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FABRICATION AND DIELECTRIC PROPERTIES OF SOL-GEL DERIVED (Ba,Sr)TiO; CERAMICS

OTRZYMYWANIE I WEASCIWOSCI DIELEKTRYCZNE CERAMIKI (Ba,Sr)TiO; OTRZYMANE] METODA ZOLOWO-ZELOWA

The (Ba;_,Sr,)TiO; ceramic solid solution in the range 0.3< X <0.5 was prepared by the sol-gel method. Barium acetate,
strontium acetate and tetra-butyl titanate were used as starting materials. Thermal evolution of the dried gel as well as ceramic
powder was studied by simultaneous thermal analysis. The amorphous gel of BST was calcined in the furnace and pressed into
pellets. The compacts were next sintered by free sintering method at temperature 7=1450°C. The structure, microstructure and
dielectric properties were studied for sol-gel derived ceramics.
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Ceramiczny roztwor staly (Ba;_,Sr,)TiO; w zakresie x=0,3-0,5 otrzymany zostal metoda zolowo-zelowa. Jako materiaty
wyjSciowe zastosowano: octan baru, octan strontu i n-butanolan tytanu. Dla suchego zelu w postaci proszku ceramicznego
przeprowadzono analiz¢ termiczng. Amorficzny zel poddano kalcynacji w piecu i prasowany w dyski. Probki byly nastgpnie
spiekane swobodnie w temperaturze 7=1450°C. Okreslono uktad krystalograficzny, grupe przestrzenng i parametry komorki
elementarnej otrzymanej metoda zolowo-zelowa ceramiki BST oraz zbadano jej mikrostrukture i wtasciwosci dielektryczne.

1. Introduction

Barium titanate (BaTiOs3) is known as a typi-
cal ferroelectric material, which exhibits three sharp
transitions: a first-order ferroelectric-paraelectric phase
transition (cubic-tetragonal) around 7'=130°C (also
called Curie temperature 7¢), a tetragonal-orthorhombic
phase  transition around 7=50°C and an
orthorhombic-rhombohedral phase transition around
T=-80°C [1]. With partial substitution of the titanium by
other tetravalent ions like in Ba(Ti,Sn)O3, Ba(Ti,Zr)O3
and Ba(Ti,Ce)O; etc., the variation of the permittivi-
ty around the Curie temperature 7 was found to get
smeared out in both ceramics and single crystal spec-
imens, i.e. to exhibit diffuse phase transition (DPT), a
similar behaviour to well known complex lead perovskite
ferroelectric relaxors.

The conventional method of synthesizing
(Ba,Sr)TiO3; powder relies on solid-state reac-
tion at a high temperature of around 7'=1200°C.
High-temperature (Ba,Sr)TiO3; powders due to the repet-
itive calcinations and grinding treatments, and lower
chemical activity are not suitable for preparation of

fine grained (Ba,Sr)TiO3 ceramics [2]. The new emerg-
ing sol-gel methods present some particular advantage
in obtaining the (Ba,Sr)TiO; powder with high purity
and homogeneity, through a lower temperature process,
avoiding contamination of the materials. They also yield
better stoichiometric control and allow the preparation
of dense ceramics. Finally, another important feature
of sol-gel processes is the possibility of grain size and
grain shape control.

It is worth noting that in today’s terminology, sol-gel
processing is a form of nanostructure processing. Not
only does the sol-gel process begin with a nanometer
sized unit, a molecule, it also undergoes reactions on
the nanometer scale resulting in a material with nanome-
ter features [3]. Therefore, the present work is devoted
to application of the sol-gel processing in fabrication of
Ba;_,Sr, TiO3 (BST) ceramic solid solutions in the range
of x from x=0.3 to x=0.5. We also report the results of
investigation of dielectric properties, the structure and
microstructure of sol-gel derived (Ba,Sr)TiO3 electroce-
ramics.
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2. Experimental

Solid solution Ba;_,Sr, TiO3 (BST), where x=0.30;
0.35; 0.40; 0.45; 0.50, was obtained by the sol-gel
method. Barium acetate (Ba(CH3COO),, 99%), stron-
tium acetate (Sr(CH3COQ);, 99%), and tetra-butyl ti-
tanate (Ti(OC4Ho)y4, 97%) were used as starting mate-
rials. Glacial acetic acid (CH3;COOH, 99.9%) and butyl
alcohol (C4HyOH, 99.9%) were used as solvents. After
dissolving the barium acetate and strontium acetate in
acetic acid at 7=100°C for 7=0.5h and cooling down
to room temperature and after mixing tetrabutyl titanate
in butyl alcohol, Ba-Sr solution was mixed with Ti so-
Iution by magnetic stirrer for r=0.5h. Acetyloacetone
(CH3COCH,COCH3) was added as stabilizer, followed
by hydrolysis. The sol was relatively stable and became a
gel in a few days. The amorphous BST gel was calcined
in the furnace at 7=850°C for =4h, milled and pressed
into pallets of d=10mm in diameter and A=2mm thick
at p=300MPa. The compacts were next sintered by free
sintering method at temperature 7=1450°C for r=4h.

The density of the sintered samples was measured
by the Archimedes method. The specimens were 91-96%
of the theoretical (X-ray) density for all compositions.

Thermal analysis was measured by STA-409 Net-
zsch analyzer. The morphology of BST powder after sin-
tering and milling was observed by transmission electron
microscopy.

The crystal structure was examined by X-ray diffrac-
tion with CoK,, radiation (@-260 method, scan step size
AB=0.02 deg, scan type continuous, scan step time =4s)
at room temperature. The lattice parameters for sol-gel
derived BST ceramic specimens were calculated using
Rietveld refinement, embedded into the computer pro-
gram PowderCell 2.4 [4].

Microstructure of the ceramic samples was observed
by both optical microscopy and scanning electron mi-
croscopy on fractures and polished sections followed by
a thermal etching using Olympus BX 60M and Philips
XL 30, ESEM/TMP, respectively.

Quantitative analysis of the microstructure of the ce-
ramic samples was carried out with the image analysis
software VISILOG 6. The developed algorithm allowed
for the successful grain boundary detection. The number
of grains was determined by using the Jeffries’” method
[5]. In this study the mean grain section area and the
mean grain chord length have been used as grain-size
measures.

For dielectric measurements, sintered samples were
polished and silver paste was deposited on both sides. Di-
electric permittivity (¢”) and loss factor (tgd) were mea-
sured, at different frequencies between f,i,=10kHz and
Jmax=1MHz, as function of temperature. The impedance
analyser of HP4192A type was employed and measure-
ments were carried out during heating up and cooling
down at the rate of 1°Cxmin~' in the temperature range
of AT=-100°C-120°C.

3. Results and discussion

Figure 1a, 1b, 2a, 2b, 3a, 3b show thermal analy-
sis curves of BST70/30, BST60/40 and BST50/50 dry
gels, respectively, before calcination (a) and after cal-
cination (b). One can see from Fig.la, 2a, and 3a that
all dried gel powders exhibited a large total weight loss
Am ~44.15% for BST70/30, 4m ~ 47% for BST60/40,
and 4m =~ 46.8% for BST50/50. The analyses show three
stages of weight loss.
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Fig. 1. a) Thermal analysis data of BST70/30 dry gel before calcination. b) Thermal analysis data of BST70/30 dry gel after calcination

The endothermic peak at around 7=130°C and cor-
responding weight loss 4m; ~ 16% for BST70/30 on
the TG curve, T=120°C and corresponding weight loss
Am15% for BST60/40 and 7=119.2°C and correspond-
ing weight loss Am;=~18% for BST50/50 on the TG curve,
are due to the evaporation of solvents. Below 7=300°C,
the first drop corresponds to the evaporation of the sol-
vent.

The second notable weight loss Am;~26% was de-
tected at 7'=334°C for BST70/30, Am, =~21% was de-
tected at 7=337°C for BST 60/40 and Am, ~19.6% was
detected at 7 ~340°C for BST50/50 which matched a
large exothermic peak in the DTA curve. Since no crys-
tallization takes place below T = 500°C, the weight loss
is probably due to the decomposition of organic additives
in the gel.
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The exothermic peak around 7~400°C and relative-
ly broad exothermic features at 7~650°C for all dried
gels, could be due to crystallization of various interme-
diate phases. It is known that for sol-gel derived bar-
ium titanate several intermediate phases exist prior to
the transformation of the amorphous phase into the per-
ovskite phase. The nature of these intermediate phases
and the crystallization sequence depends upon the pre-
cursors used [6].

The third notable drop between 7 =600°C and
T=800°C corresponds to an endothermic peak of the
DTG curve at about 7=731°C for BST70/30, T=718.5°C
for BST60/40 and 7=722°C for BST50/50. The weight
loss originates from the release of various side products
during alcoxolation and oxolation.

Fig.1b, 2b and 3b show that after calcination no
thermal effects take place in BST70/30, BST60/40 and
BST50/50 powder.
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Fig. 2. a) Thermal analysis data of BST60/40 dry gel before calcination. b) Thermal analysis data of BST60/40 dry gel after calcination
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Fig. 3. a) Thermal analysis data of BST50/50 dry gel before calcination, b) Thermal analysis data of BST50/50 dry gel after calcination

On the basis of thermal

calcination was chosen 7'=850°C for all dried gels.

analysis, the temperature

Transmission electron micrographs of Ba;_,Sr, TiO3

powder for x=0.30; 0.40;0.50 after sintering and milling
are presented in Fig.4, Fig.5, Fig.6, respectively.
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Fig. 4. TEM micrographs of BST70/30 ceramic powder after sintering and milling

100nm

Fig. 5. TEM micrographs of BST60/40 ceramic powder after sintering and milling
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Fig. 6. TEM micrographs of BST50/50 ceramic powder after sintering and milling

It was found that the powder formed agglomerates
in the dispersed solution. It was also observed that the
shape of the powder particles was not uniform. In most
cases, the primary particles are not isolated, but form
wormlike agglomerates with diameters of 300nm and
lengths of up to 400nm.

In Fig.7 the microstructure taken by optical micro-
scope is shown whereas Fig.8a shows the SEM image
of the microstructure and its binary representation for
ceramic sample with x=0.4. Spatial distribution of the
grain sizes is also given in Fig.8b.

Fig. 7. Optical image for Baj ¢St 4TiO; ceramics
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Fig. 8a.) SEM microstructure and its binary representation for Bag¢Sro4TiO3; ceramics
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Fig. 8b.) Distribution of the grain sizes of BageSrg4TiO3 ceramics



919

(space group Pm3m). Influence of the composition x on
110 and 220 X-ray diffraction lines of the perovskite type
elementary cell is shown in Fig. 9b. One can see a peak
and SrTiO3 form a complete solid solution for the stud- broadening as the composition x increases. Moreover
ied x range. For x=0.3 the structure is tetragonal (space a shift of the diffraction lines to higher 2 values with
group P4mm) while it is cubic for x=0.35, 0.4, 0.45, 0.5 increasing x can be seen in Fig.9b.

The X-ray diffraction patterns of Ba;_,Sr, TiO; at
room temperature are shown in Fig.9a. A single phase
was observed for all the samples, suggesting that BaTiO3
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Fig. 9. a) X-ray diffraction patterns for Ba,_,Sr, TiO3 compositions. b) X-ray diffraction lines 110 and 220 for Ba,_,Sr, TiO; compositions
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An indication of a decrease of the unit cell volume x is given. For x=0.3 <a> = (a’c)'? is taken where a

with increasing x is shown in Fig.10 where the depen- and ¢ are the tetragonal unit cell parameters.
dence of the average lattice constant <a> on composition

T 3.975.
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Fig. 10. Dependence of the average lattice constant < a > on concentration x for Ba;_,Sr, TiO; solid solution

Figure 11 shows the curves of dielectric permittiv- temperatures as x increases. For x=0.4 three peaks orig-
ity versus temperature for Ba;_,Sr,TiO; with various inated from cubic-tetragonal, tetragonal-orthorhombic
compositions 0.3<x<0.5. It can be seen from Fig.11 and orthorhombic-rhombohedral phase transition can be
that the permittivity maxima temperatures shift to lower seen.

— 5000F | Measuements for f‘

— Ba & TO, \

1 e :

= — Ba, &, TiO,

> 4000} Ba, 9, TO, / \

= " @ 100kHz I\

5 I f

-d /( J

S 2000F e X

=] / »” o

& ptemee ” ‘e’
—_ 1000 - Rttt T R -
5 - ——

et

' 0 i 1 'l A1 1 L 1 1 1 1 1
= -100-80 -60 40 -20 0 20 40 & 80 100

T-temperature [C)

Fig. 11. Temperature dependence of the dielectric permittivity (¢’) in the temperature range of the ferroelectric-paraelectric phase
transition for BST with x=0.30, x=0.40, x=0.50 composition
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Fig. 12. Results of calculation of parameters 1 and § for the diffused phase transition

Analysis of the dielectric permittivity data was done
with the modified empirical equation Eq.1 [7]:

’ Em

ST @ - T

)]

The coeflicient  gives information on the character
of the phase transition. The parameter ¢ has the dimen-
sion of a temperature and indicates the range of temper-
ature extension for the diffused phase transition. Results
of calculations according Eq.1 are given in Fig.12.

The values of these parameters as obtained by fitting
the dielectric data are: n=1.32 and 6=46°C for x=0.5, and
n=1.41 and 6=33°C for x=0.4, and n=1.48 and 6=40°C
for x=0.3.

4. Summary

Increasing the Sr*? concentrations in the
BaTiO3-SrTiO3 solid solutions linearly decreases the
lattice constant. Temperature of the maximum dielectric
permittivity 7, decreases with increasing x value. The
values of parameters 17 and & show that the sol-gel de-

rived ceramics investigated in the present study exhibit
mixed ferroelectric/relaxor character.
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