possible to apply value visualization for the 
particular tree nodes. The user can take advantage of the diagram 
shown in Fig. 10 by selecting the level, and next, verify the rule 
leading to the desired value. The CART algorithm also makes 
it possible to qualitatively evaluate the effect of the particular 
components on the properties. This effect is expressed by the 
significance, i.e. the readiness for the participation in the divi-
sions of the dependent variable, which is measured during the 
construction of the tree. 

The significance of the particular components for each 
property has been presented in Fig. 11. 
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was to concern: σmax – maximal yield stress, εkr – critical defor-
mation, εgr – limit deformation examined during the measure-
ment, as well as developed the approximating model.

The results demonstrate that the tree is capable of detecting 
relations and disregarding the training data. Precision coefficients 
of models of a regression trees illustrating the fitting of models 
were presented in table 7.

TABLE 7

Precision coefficients of models of a regression trees

σmax [MPa] εkr εgr
Mean absolute error (MAE) 0.057 0.070 0.038

Correlation (r) 0.776 0.882 0.901

We can risk stating that, even in a situation when the tree 
extrapolated the results beyond the scope, the error remains 
within the acceptable range at the stage of material design.

Another verification method is the determination, based on 
the tree, of the rules concerning the addition content in the ap-
plication for the limit values of the particular properties. These 
rules were determined on the basis of the diagrams shown in 
Fig. 8 and by means of the trees for σmax, εkr and εgr. The rules 
in their general form have been presented in Table 8. 

TABLE 8

Rules for the selection of additions depending on the desired 
property level 

Kaolin Lanolin Paraffi n σmax εkr εgr
>11 <3 5-9 max — —
>13 >1 >1 — max —
>9 0.5-3 <1 — — max
<3 — <1 min — —
>2 <1 >1 — min —
<15 <0.5 <3 — — min

Based on the experimental data, it can be stated that these 
rules are true in their general form, and so, it is possible to verify 
the correctness of the drawn conclusions. If the user wants to 

create a material, he/she must determine an exemplary set of 
properties to be obtained. Next, by means of the rules obtained 
from the trees, he/she will determine the amount of additions 
and the estimated mean value for each property. 

4. Conclusions 

The paper presents the possibilities of applying IT tools, 
especially decision tree induction used for the creation of an 
approximation model of the properties of a modelling material, 
such as filia, applied in physical modelling of industrial metal 
forming processes. Statistical tools, as well as the CART algo-
rithm implemented in the STATISTICA packet, were applied. 
The physical modelling methods make it possible to shorten the 
designing time and reduce the cost of the actual experiment, ow-
ing to the use of non-metallic soft modelling materials, which, 
through the addition of various modifiers, make it possible to 
obtain characteristics for most metals and their alloys. It is as-
sumed that, if the shape of the work-hardening curve for the 
modelling material is close to the shape of the curve for the given 
metallic material, it means that the condition of plastic similarity 
has been fulfilled, which guarantees a proper representation of 
the physical modelling results in the selected industrial process. 
Despite the fact that the general rules and effect of the particular 
modifiers on the shape of the work-hardening curve are well-
known, usually, such a selection of the particular modifying 
component added to the base material (plasticine, synthetic 
wax filia) takes place on the basis of the knowledge and experi-
ence of the scientist. The presented results of preliminary tests 
demonstrated that, for this purpose, decision tree induction is 
an appropriate tool. 

The obtained results make it possible to estimate the values 
of the selected modelling material parameters (σmax – maximal 
yield stress value, εkr – critical deformation, εgr – limit deforma-
tion) based on the determined percentage composition of three 
components: kaolin, paraffin and lanolin. As it has been demon-
strated, such properties can constitute the basis for the selection 
of the modelling material for any actual material. The approxima-
tion model of the base material properties was elaborated with 

TABLE 6

Comparison of the experimental values of the maximal yield stress value with the values determined by means of a regression tree

Components [%] σmax [MPa] εkr εgr
Kaolin Lanolin Paraffi n Empirical Estimated Empirical Estimated Empirical Estimated

4 2 7.5 0.41 0.39 0.042 0.044 0.98 0.95
0 0 5 0.18 0.16 0.033 0.071 0.86 0.90
8 4 5 0.28 0.29 0.044 0.042 0.9 0.90
0 0 0 0.13 0.10 0.35 0.279 0.7 0.76
12 4 0 0.1 0.27 0.76 0.739 0.89 0.96
4 4 5 0.24 0.29 0.041 0.042 0.94 0.90
0 1 0 0.082 0.10 0.34 0.279 0.87 0.84
0 0 10 0.36 0.29 0.04 0.456 0.98 1.01
16 0 0 0.43 0.27 0.8 0.820 0.8 0.84
0 10 0 0.088 0.10 0.35 0.279 0.78 0.84
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the use of the regression tree induction algorithm. In this way, 
a set of rules was generated, which enable the determination of 
the addition content, depending on the expected work-hardening 
properties. The examinations were performed by means of a scant 
number of training data, and yet, at the verification stage, an ac-
ceptable level of error was achieved for the presented application, 
which confirms the unique abilities of the CART algorithm in 
the standard abstraction.

The elaborated knowledge base makes it possible to per-
form a qualitative and quantitative evaluation of the effect of 
the particular components on each property, thus supporting the 
development of IT tools applied in physical modelling, which is 
either an independent tool or an alternative for numerical mod-
elling verification in the design and analysis of metal forming 
processes. 
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