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MAIN PARADIGM USED IN THE THEORY OF CALCULATION OF THE HEIGHT AND STRUCTURE OF COMBUSTION AND
MELTING ZONES IN COKE-FIRED CUPOLAS

PODSTAWOWY PARADYGMAT DLA TEORII OBLICZANIA WYSOKOŚCI I STRUKTURY STREF SPALANIA ORAZ TOPIENIA
W ŻELIWIAKACH KOKSOWYCH

The study proposes a method for evaluation of the accuracy of a new paradigm used in the thermal theory of cupola
process. The paradigm has been based on the concept of integral mean volumes and integral mean surfaces of the pieces of
metal and coke, used in calculation of the, generated in cupola, height and structure of the melting zone and combustion zone.
In particular, the following goals have been set:

– using the differential calculus and integral calculus, derive equations for the calculation of integral mean volumes and integral mean
surfaces of the pieces of metal and coke, both of various shapes, melting and burning, respectively, in cupola, and derive formulae for
evaluation of the accuracy of a new paradigm by comparing the fundamental dimensions of the pieces (as well as their volumes and
surfaces), as calculated from the integral mean volumes and integral mean surfaces;

– derive equations for the calculation of arithmetic mean volumes and arithmetic mean surfaces of the pieces of metal and coke, melting
and burning, respectively, in the sequences of pieces formed in the metal melting zone and in the coke combustion zone, and compare the
arithmetic mean volumes and arithmetic mean surfaces of the pieces, the values of which depend on their number in a given sequence,
with the integral mean volumes and integral mean surfaces, to determine next the minimum number of pieces in a given sequence for
which the integral mean quantities (theoretically requiring an infinite number of pieces) hold good.

In the study, two examples of the application of the paradigm in mathematical description of a height of the combustion
zone and melting zone were given.

W pracy przedstawia się ocenę dokładności nowego paradygmatu teorii cieplnej procesu żeliwiakowego, dotyczącego
zastosowania średnich całkowych objętości i średnich całkowych powierzchni kawałków metalu i koksu, do obliczania genero-
wanych w żeliwiaku wysokości i struktury stref topienia oraz spalania. Praca obejmuje:

– wyprowadzenie wzorów, z wykorzystaniem rachunku różniczkowego i całkowego, do obliczania średnich całkowych objętości i po-
wierzchni topiących się w żeliwiakach kawałków metalu oraz palących się kawałków koksu o różnym kształcie, oraz wyprowadzenie
wzorów do oceny dokładności paradygmatu, przez porównanie wielkości podstawowych wymiarów kawałków (a także objętości i
powierzchni), obliczonych na podstawie średnich całkowych objętości oraz średnich całkowych powierzchni;

– wyprowadzenie wzorów do obliczania średnich arytmetycznych objętości i średnich arytmetycznych powierzchni topiących się kawałków
metalu lub palących się kawałków koksu w ciągach kawałków, utworzonych w strefach topienia oraz spalania koksu; porównanie
średnich arytmetycznych objętości i powierzchni kawałków, zależnych od ich liczby w ciągach, ze średnimi całkowymi objętościami i
powierzchniami, w celu określenia minimalnej liczby kawałków w poszczególnych ciągach, dla której stosować można wielkości średnie
całkowe (które teoretycznie wymagają nieskończonej liczby kawałków).

W pracy przedstawiono dwa przykłady zastosowania paradygmatu, tj. do obliczania wysokości stref spalania i topienia.

Symbols used in the text

a,b,c – the initial thickness, width and length, respec-
tively, of the pieces of coke or metal
af , bf , cf – the thickness, width and length, respectively,
of the pieces of the surface f, as indicated by the factor
“f”,

av, bv, cv – the thickness, width and length, respectively,
of the volume v, as indicated by the factor “v”,
fo, f – the initial and integral mean surfaces, respectively,
of the pieces of coke or metal,
f = 2(afbf + afcf + bfcf )
fn – the arithmetic mean surface of the pieces in a given
sequence, depending on the number of pieces,
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fo = 2a2M
fv – the surface calculated from sides av, bv and cv,
fv = 2(avbv + avcv + bvcv)
Kw,4 – the content of coke charge in respect of metal,
kg coke/100 kg Fe
M = mb + mc + mbmc
mb = b

a ,mc = c
a

n – the number of pieces in a given sequence,
vo, v – the initial and integral mean volumes, respective-
ly, of the pieces of coke or metal
vo = a · b · c
v = avbvcv
vf – the volume calculated from sides af , bf and cf ,
vf = afbfcf
vn – the arithmetic mean volume of the pieces in a given
sequence, depending on the number of pieces,
ϕv = v

vo

ϕf = f
fo
,

ϕv,n = vn
vo

ϕv,n – the coefficient expressing the ratio between the
arithmetic mean volume of a piece in a given sequence
of n pieces and the initial volume of this piece,
ϕf ,n = fn

vo
ϕf ,n – the coefficient expressing the ratio between the
arithmetic mean surface of a piece in a given sequence
of n pieces and the initial surface of this piece,
a = 2 · z · n
2z – the constant difference in linear dimensions of the
pieces in a given sequence.

1. Introduction

In the 20th century, searching for practical and theo-
retical means to describe an optimum cupola process, the
following paradigms were formulated: 1. the paradigm
of the coke and metal charges arranged in layers running
from the upper boundary of preheating zone to the upper
boundary of combustion zone, or to the upper boundary
of the filling coke column (the author unknown); 2. the
paradigm of an optimum blast air volume (J. Buzek,
1908); 3. the paradigm of an equality between the melt-
ing time of metallic charge and the burning time of coke
charge during optimum running of cupola (the author
unknown); 4. the paradigm of an optimum height of the
filling coke column during optimum running of cupola
(the author unknown); 5. the paradigm of an optimum
layout of the melting zone and combustion zone in re-
spect of each other, when the lower boundary of the
melting zone is adjacent to the upper boundary of the
combustion zone (A. Achenbach et al.).

Some of the above mentioned paradigms com-
prise contradictory models of the process. For example,

paradigm 4. requires the presence of a layer of coke be-
tween the upper boundary of the combustion zone and
the lower boundary of the melting zone, and hence con-
tradicts paradigm 5. Paradigm 1. is unreal, because in
the melting zone the layered arrangement is destroyed
very quickly, due to the side feeding of blast air and the
column of charge materials rubbing against the cupo-
la lining. Paradigm 3. is inconsistent with J. Buzek’s
equation, based on the condition of equality between the
burning time of coke charge and the melting time of
metallic charge, referring to cupolas of the stable perfor-
mance regime and not only optimum running.

Generally, it should be stated, however, that the
above mentioned paradigms did open the way for numer-
ous empirical and theoretical studies, which in the past
century contributed a lot to more profound knowledge of
the practical aspects of a cupola process, though – in fact
– they had no special contribution to the development of
an analytical thermal theory of the process, and – more
important even, they did not help in development of a
very important link in this theory, which is calculation
of the height and structure of the combustion zone and
melting zone.

The, undertaken in the 20th century, attempts at an
analytical description of the combustion zone proposed
only a calculation of its stable height, disregarding totally
gradual increase of its level from the starting level of the
filling coke bed height. The calculations also neglected
the structure of the combustion zone, i.e. the size and
distribution of the pieces of coke burning in this zone.
The situation was even more complicated in the case of
the melting zone, which also lacked a relevant theory
regarding the distribution of metal pieces melting down
in a volume of the coke charge. This was certainly an
obstacle to further studies of the problem, and finding a
proper solution and means to calculate the melting zone
height, the secondary filling coke bed height, and the
height of the zone of intensive CO2 reduction.

In [1] the author formulated a new paradigm using
integral mean volumes and integral mean surfaces of
the pieces of coke in calculation of the height and stru-
cture of the combustion zone and described practical
application of this paradigm on an example of the sphe-
rically shaped coke pieces. Now, this paradigm is being
developed further to serve an empirical and analytical
description of the height and structure of the melting
zone and combustion zone when the pieces of coke and
metal are of different shapes.

Therefore the aim of this study is to describe the
characteristic theoretical backgrounds of the paradigm
and examine an accuracy of its practical application.
The present goal has been obtained solving the following
problems:
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a) developing theoretical backgrounds for the calculation
of integral mean volumes and integral mean surfaces of
the pieces of coke or metal (the coefficients ϕv and ϕf ),
b) proving the accuracy of the paradigm through theoret-
ical comparative analysis of the fundamental dimensions
of the pieces (as well as their volumes and surfaces), as
calculated from the integral mean volumes and integral
mean surfaces,
d) deriving equations for the calculation of arithmetic
mean volumes and arithmetic mean surfaces of the melt-
ing pieces of metal or the burning pieces of coke forming
a sequence of pieces in the metal melting zone and in
the coke combustion zone,
c) conducting theoretical comparative analysis to deter-
mine the minimum number of pieces that will enable
practical use of the integral mean volume and integral
mean surface values (the coefficients ϕv,n and ϕf ,n as
well as ϕv and ϕf );
d) drawing a rough scheme of the application of the de-
veloped paradigm in derivation of equations expressing
the combustion zone height and the melting zone height.

2. Coefficients ϕv and ϕf resulting from the
paradigm

The, determined by the paradigm, integral mean vol-
umes and integral mean surfaces of the pieces of coke
in the combustion zone and of the pieces of metal in the
melting zone have been computed using the dimension-
less coefficients ϕv and ϕf , predicted by the following
equations derived for the pieces in the form of rectan-
gular plates and for the particular case of spheres and
cubes

ϕv =
1
2
− 1

6mb
− 1

6mc
+

1
12mbmc

(1)

ϕf =
mbmc

mb + mc + mbmc
=

1
1 + 1

mb
+ 1

mc

, (2)

where:
mb = b

a ; mc = c
a

a, b, c – the initial thickness, width and length, respec-
tively, of the pieces of coke or metal, m.
The physical sense of ϕv results from the following for-
mula

ϕv =
v
vo
, (3)

where:
vo, v – the initial and integral mean volumes, respective-
ly, of the pieces of coke or metal, m3.

As follows from (3), the coefficient ϕv is a ratio be-
tween the integral mean volume and initial volume of
the pieces.
On the other hand, the physical sense of ϕf results from
the following formula

ϕf =
f
fo
, (4)

where:
fo, f – the initial and integral mean surfaces, respectively,
of the pieces of coke or metal, m2.
As follows from (4), the coefficient ϕf is a ratio be-
tween the integral mean surface and initial surface of
the pieces.
The following formula is also useful in the characterisa-
tion of parameter ϕv

ϕv =
V
Vo

(5)

where:
V – the integral mean volume of all the burning pieces
of coke in the combustion zone, or the integral mean
volume of all the melting pieces of metal in the melt-
ing zone; for pieces of the same volume and shape, the
following equation holds good: V = n · v, m3

where:
n – the number of pieces in the zone,
Vo – the volume of all the pieces of coke or metal form-
ing volume V, m3.
On the other hand, the following formula is also useful
in the characterisation of parameter ϕf

ϕf =
F
Fo
, (6)

where:
F – the integral mean surface of all the burning pieces
of coke in the combustion zone (the combustion zone
development surface), or the integral mean surface of
all the melting pieces of metal in the melting zone (the
melting zone development surface); for pieces of the
same volume and shape, the following equation holds
good: F = n · f, m2

Fo – the surface of all the pieces of coke or metal forming
surface F, m2.
From (3) and (4), the following integral mean modulus
of the pieces of coke or metal can be written down:

r =
v

f
=
ϕv

ϕf
ro =

a
2
ϕv, where (7)

ro =
vo

fo
=

a
2(1 + 1

mb
+ 1

mc
)

=
a
2
ϕf , (8)

where:
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r – the integral mean modulus of the pieces of coke or
metal, m
ro – the initial modulus of the pieces of coke or metal,
m.
Formulae (1) and (2) are derived using the differential
calculus and integral calculus. Below, the procedure used
in derivation of these equations is described.
Formula (1) is derived from the following starting equa-
tion, allowing for the volume of a burning piece of coke
or melting piece of metal (plate):

vτ = (a − 2µtτ)(b − 2µtτ)(c − 2µtτ), (9)

where:
vτ – the volume of a burning piece of coke or melting
piece of metal after time τ, m3

µt – the linear burning rate of a piece of coke or the
linear melting rate of a piece of metal, equal for all the
surfaces of a piece, m/s.
Let us extract from brackets the quantities a, b and c

vτ = vo(1 − 2µt

a
τ)(1 − 2µt

b
τ)(1 − 2µt

c
τ), (10)

where:
vo = a · ·b · c.
Applying in (10) the following substitutions: a= 2 µt τc
and X= τ

τc
(where: τc – the total burning time of a piece

of coke, or the total melting time of a piece of metal,
either of the thickness a, s), we obtain

vτ = vo(1 − X)(1 − 1
mb

X)(1 − 1
mc

X). (11)

Using (11), the following integral formula for the calcu-
lation of ϕv is derived

ϕv =
v
vo

=

∫ X
0 (1 − X)(1 − 1

mb
X)(1 − 1

mc
X)dX

∫ X
0 dX

. (12)

After integration of (12) and substituting the limits of
integration, the following equation is obtained

ϕv = 1 − X
2

(1 +
1

mb
+

1
mc

) +
X2

3
(

1
mb

+
1
mc

+
1

mbmc
) − X3

4 mb mc
). (13)

For X = 1 (the plate totally melted or burnt down), equa-
tion (13) is simplified to the form of equation (1).
Let us write down the special cases of equation (1) for
different shapes:
a) the pieces of coke or metal in the form of cubes or
spheres (mb=mc=1; a=b=c); the equation is simplified to

ϕv =
v
vo

= 0, 25. (14)

b) the pieces of coke or metal in the form of square
based prisms (mb=1; a=b); the equation is simplified to

ϕv =
v
vo

=
1
3
− 1

12 mc
. (15)

c) the pieces of coke or metal in the form of square
plates (b=c; mb=mc = m); the equation is simplified to

ϕv =
v
vo

=
1
2
− 1

3m
+

1
12m2 , (16)

d) the pieces of coke or metal in the form of infinite
plates (mb=mc=∞); the equation is simplified to

ϕv =
v
vo

= 0, 5. (17)

Let us now write an integral equation for the cal-
culation of ϕf . The surface of the melting plate fτ, after

the melting time τ, can be expressed with the following
equation

fτ = 2(a − 2µtτ)(b − 2µtτ) + 2(a − 2µt)(c − 2µtτ)+
+2(b − 2µtτ)(c − 2µtτ).

(18)
After extracting from brackets the main quantities a, b
and c and substituting: c=mc · a, b=mb·a, a=2·µt · τc,
equation (18) takes the following form

fτ = 2a2[(mc−X)(mb−X)+(mc−X)(1−X)+(mb−X)(1−X)].
(19)

After multiplying out the brackets and extracting from
brackets the quantity M=mb + mc + mb · mc, the follow-
ing equation is obtained

fτ = fo[1 − 2(mb + mc + 1)X − 3X2

mbmc + mb + mc
], where (20)

fo = 2a2(mbmc + mb + mc) = 2a2M. (21)

Using (20), let us write down an integral formula
for the calculation of ϕf

ϕf =
f
fo

=

∫ X
0 [1 − 2(mb+mc+1)X−3X2

mbmc+mb+mc
]dX

∫ X
0 dX

(22)
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After integration of (22), substituting the limits of in-
tegration and making the necessary simplifications, the
following equation is obtained

ϕf = 1 − (1 + mb + mc)X − X2

mb + mc + mbmc
. (23)

For an interesting case of X=1, equation (23) assumes
the form of equation (2). Let us write down the special
cases of equation (2) for different shapes:
a) the pieces of coke or metal in the form of cubes or
spheres (mb=mc=1; a=b=c); the equation is simplified to

ϕf =
f
fo

=
1
3
, (24)

b) the pieces of coke or metal in the form of square
based prisms (mb=1; a=b); the equation is simplified to

ϕf =
f
fo

=
mc

1 + 2mc
, (25)

c) the pieces of coke or metal in the form of square
plates (mb=mc=m; b=c); the equation is simplified to

ϕf =
f
fo

=
m

1 + m
, (26)

d) the pieces of coke or metal in the form of infinite
plates (mb=mc=∞); the equation is simplified to

ϕf =
f
fo

= 1. (27)

3. Calculation of the fundamental dimensions of the
quantities v and f and accuracy of the paradigm

From equations (1)÷(4), the integral mean quantities v
and f, which are functions of mb and mc, are calculated.
Knowing the values of v and f, their dimensions are
calculated.
The starting equation for the calculation of the dimen-
sions of v assumes the following form

v = (a − 2xv)(b − 2xv)(c − 2xv), (28)

where: xv – the thickness of the piece burnt or melted
down, equal for all surfaces of this piece and referring
to volume v m.
Let us substitute b= a·mb, c=a·mc to (28) and extract a
from brackets

v = a3(1 − 2xv

a
)(mb − 2xv

a
)(mc − 2xv

a
). (29)

Let us substitute a3 = vo
mbmc

and 2xv
a = ξv to (29)

v = vo
(1 − ξv)(mb − ξv)(mc − −ξv)

mbmc
. (30)

From equation (30) follows a definition and a formula
for the calculation of ϕv in function of ξv

ϕv =
v
vo

=
(1 − ξv)(mb − −ξv)(mc − −ξv)

mbmc
. (31)

After multiplying out the brackets in equation (31) and
arranging the obtained quantities, the equation of a third
order is obtained:

k3ξ
3
v − k2ξ

2
v + k1ξv − (1 − ϕv) = 0 (32)

k1 = 1 +
1

mb
+

1
mc

(33)

k2 =
1

mb
+

1
mc

+
1

mbmc
(34)

k3 =
1

mbmc
. (35)

Having calculated the quantity ξv from equation
(32), we calculate next the dimensions of the sides of
volume v, using relation: 2xv = a ξv

av = a − 2xv = a(1 − ξv) (36)

bv = b − 2xv = amb − aξv = a(mb − ξv) (37)

cv = c − 2xv = amc − aξv = a(mc − ξv), (38)

where:
av, bv, cv – the thickness, width and length, respectively,
of the volume v, as indicated by the factor “v”, m.
Using (36), (37) and (38), the volume v is calculated

v = avbvcv. (39)

Like equation (31), equation (39) is also useful in check-
ing the accuracy of calculations. This is done by check-
ing the value of ϕv in accordance with the following
formula

ϕv =
v
vo

=
avbvcv

a3mbmc
. (40)

Now, the formulae for calculation of the dimensions of
the integral mean surface f are derived.
The starting equation takes the following form
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f = 2[(a − 2xf )(b − 2xf ) + (a − 2xf )(c − 2xf ) + (b − 2xf )(c − 2xf )], (41)

where:
xf – the thickness of the burnt or melted down piece of
coke or metal, respectively, equal for all the surfaces of

a piece of coke or metal, and referring to the surface
f,m.
Let us substitute b= a mb, c=a mc to equation (41) and
extract a2 from brackets.

f = 2a2[(1 − 2xf

a
)(mb − 2xf

a
)(1 − 2xf

a
)(mc − 2xf

a
) + (mb − 2xf

a
)(mc − 2xf

a
)]. (42)

Let us now substitute 2xf
a = ξf to (42) and derive:

f = 2a2[(1 − ξf )(mb − ξf ) + (1 − ξf )(mc − ξf ) + (mb − ξf )(mc − ξf )] (43)

Let us next substitute a2 = fo
2M (M= mb+mc+mbmc) to

(43) and obtain:

f = [(1 − ξf )(mb − ξf ) + (1 − ξf )(mc − ξf ) + (mb − ξf )(mc − ξf )] (44)

From (44) follows a definition and a formula used to calculate ϕf , first, and check the correctness of the calculations,
next

ϕv =
[(1 − ξf )(mb − ξf ) + (1 − ξf )(mc − ξf ) + (mb − ξf )(mc − ξf )]

(mb + mc + mbmc)
. (45)

After multiplying out the brackets and arranging the
obtained quantities, equation (45) takes the form of a
quadratic equation

k5ξ
2
f − k4ξf + (1 − ϕf ) = 0, (46)

where:

k4 =
2(1 + mb + mc)
mb + mc + mbmc

k5 =
3

mb + mc + mbmc
. (47)

After solving (46) and substituting (47) and (2), the fol-
lowing formula for the calculation of ξf is obtained:

ξf =
1
3
[(1 + mb + mc) −

√
(1 + mb + mc)2 − 3(mb + mc)].

(48)
Having calculated the quantity ξf from (48), the dimen-
sions of the sides of the surface f are calculated, using
relation 2xf = a ξf

aξf = a − 2xf = a(1 − ξf ) (49)

bf = b − 2xf = amb − 2xf = a(mb − ξf ) (50)

cf = c − 2xf = amc − 2xf = a(mc − ξf ) (51)

where:
af , bf , cf – the thickness, width and length, respectively,
of the pieces of the surface f, as indicated by the factor
“f”, m.
Using (49), (50) and (51) let us calculate the surface f

f = 2(afbf + afcf + bfcf ). (52)

The equations derived for the calculation of ξv and ξf
are considerably simplified when mb = mc = 1. Equation
(32) can be written in two forms:

ϕv = (1 − ξv)3 (53)

ξv = 1 − 3
√
ϕv. (53a)

Also equation (46) can be written in two forms:

ϕf = (1 − ξf )2 (54)

ξf = 1 − √ϕ f . (54a)

So far, we have derived formulae for the calculation of v
by means of sides av, bv and cv, and for the calculation of
f by means of sides af , bf and cf . To make the concept of
paradigm reliable, the dimensions av, bv and cv as well
as af , bf and cf should satisfy the following equalities:
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av � af , bv � bf , cv � cf (55)

and

v � vf ; f � fv (56)

where:
v f – the volume calculated from sides a af , bf and cf .
fv – the surface calculated from sides av, bv and cv.
Volume vf can be calculated from a formula analogical
to (39):

vf = afbfcf (57)

or

vf = vo
(1 − ξf )(mb − ξf )(mc − ξf )

mbmc
(58)

while surface fv can be calculated from a formula ana-
logical to (52)

fv = 2(avbv + avcv + bvcv) (59)

or

fv =
fo

mb + mc + mbmc
[(1 − ξf )(mb − ξv)) + (1 − ξv)(mc − ξv)) + (mb − ξv)(mc − ξv))] (60)

For a quantitative evaluation of the accuracy of
paradigm, the following formulae are proposed:

∆V =
v − vf

v
100 =

avbvcv − afbfcf

avbvcv
100 (61)

∆F =
f − fv

f
100 =

(avbv + avcv + bvcv) − (afbf + afcf + bfcf )

(avbv + avcv + bvcv)
100. (62)

Let us calculate ∆V and ∆F for a wide range of the
values of mb and mc on which these quantities are de-
pendent.

Calculations 1.

Calculations a):
Given mb = 10, mc = 10, let us calculate ∆V and ∆F
k1=1+0,1+0,1=1,2;k2=0,1+0,1+0,01=0,21;k3=0,01;k4 =
2(1+10+10)
10+10+100 = 42

120 ;k5= 3
120 ; ϕf=0,833; ϕv=0,4675; let us

substitute the values of factors k1, k2 and k3 to (32)
and derive the following equation: 0,01 ξ3

v- 0,21 ξ2
v+ 1,2

ξv- (1- 0,4675) = 0; using this equation and the method
of successive approximations, we calculate the value of
ξv = 0,4838.
Let us calculate ξf . For this purpose, let us substitute the
values of factors k4 and k5 to (46) and derive equation:
3 ξ2

f - 42 ξf +120 (1 - 0,8333 ) = 0; from thus derived
equation or from equation (48), we calculate the value
of ξf = 0,4936.
From (36), (37) and (38) we calculate : av=
a(1-0,4838)=a·0,5162;
bv = cv = a(10-0,4838) = a 9,5162. From (49), (50) and
(51) we calculate :
af = a(1-0,4936)= a·0,5064 ; bf = cf = a·9,5064. From
(61) we calculate ∆V = 0,5162·9,51622+0,5064·9,50642

0,5162·9,51622 100 =

2,12 %. From (62) we calculate ∆F :

∆F = (0,5162·9,5162·2+9,51622)−(0,5064·9,5064·2+9,50642)
(0,5162·9,5162·2+9,51622) 100 = 0,39

%.

Calculations b)
Given mb = mc = 5, let us make the following calcula-
tions:
k1= 1,4 ; k2= 0,44 ; k3= 0,04 ; k4= 0,6286 ; k5= 0,0857;
ϕv= 0,4367; ϕf=0,7143; 0,04 ξ3

v - 0,44 ξ2
v + 1,4 ξv -

(1-0,4367)=0; ξv = 0,468 ; : av=a(1-0,468)= a 0,532;
bv = cv =a(5-0,468)= a 4,532 ;
0,0857 ξ2

f - 0,6286 ξf + (1-0,7143)=0; ξf= 0,487;
af=a(1-0,487)=a 0,513; bf = cf = a(5-0,487)=a 4,513;
∆V = 0,532·4,532·2−0,513·4,5132

0,532·4,5322 100 = 4,15 %;

∆F = (0,532·4,532·2+4,5322)−(0,513·4,513·2+4,5132)
(0,532·4,532·2+4,5322) 100 = 1,36 %

Calculations c)
Given mb = mc = 2, the following results of the calcu-
lations are obtained:
k1=2 ; k2= 1,25; k3= 0,25; k4= 10

8 ; k5 = 3
8 ; ϕv= 0,3542;

ϕf = 0,5.
0,25 ξ3

v - 1,25 ξ2
v + 2 ξv - (1-0,3542) = 0; ξv = 0,4261;

: av= a(1-0,4261)= a · 0,5739 ; bv = cv = a(2-0,4261)=
a1,5739;
3 ξ2

f −10ξf + 8(1-0,5) = 0; ξf= 0,4648 ; af=a(1-0,4648)=a
0,5352; bf = cf = a(2-0,4648)= a 1,5352; ∆V
= 0,5739·1,57392−0,5352·1,53522

0,5739·1,57392 100 = 11,27 %;



1214

∆F = (0,5739·1,5739·2+1,57392)−(0,5352·1,5352·2+1,53522)
(0,5739·1,5739·2+1,57392) 100 =

6,62 %.

Calculations d)
Given mb=mc = 1, the following results of the calcula-
tions (formulae (54) and (56)) are obtained:
ϕv= 0,25; ϕf=0,3333; ξv = 1- 3

√
0, 25 = 0,37; : av=bv =

cv =a(1-0,37)=a 0,63; ξf = 1-
√

0, 3333 = 0,4226;
af = bf = cf =a(1-0,4226)=a 0,5774; ∆V = 0,633−0,57733

0,633

100=23 %;
∆F = 0,632−0,57742

0,632 100 = 16 %.
The conclusions drawn from the calculations are as fol-
lows:
– the difference in the values of ∆ξ = ξf – ξv decreases

with the increasing values of mb and mc ; the max-
imum difference is equal to 0,0526 for mb=1 and
mc = 1,

– for mb=10 and mc=10, the difference ∆ξ

=0,4937-0,4837=0,01; for mb=∞ and mc=∞ the dif-
ference ∆ξ=0,

– to reduce the values of ∆V and ∆F it is suggested to
use in practical calculations an arithmetic mean va-
lue of the quantities ξv and ξf

– the application of an arithmetic mean value of ξv
and ξf in example d) gives the following result: ∆V
= (1−0,37)3−(1−0,3963)3

(1−0,37)3 100 = 12 % ;

∆F = (1−0,3963)2−(1−0,4226)2

(1−0,3963)2 100 = 8,52 %; 0,37+0,4226
2 =

0,3963.

4. Calculation of the volume and surface of the
sequences of pieces and of the coefficients

ϕv,n and ϕf ,n

The, calculated by the method of differential calcu-
lus and integral calculus, coefficients ϕv and ϕf strictly
relate to the case when the number of the pieces is in-
finitely large. In practice, however, in the combustion
and melting zones of cupola, the number of the pieces
of coke and metal is always finite. Hence the question
arises: are the calculated coefficients valid in descrip-
tion of the structures present in the above mentioned
zones, or what is the minimum number of pieces when
these coefficients hold good ? To answer this question,
let us define the coefficients ϕv,n and ϕf ,n, remembering
that they depend on the number of pieces, and derive re-
spective formulae used for their calculation.
At the beginning of the discussion, some model assump-
tions regarding the formation of a structure of the com-
bustion zone and melting zone have been adapted. Let
us start with the structure of the combustion zone, as
simpler because formed of the pieces of coke only.

The structure of the combustion zone is formed in the
following way:
– while passing from the melting zone to the combus-

tion zone, the new pieces of coke are forming with
the pieces already burning in this zone the sequences
of the burning pieces; the number of these sequences
equals the number of the coke pieces moving at the
same time through an upper level of the combustion
zone cross-section,

– in each sequence of pieces, the differences in the
fundamental dimensions of the successive pieces are
the same and equal to 2z, thus satisfying the equality

a = 2zn, (63)

where:
2z – the constant difference in the linear dimensions of
the pieces in a given sequence, m
n – the number of pieces in a given sequence,
– the filling height in the cupola shaft composed of all

the sequences present in the zone makes the height
of the combustion zone.

A combustion zone of this specific structure is charac-
terised by the following quantities: arithmetic mean vol-
ume and arithmetic mean surface of the pieces in each
sequence, where:
– the arithmetic mean volume of the pieces in each

sequence is expressed by the following general for-
mula:

vn =
total volume of pieces in sequence

number of pieces in sequence
, (64)

where:
vn – the arithmetic mean volume of the pieces in a given
sequence, depending on the number of pieces, m3.
– analogically to (29), the arithmetic mean surface of

the pieces in each sequence is expressed by the fol-
lowing general formula:

fn =
total surface of pieces in sequence

number of pieces in sequence
, (65)

where:
fn – the arithmetic mean surface of the pieces in a given
sequence, depending on the number of pieces, m2.
Analogically to the sequences of the pieces of coke burn-
ing in the combustion zone, we have the sequences of
the pieces of metal melting in the melting zone which,
togther with coke, are filling the space in cupola shaft
between the lower boundary of the preheating zone and
the upper boundary of the combustion zone, thus deter-
mining the height of the melting zone. The distribution
of the pieces of metal melting in the zone is characterised
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by the volumes decreasing in direction towards the lower
zone boundary. This makes the coke fraction increase in
respect of the metal fraction, in spite of certain losses of
coke (strictly speaking of the coal coke), consumed while
reducing some fractions of the gaseous CO2. The mean
coke content in the melting zone Kw,t can be calculated
from the following formula:

Kw,t =
Kw,4

ϕv
, (66)

where:
Kw,4 – the content of coke charge in respect of metal,
kg coke/100 kg Fe. Equations (64) and (65) give general
prescription for the calculation of an arithmetic mean
volume and arithmetic mean surface of the pieces of
coke or metal in a given sequence of the pieces; the
calculated values depend on the number of pieces in
a sequence and on the size of the largest piece in this
sequence.
To obtain a formula determining the height of the com-
bustion zone and melting zone, and to describe the ge-
ometrical structure of the zones, it is necessary to ap-
ply simultaneously the integral mean v and f and the
arithmetic mean vn and fn, which is possible only when
the values of these parameters satisfy the approximate
equalities:

v � vn and f � fn. (67)

Let us explain on a specific example the problem of,
e.g., v � vn.

Calculations 2.

The burning pieces of coke have a spherical shape and
the initial diameter a=10 cm. The initial volume of the
spheres is vo = 523,6 cm3, while their integral mean
volume is equal to v = 0,25·523,6 = 130,9 cm3 [formula
(14)]. It is assumed that the sequence of spheres un-
der consideration is composed of 5 spheres of diameters
differing by 2 cm [formula (28)]. Using (64), the arith-
metic mean volume of the spheres forming the sequence
is calculated:
v5 =

π
6 (103+83+63+43+23)

5 =188,5 cm3. The calculated val-
ue considerably exceeds the value of the integral mean
volume, which amounts to 130,9 cm3.
In the calculation of v5 it has been assumed that the
largest piece in the sequence has an initial volume vo,
which means that it has not decreased in volume while
passing from the melting zone to the combustion zone.
Let us repeat the calculations assuming now that the
largest piece in the sequence has a diameter equal to
8 cm. The calculated arithmetic mean volume of the
pieces in the sequence is v∗5 = 83, 8cm3, and so it is

obviously smaller than the integral mean volume. Let
us now, using the calculated mean values, calculate the
arithmetic mean value, which is 188,5+83,8

2 = 136, 15cm3;
the mean calculated from the mean values is by only 4 %
higher than the integral mean, which can be considered
the accuracy sufficient for an equally valid application of
the integral mean volume and arithmetic mean volume
of the spheres when the number of pieces in a sequence
is minimum 5 (with increasing n the accuracy also in-
creases).
Similar conclusions are reached when in an analogical
way fn is calculated according to formula (65).
Let us now derive a general formula (plates and any
arbitrary values of n) for the calculation of vn and fn.
Analogically to the coefficients ϕv and ϕf , we can define
the coefficients ϕv,n and ϕf ,n

ϕv,n =
vn

vo
(68)

ϕf ,n =
fn

fo
, (69)

where:
ϕv,n – the coefficient expressing the ratio between the
arithmetic mean volume of a piece in a given sequence
of n pieces and the initial volume of this piece,
ϕf ,n – the coefficient expressing the ratio between the
arithmetic mean surface of a piece in a given sequence
of n pieces and the initial surface of this piece.
The formulae used in calculation of the coefficients ϕv,n
and ϕf ,n are the following:

ϕv,n =
vn

vo
= ϕv +

2mb + 2mc − 1
12mbmcn2 (70)

ϕf ,n =
fn
fo

= ϕf +
1 + mbmc −mb −mc

2Mn
+

1
2Mn2 , (71)

where:
vn – the mean volume of the pieces of metal in a se-
quence of n pieces, m3 M= mb+mc+mbmc,
fn – the mean surface of the pieces of metal in a sequence
of n pieces, m3.

For n=∞, the formulae (70) and (71) assume the
form of formulae (1) and (2)
Let us now describe the theory by which equations (70)
and (71) have been obtained.

5. The theory of deriving formula (70)

To obtain formula (70), the following equation express-
ing the volume of the burning or melting plate will be
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used (having reduced previously its every dimension by a
value 2z·i, where 2z – is the difference in fundamental di-
mensions of the neighbouring plates in a given sequence
of plates; i – is the number of the burnt or melted down
plates of the thickness 2z)

vi = (a − 2z · i)(b − 2z · i)(c − 2z · i). (72)

Using (72), the total volume of plates melting in a giv-
en sequence will be writen down for the two cases of
summation:

V
′
c,n =

n∑

i=1

(a − 2zi)(b − 2zi)(c − 2zi) (73)

V
′′
c,n =

n∑

i=0

(a − 2zi)(b − 2zi)(c − 2zi), (74)

The difference between the sums obtained in (73) and
(74) consists in this that in (73) the first in the sequence
is the piece of charge, the fundamental dimensions of
which have been reduced by a value 2z(i=1), while in
(74) the first in the sequence is the piece of an initial
volume abc (2z=0, i=0).
The formulae (73) and (74) are used in calculation of
the arithmetic mean volume of the sequences of pieces
according to the following formula:

Vc,n =
V
′
c,n + V

′′
c,n

2
(75)

and next of vn (Vc,n/n) and ϕv,n (vn/vo).
Let us extract from brackets the quantities a, b and c in
formulae (73) and (74) and obtain

V
′
c,n = vo

n∑

i=1

(1 − δi)(1 − δi
mb

)(1 − δi
mc

) (76)

V
′′
c,n = vo

n∑

i=0

(1 − δi)(1 − δi
mb

)(1 − δi
mc

), (77)

where:

δ =
2z
a
.

Let us denote the sums in equations (76) and (77) with
the symbols R1 and R2, respectively, and make next the
summation of R1 and R2.
The summation of R1

R1 =

n∑

i=1

(1 − δi)(1 − δi
mb

)(1 − δi
mc

) (78)

Let us multiply out the terms in the right side of equation
(78)

R1 = 1 − k1δi + k2δ
2i2 − k3δ

3i3 (79)

where: k1, k2, k3 – is expresed by formulae (33), (34)
and (35).
Let us develop some of the terms in sum (79), i.e. for
i=1, 2 ,3 and n:

i = 1 1 − k1δ1 + k2δ
212 − k3δ

313 (a)

i = 2 1 − k1δ2 + k2δ
222 − k3δ

323 (b)

i = 3 1 − k1δ3 + k2δ
232 − k3δ

333 (c)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

i = n 1 − k1δn + k2δ
2n2 − k3δ

3n3 (d)

Let us now sum the columns of expressions (a)÷(d):

first column : 1 + 1 + 1 + . . . .. + 1 = n (e)

second column : −k1δ(1 + 2 + 3 + . . . . + n) = −k1δ
n(n + 1)

2
(f)

third column : k2δ
2(12 + 22 + 32 + . . . . + n2) = k2δ

2 2(2n2 + 3n + 1)
6

(g)

fourth column : −k3δ
3(13 + 23 + 33 + . . . . + n3) = −k3δ

3 n2(n2 + 2n + 1)
4

(h)
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The sums (f), (g) and (h) were written down using for-
mulae [3]:

1 + 2 + 3 + · · · + n =
n
2
(n + 1) (i)

12 + 22 + 32 + . . . n2 =
n
6
(2n2 + 3n + 1) (j)

13 + 23 + 33 + . . . n3 =
n2

4
(n2 + 2n + 1) (k)

Let us add sums (e)÷(h) :

R1 = n − k1δ
n(n + 1)

2
+ k2δ

2 n(2n2 + 3n + 1)
6

− k3δ
3 n2(n2 + 2n + 1)

4
(80)

Let us now simplify (80) by substituting

δ =
1
n

(81)

The relationship (81) follows from the definition of δ
(2z/a) and from the relationship n = a

2z .
We obtain the following form of (80)

R1 = (1 − 1
2
k1 +

1
3
k2 − 1

4
k3)n +

1
2
(k2 − k1 − k3) +

2k2 − 3k3

12n
. (82)

After substituting to (82) the relations k1, k2 and k3
[(33),(34) and (35)], the following equation is obtained

R1 = (
1
2
− 1

6mb
− 1

6mc
+

1
12mbmc

)n − 1
2

+
2mb + 2mc − 1

12mbmcn
. (83)

The expression in brackets on the right side of equation
(83) is used for calculation of the value of coefficient ϕv
[equation (1)]; hence formula (83) can be written down
as

R1 = ϕvn − 1
2

+
2mb + 2mc − 1

12mbmcn
. (84)

Let us substitute (84) to (76) and obtain a final formula
for the calculation of V(c, n)

′

V
′
c,n = vo(ϕvn − 1

2
+

2mb + 2mc − 1
12mbmcn

). (85)

To produce a formula for the calculation of a mean vol-
ume of the piece in a given sequence, we shall divide
V
′
c,n by n and obtain

v
′
c,n =

V
′
c,n

n
= voϕ

′
v,n, (86)

where:

ϕ
′
v,n = ϕv − 1

2n
+

2mb + 2mc − 1
12mbmcn2 . (87)

The summation of R2

R2 =

n∑

i=0

(1 − δi)(1 − δi
mb

)(1 − δi
mc

). (88)

For i=0, the first term in sum (88) is 1, and hence the
calculated sum (88) will be larger by 1 than the sum R1,
and so it will be

R2 = R1 + 1 (89)

or after allowing for (84)

R2 = ϕvn +
1
2

+
2mb + 2mc − 1

12mbmcn
. (90)

Let us substitute (90) to (77) and obtain

V
′′
c,n = vo(ϕvn +

1
2

+
2mb + 2mc − 1

12mbmcn
). (91)

Dividing (91) by n, a formula is obtained to calculate
the mean volume of pieces in a given sequence of the
pieces

v
′′
c,n =

V
′′
c,n

n
= voϕ

′′
v,n, (92)

where:

ϕ
′′
v,n = ϕv +

1
2n

+
2mb+2mc − 1
12mbmcn2 . (93)

Let us calculate the arithmetic means for the derived
formulae (85) and (91) as well as (87) and (93) :

Vc,n =
V
′
c,n + V

′′
c,n

2
= vo(ϕvn +

2mb + 2mc − 1
12mbmcn

) (94)
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ϕv,n =
ϕ
′
v,n + ϕ

′′
v,n

2
= ϕv +

2mb+2mc − 1
12mbmcn2 . (95)

For n=∞, equation (95) is simplified to the form of equa-
tion (1).
For n< ∞, the difference in the values of the coefficients
ϕv,n and ϕv results from formula (95)

∆ϕv,n = ϕv,n − ϕv =
2mb+2mc − 1
12mbmcn2 , (96)

or (when the difference is expressed in percents)

Rϕv,n =
∆ϕv,n100

ϕv
=

(mb + mc − 1)100
(6mbmc −mb −mc + 1)n2 , (97)

where: Rϕv,n – the difference ∆ϕv,n referred to ϕv, %.

Calculations 3.

Using (97), let us calculate the values of Rϕv,n for the
three values of mb and mc and for the three values of n.

mb=mc =1 (spheres, cubes); Rϕv,n= 100
n2 ; n=2, Rϕv,2=25

%; n=3, Rϕv,3=11,1 %; n=5, Rϕv,5=4 %.
mb=mc=5 (square plates); Rϕv,n= 14,5

n2 ; n=2, Rϕv, 2=
3,625 %; n=3, Rϕv,3= 1,61 %; n=5, Rϕv,5 = 0,58 %.
mb= 1, mc=3; Rϕv,n= 63,64

n2 ; n=2, Rϕv,2=15,91 %; n=3,
Rϕv,3=7,07 %; n=5, Rϕv,5= 2,55 %.
From the calculations it follows that the values of Rϕv,n
are decreasing with the increasing values of mb, mc and
n. Let us accept as a maximum the value of Rϕv,n=4 %.
For this value we can adopt in calculations ϕv,n = ϕv.

6. The theory of deriving formula (71)

To obtain formula (71), the following equation ex-
pressing the surface of the burning or melting plate will
be used (having reduced previously its every dimension
by a value 2z·i, where 2z – is the difference in funda-
mental dimensions of the neighbouring plates in a given
sequence of plates; i – is the number of the burnt or
melted down plates of the thickness 2z)

fi = 2(a − 2zi)(b − 2zi) + 2(a − 2zi)(c − 2zi) + 2(b − 2zi)(c − 2zi). (98)

After multiplying out the brackets in (98) and arranging
we obtain

fi = 2(ab + ac + bc) − 4(a + b + c)2zi + 3(2zi)2. (99)

The first term on the right side of (99) allows for the
initial surface of the plate fo

fo = 2(ab + ac + bc) = 2(mb + mc + mbmc)a2 = 2Ma2,
(100)

where:

M = mb + mc + mbmc.

Let us substitute to (99) the relationship (100), and ex-
tract it next from brackets

fi = fo[1 − 4(a + b + c)2zi
2Ma2 +

6(2zi)2

2Ma2 ]. (101)

By substituting 2zi/a=δ to (101), we obtain

fi = fo[1 − 2(1 + mb + mc)δi
M

+
3(δi)2

M
] (102)

or

fi = fo(1 − k4δi + k5δ
2i2), (103)

where: k4 and k5 are given by formulae (47) and (48)

k4 =
2(1 + mb + mc)
mb + mc + mbmc

; k5 =
3

mb + mc + mbmc
.

Using (103), let us write down the total surface of the
plates in a given sequence for the two cases of summa-
tion

F
′
c,n = fo

n∑

i=1

(1 − k4δi + k5δ
2i2) (104)

F
′′
c,n = fo

n∑

i=0

(1 − k4δi + k5δ
2i2). (105)

Let us denote the sum in equation (104) with the symbol
S1, and in equation (105) with the symbol S2

F
′
c,n = foS1 (106)

F
′′
c,n = foS2, (107)

where

S1 =

n∑

i=1

(1 − k4δi + k5δ
2i2) (108)
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S2 =

n∑

i=0

(1 − k4δi + k5δ
2i2). (109)

Let us calculate successively the sums S1 and S2.

The sum S1

Let us develop several terms in sum (108), i.e. for i=1,
2 and 3 and n:

i = 1 1 − k4δ1 + k5δ
212 (a)

i = 2 1 − k4δ2 + k5δ
222 (b)

i = 3 1 − k4δ3 + k5δ
232 (c)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

i = n 1 − k4δ4 + k5δ
2n2 (d)

Let us add the columns of expressions (a)÷(d):

first column : 1 + 1 + 1 + · · · + 1 = n (e)

second column : −k4δ(1+2+3+ .. +n) = −k4δ
n(n+1)

2
(f)

third column : k5δ
2 n(2n2 + 3n + 1)

6
. (g)

Let us add the sums (e), (f) and (g):

S1 = n − k4δ
n(n + 1)

2
+ k5δ

2 n(2n2 + 3n + 1)
6

. (110)

By substituting δ=1/n to (110), we obtain

S1 = n − k4
n + 1

2
+ k5

2n2 + 3n + 1
6n

. (111)

Let us substitute to (111) the expressions for k4 and k5

S1 = n − 2(1 + mb + mc)
M

n + 1
2

+
3(2n2 + 3n + 1)

6nM
.

(112)
Let us make a series of transformations (112):

S1 =
1
M

[nM − (1 + mb + mc)n − (1 + mb + mc) + n +
3
2

+
1
2n

] (113)

S1 =
1
M

[mbmcn +
1 − 2mb − 2mc

2
+

1
2n

] (114)

S1 = ϕfn +
1 − 2mb − 2mc

2M
+

1
2nM

, (115)

where:
ϕf = mbmc

M formula (2).
Let us substitute (115) to (106)

F
′
c,n = vo[ϕfn +

1 − 2mb − 2mc

2M
+

1
2nM

] (116)

Let us now write down a formula for F
′′
c,n.

The sum S2
For i=0, the first term in sum (109) is 1, and hence it is
by 1 larger than the sum S1

S2 = S1 + 1 = ϕfn +
1 − 2mb − 2mc

2M
+

1
2nM

+ 1.
(117)

Let us substitute (117) to (107)

F
′′
c,n = vo[ϕfn +

1 − 2mb − 2mc

2M
+

1
2nM

+ 1]. (118)

The arithmetic mean can be calculated from equations
(116) and (118)

Fc,n = vo[ϕfn +
1 − 2mb − 2mc

2M
+

1
2nM

+
1
2
]. (119)

Equation (119) is the searched equation for calculation of
an arithmetic mean surface of the sequence of n pieces.
To obtain a mean volume of the piece in a sequence of
n pieces, let us divide (119) by n and obtain

vc,n =
Fc,n

n
= vo[ϕf + frac1 − 2mb − 2mc2Mn +

1
2n2M

+
1
2n

]. (120)

Using (120), let us write down a formula for calcula-
tion of the ratio between the arithmetic mean volume of
pieces in a sequence of n pieces and the initial volume
of pieces

ϕf ,n =
vc,n

vo
= ϕf +

1 − 2mb − 2mc

2Mn
+

1
2n2M

+
1
2n
(121)

or after transformation
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ϕf ,n = ϕf +
1 + 1

mbmc
− 1

mb
− 1

mc

2n(1 + 1
mb

+ 1
mc

)
+

1
2n2(mbmc + mb + mc)

, (122)

Let us write down the special cases of formula (122):
For mb=mc=1 (spheres, cubes), equation (122) is simpli-
fied t

ϕf ,n = ϕf +
1

6n2 . (123)

For mb = mc= 5, equation (122) is simplified to

ϕf ,n = ϕf +
2
9n

+
1

70n2 . (124)

For mb = mc = 10, equation (122) is simplified to

ϕf ,n = ϕf +
81

240n
+

1
240n2 . (125)

For mb = mc = ∞, formula (122) is simplified to: ϕf ,n =
1 + 1

2n , but when n=∞ it takes the form of formula (2),
i.e. ϕf ,n= ϕf .
Using (122), let us write down a formula for calculation
of a difference in the values of coefficients ϕf ,n and ϕf

∆ϕ f ,n = ϕf ,n − ϕf =
1 + mbmc −mb −mc

2Mn + 1
2n2M

(126)

or (when the value is expressed in percents)

Rϕf ,n =
Ąϕf ,n

ϕf
100 (127)

Calculations 4.

Let us calculate the values of ∆ϕf ,n and Rϕf ,n for the
three values of mb and mc and for the three values of n.
mb=mc=1 (spheres, cubes), ϕf=1/3, M=3: n=2, ∆ϕf ,2 =
0,0417, Rϕf ,2= 12,55 %;
n=3, ∆ϕf ,3=0,0185, Rϕf ,3=5,55 %; n=5, ∆ϕf ,5
=6,67·10−3, Rϕf ,5=2 %.
mb=mc=5, ϕf=0,714, ϕf=0,714, M=35: n=2,
∆ϕf ,2=0,118, Rϕf ,2=16,5 %; n=3,
∆ϕf ,3=0,078, Rϕf ,3=11%; n=5, ∆ϕf ,5=0,0642, Rϕf ,5=6,5
%.
mb=mc=10, ϕf=0,833, M=120: n=2, ∆ϕf ,2=0,17,
Rϕf ,2=20,4 %; n=3, ∆ϕf ,3=0,113,
Rϕf ,3=13,6 %; n=5, ∆ϕf ,5=0,068, Rϕf ,5=8 %.
For mb = mc = ∞ and n = 5, the value of ϕf ,5 = 1,1 ,
while the value of ∆ϕf ,5=10 %.
From the calculations given above it follows that in prac-
tice as soon as we have n=5, formulae (1) and (2) can
replace formulae (70) and (71). This solves the problem
of calculating the height of combustion zone and melting

zone, and of calculating the structure of the zones and
other characteristic parameters, e.g. the surface devel-
opment and output.
Studies [1,2] describe the first attempts at an application
of coefficients ϕv and ϕf in calculation of the height of
combustion zone and melting zone.

7. Derivation of formulae for calculation of the
combustion/melting zone height

Let us apply now the examined paradigm in derivation
of the fundamental formulae describing the height of
combustion zone and melting zone.

A formula for calculation of the combustion zone
height

The following model assumptions have been adapted:
– the combustion zone is located between the level of

the tuyères (single-row cupolas are taken into con-
sideration) and lower boundary of the melting zone,

– on passing from the combustion zone to the melt-
ing zone, the pieces of coke are characterised by the
same weight, the same dimensions, and the same
physico-chemical properties (reactivity); the coke
weight losses above the combustion zone for CO2
reduction are neglected;

– the burning pieces of coke form the decreasing se-
quences of pieces characterised by a random distri-
bution in the zone,

– the bulk density of coke is equal within the whole
zone height,

– the mean volume and the mean surface of the burning
pieces of coke equals their integral mean,

– along the whole height of the zone, the linear burning
rate of the coke is the same,

– the content of carbon monoxide at the upper bound-
ary of the combustion zone is known in advance.

Let us now express with a formula the mass velocity of
the coke burning process

ṁk = µkFkρk, (128)

where:
ṁk – the mass velocity of the coke burning process, kg/s
µk – the linear velocity of the coke burning process,
Fk – the total surface area of the burning pieces of coke
(the combustion zone development surface), m2

ρk – the coke pieces density, kg/m3.
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The surface Fk can be expressed with the following for-
mula

Fk = nkfk, (129)

where:
nk – the number of the pieces of coke in the zone,
fk – the integral mean surface of the pieces of coke in
the zone, m2.
Now nk can be expressed with the following formula

nk =
HsFżρn,k

vkρk
, (130)

where:
Hs – the height of the combustion zone, m

Fż – the internal cupola cross-section in the com-
bustion zone, m2,
ρn,k – the coke bulk density in the zone, kg/m3

vk – the integral mean volume of the pieces of coke in
the zone, m3.
Let us substitute relationships (129) and (130) to (128)
and transform the whole to

Hs =
ṁk r̄k

Fżµkρn,k
, (131)

where: rk = vk

f k
– the integral mean modulus of the pieces

of coke in the zone, m.
Let us substitute ṁk

Fż
= PF

Lk,2
to (131) (where: PF – the blast

air volume fed to the combustion zone under normal
conditions, m3/(m2·s); Lk,2 – the blast air volume used
to burn down 1 kg coke, calculated from the chemical
composition of gases at the upper boundary of combus-
tion zone, m3/kg coke). Thus, a fundamental form of the
equation for calculation of the combustion zone height
is obtained

Hs =
PFrk

µkLk,2ρn,k
(132)

or

Hs =
PFτa,kϕf ,k

Lk,2ρn,k
, (133)

where:
τa,k – the time necessary for burning down a piece of
coke of the thickness a, s
ϕf ,k – the coefficient (2) valid for the pieces of coke.

A formula for calculation of the melting zone height
The following model assumptions have been adapted:
– the melting zone is located in the cupola shaft be-

tween the upper boundary of the combustion zone
and the lower boundary of the preheating zone; it
is a mixture of the melting pieces of metal and the,

non-reacting with gases, pieces of coke (the coke
weight losses for the CO2 reaction of decomposition
are neglected),

– on passing from the preheating zone to the melting
zone, the pieces of metal are characterised by the
same shape, the same weight, and the same melting
point,

– the mean volume and the mean surface of the melt-
ing pieces of metal are equal to their integral mean;
the melting pieces of metal form sequences charac-
terised by a random (casual) distribution in the mass
of coke,

– the pieces of metal are melting at a mean linear rate
equal for the whole zone,

– the height of the melting zone is equal to the sum of
the bulk height of the melting pieces of metal and the
bulk height of the pieces of coke present in the zone
(equal sums of the bulk heights of metal and coke
separately and after mixing have been assumed).

Using the last assumption let us write down the sum of
the bulk heights of metal and coke in the melting zone

HtFż =
Mm,t

ρn,m
+

Mk,t

ρn,k
, (134)

where:
Ht – the height of the melting zone, m
Fż – the internal mean cross-section of the melting zone,
m2

Mm,t – the weight of the melting pieces of metal in the
zone (the integral mean), kg
Mk,t – the weight of the pieces of coke in the melting
zone,kg
ρn,m – the bulk density of the pieces of metal, kg/m3.
Let us write down the right side of equation (134)

Ht =
Mm,t

Fżρn,m
Kρ,t, (135)

where:

Kρ,t = 1 +
Mk,t

Mm,t

ρn,m

ρn,k
= 1 +

Kw,4

100ϕv,m

ρn,m

ρn,k
(136)

where:
Kw,4 =

Mk,t

Mm,t
100 =

mn,k

mn,m
100 - the coke charge consumption

rate, kg coke/100 kg Fe
mn,k – the weight of the coke charge burden, kg
mn,m – the weight of the metal burden, kg
ϕv,m – the coefficient (1) valid for the melting pieces of
metal
Mm,t = Mm,tϕv,m.
By substituting to (135)
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Mm,t

Fż
= SFτrm (137)

we obtain

Ht =
SFτrm
ρn,m

Kρ,t, (138)

where:
τrm – the time necessary for melting the pieces of metal
of an integral mean modulus rm, s

SF =
Mm,t

Fżτrm
− − melting rate, kg Fe/(m2 · s).

Equation (138) can also be written down using relation-
ships resulting from the paradigm

Ht =
SFτa,mϕf ,m

ρn,m
Kρ,t, (139)

where:
ϕf ,m – the coefficient (2) valid for the pieces of metal,
τa,m – the melting time required for melting down a piece
of metal of the thickness a , s τaϕf ,m = τrm .
Equation (138) is one of the fundamental mutations of
the equations used for calculation of the melting zone
height. It requires data regarding the melting time τa,m,
which is calculated from the theoretical or empirical for-
mulae, and data on the output SF, which is calculated
from J. Buzek formula.

8. Concluding remarks

According to [4]. “paradigm is a flexible research stan-
dard comprising a set of concepts, values and practices
that schedule the consecutive research”.
Paradigm is formulated for a group of associate problems
for which no logical theory and analytical description
have been developed, or when the existing theory has
been burdened with too many anomalies. Both these sit-
uations are relevant in the case of models and analytical
descriptions referring to the height and structure of the
combustion zone and melting zone in coke-fired cupolas.
From the study the following conclusions follow:
¨ the equations derived for the calculation of coeffi-

cients ϕv and ϕf are functions of the relative dimen-
sions of the pieces of coke and metal mb and mc;

¨ the accuracy of the paradigm, characterised by the
main quantities af , bf , cf and av, bv, cv, increases
with increasing values of mb and mc;

¨ applied in calculation of the cupola zone structure,
the paradigm yields sufficiently accurate results when
the number of the pieces of metal or coke in the
formed sequences is at least 5;

¨ the calculation of the structure of combustion zone
starts with calculation of its height, followed by cal-
culation of a total volume of the pieces of coke
present in this zone, and next – using the concept
of integral mean volume, the number of the burning
pieces of coke in the zone is calculated; the next
operation uses respective formulae and consists in
calculating the elements of the zone structure (e.g.
distribution of the coke pieces size, zone develop-
ment surface area); preserving the same order of op-
erations, the number of the pieces of metal melting
in the melting zone and the number of the elements
forming the zone structure are calculated;

¨ for practical application of equation (134) it is nec-
essary to assume the CO content in gas at the upper
boundary of combustion zone and to be familiar with
the formula used in calculation of the linear coke
burning rate [5];

¨ the role of equation (139) is to inform us only that
it has been derived using a paradigm; the use of the
equation in practical calculations requires its further
transformations, which consist, among others, in in-
troducing the values of gas temperature at an inlet to
and outlet from the melting zone.

The study was carried out under own research project
no. N 508 469 234.
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