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MATHEMATICAL MODELLING OF THE HIGH FREQUENCY VIBRATIONS DURING COLD ROLLING PROCESS

MATEMATYCZNE MODELOWANIE DRGAŃ WYSOKOCZĘSTOTLIWOŚCIOWYCH WYSTĘPUJĄCYCH PODCZAS
WALCOWANIA BLACH NA ZIMNO

The study explores the model of high-frequency vibrations during the continuous rolling processes, the underlying
assumption being that vibrations are self-excited. The effects of rolling stand and rolling process parameters on the nature and
intensity of vibrations are investigated. The appearance of darkened streaks occurring on the metal sheet is explained. The
results are compared with the data quoted in literature on the subject.
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W pracy przedstawiono model opisujący drgania o wysokiej częstości, występujące w trakcie ciągłego walcowania blach.
Model ten jest oparty na założeniu samowzbudności procesu. Zbadano wpływ parametrów klatki oraz procesu walcowania
na charakter i intensywność drgań. Wyjaśniono również zjawisko powstawania na powierzchni blachy zaciemnionych pasków.
Otrzymane wyniki porównano z wynikami badań.

1. High-frequency vibrations

Modern machines and means of transport are required to
be more and more energy- efficient and ready to deliver a long
and failure-free performance. Fulfilling of these requirements
would be impossible but for the materials engineering which
allows to develop and introduce new building materials of ex-
tremely high structural strength and hardness which are never-
theless resistant to plastic working. Such conditioning together
with application of higher and higher deformation speed (up
to 100 s −1) contribute to the appearance of vibrations in the
course of plate and band rolling.

These vibrations are in certain circumstances excited by
relatively small and nearly invisible parameters disturbances.
They manifest long exposure time and fall into two intervals
depending on vibration frequency mainly 125-256 HZ and
700-1000 HZ [6, 7, 9, 14- 22].

The first interval embraces vibrations leading to fluctua-
tion in band thickness, sometimes even its rupture. They have
been broadly discussed in various papers, to name just a few:
[9-12].

Such threat does not appear in case of high-frequency
vibrations which do not have substantial influence on the
thickness of a rolled band. However, they may bring about
the appearance of visible, lateral, alternately bright and dark
strips on the surface of rolled metal plates with a constant
λ scale amounting to about 30 [mm] specific for a certain
type of rolling mills and process parameters. Roughness cre-

ated this way may fluctuate between 3-30 µm [13-20]. Metal
plates of this sort are perceived to be products of poor quality
mainly due to the fact that the a.m. strips may show through
the anti-corrosion and ornamental coatings. As a result, they
cannot find application in car bodies, casing of household ap-
pliances or metal packaging.

Generally, the basic vibration mechanism of the four-high
temper rolling mills in the frequency range 500-1000Hz (fifth
octave mode chatter) – that lead to marks on the steel strip
surface – is believed to be parametrical and self-excited [1, 9,
10, 12, 23].Closer analysis of the problem, however, allows to
notice that some of the assumptions made in studies carried
out to date, particularly the ones concerning occurence and
values of the phase shift between rolling force and vertical vi-
bration of the rolls in a stand [6, 11], do not find their ultimate
support in the presented mathematical descriptions.

Despite numerous attempts, the essence of these phenom-
ena has not been faithfully described yet which may have its
source in great difficulties in analyzing self-excited vibrations
found in mass-spring systems e.g. in a rolling mill.

Furthermore, there has been not enough data gathered
in order to define the conditions in which such a vibration
occurs and subsequently to reduce it thanks to introducing
new construction solutions as well as adjusting the process
parameters.

In order to overcome the a.m. difficulties it has been as-
sumed in this paper that the vibration of four-high mill’s rolls
may be described in a form of the Timoshenko beam [19,24].
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The action of the strip on the work rolls, which results
from its plastic deformation, has been described using Sims
formula.

The numerical simulation of the system have been done
using real parameters value of the industrial four-high rolling
mill.

It has been shown that criterion of the investigated vibra-
tion occurence must be considered including the form of trans-
verse vibration of the strip coupling the neighboring stands of
the series.

2. Underlying assumptions

It is assumed that the relative motion of centers of section
of the working and backing rolls is negligible and hence can
be omitted due to Hertz contact stress formulae. Hence they
can be replaced by a one short, equivalent roll, based on the
Timoshenko model. Its parameters are adjusted such that the
first three natural frequencies of the real and equivalent objects
should coincide.
•In accordance with the widely adopted methodology,

the rolling stand is modeled by a motionless mass-free elastic
element, with no damping. Its rigidity is assumed as in [3].
•The band is assumed to be a non-inertial element [5].
•According to Huber’s hypothesis axial stress pulsation

in the band, associated with changes of its thickness, will
change the value of the reduced yield point. This parameter
directly affects the force of streak-roll interaction. There is a
phase shift between this force and variable axial stresses in
the band, well documented in [4,5]. Under medium-frequency
vibrations, it attains large values, amounting even to π/2 in
the case of the stability loss. In the case of high frequency
vibrations, we assume that it is small. The phase shift value
is evaluated on the basis of numerical simulation data.
•The vertical impact acting upon equivalent rolls is gov-

erned by the Sims formula. Instead of modifying the reduced
stress, the phase shift is introduced into the function w(x,t),
describing the vertical motion of the section.

q1 = σ∗
√

R[∆h0 + 2w(x, t − τ0)]) (1)

The following designations are used: σ∗-yield stress, ∆h0 –
steady-state draft, τ0 – phase shift, w- coordinate expressing
the vertical motion of the roll section with the coordinate x.
•The description of damping assumes that energy dissi-

pation takes place only in the plasticized band section in the
rollgap. Stress measured in the direction vertical to the plane
of the metal sheet being rolled is governed by the formula
σ = ε1ẏ + ε2ẏ3 The variable y expresses the variations of the
band section height depending on its position in the rollgap.

3. Parameters of the equivalent roll

Fig (1) shows the model of the upper section of the four
high rolling stand, further utilised in numerical analysis. It
comprises an equivalent roll with the constant diameter R,
pressed to the band by springs with stiffness c0. These springs
model the stand housings with the pressing elements. Para-
meters: R, c0 and equivalent density ρ of the material have to

be precisely controlled to ensure that the first three natural
frequencies of the model should coincide with the relevant
frequencies of the real system. The upper and lower parts of
the rolling stand, separated by the band, are assumed to be
symmetrical.

Fig. 1. Rolling stand model: R-equivalent radius, ρ – equivalent den-
sity, c0 – stand rigidity in the vertical direction

Distributed (reduced to two dimension) action of the im-
mobile band upon the equivalent roll can be approximated by
a linear relationship, with a sufficient accuracy. Recalling (1):

q10 =σ∗
√

R∆h =σ∗
√

R[∆h0+ 2w(x, t)] � σ∗
√

R∆h0

[
1+

w(x, t)
∆h0

]
=

= q00 + q1 = q00 + αw(x, t) ; α = σ∗
√

R
∆h0

(2)
The expression ∆h0 = h10 − h20 stands for the draft during the
steady rolling process. In this approach the dynamic model
shown in Fig (1) can be brought down to that of the Tim-
oshenko’s beam supported on the linear, elastic base. Partial
equations and the associated boundary conditions are written
as [24,25]:

wxx − kρ
G

wtt − αk
GA

q1(x, t) = ϑx

ϑxx − ρ

E
ϑtt = − GA

kEJ
(wx − ϑ)

(3)

with boundary conditions:

M(0, t) = −EJϑx(0, t) = M(l, t) = −EJϑx(l, t)
T (0, t) = GA

k [wx(0, t) − ϑ(0, t)] = c0w(0, t)
T (l, t) = GA

k [wx(l, t) − ϑ(l, t)] = −c0w(0, t)

where: wx = ∂w
∂x ,wt = ∂w

∂t ,wxx = ∂2w
∂x2 ,wtt = ∂2w

∂t2 , ϑ -angle of
rotation section, E and G denote the Young modulus and Kir-
choff modulus, respectively and k−geometric warping factor,
equal to 10/9 for circular cross-sections; A, J – surface area
and the moment of inertia of the roll cross-section.

q1(x, t) = αw(x, t) (4)

Substituting (4) into (3) yields a linear system of differen-
tial equations governing the rolling stand behaviour whilst the
band remains immobile. Thus, one is able to obtain and further
optimise the natural frequencies to make sure they agree well
with the data of real construction.

The second frequency f2 �150[Hz] is associated
with medium-frequency vibrations, f4 �730[Hz] – with
high-frequency vibrations. The results were obtained for the
following parameters of the rolling mill:

R =0.4[m] – roll radius,
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ρ =36423[kg/m3] – equivalent density of the rolled ma-
terial,

c0 =0.895*1010[N/m] – equivalent stiffness of the rolling
stand with the rolled material

l =1.2[m] – roll length
σ∗ =3*108[N/m2] – yield stress,
∆h0 =0.2*10−3[m] – draft,
α = 0.671 ∗ 1010[N/m2]
Accordingly, we get:

TABLE 1
Natural frequencies of the system

i ωi[rad/s] fi[Hz]

2 1047.14 160.7

3 1432.06 228

4 4559 726

It is readily apparent that the quantity ρ has a non-physical
nature. It has no bearing, however, on further calculations.
Natural modes was identified as progressive (the second) and
symmetrical (the fourth). The third form, antisimetrical in this
case is negligible.

Fig(2) shows the natural modes coupled with natural fre-
quencies f2 and f4.

Fig. 2. Fourth (symmetrical) natural modes associated with
high-frequency vibrations

4. Dynamic action of a band upon the equivalent roll

This interaction is expressed as the sum of two compo-
nents: that involving band plasticisation and progressive mo-
tion and that associated with the viscous friction force.

4.1. Impact of the plasticised band section

In accordance with the assumption yielding the relation-
ship (1), dynamic overloading involved in the band interaction
force and taking into account its lifting motion is expressed
as:

qd
1 (x, t) = αw(x, t − τ0) ; α = σ∗

√
R

∆h0
(5)

This form of distributed loading renders the equations of mo-
tions extremely difficult to solve numerically. That is why the
function w(x, t − τ0) shall be replaced by its approximation
based on the assumption that it deviates only slightly from the
harmonic function wt = ω4X(x)cos(ω4t)

w(x, t−τ0) = X(x) sin(ω4t) cos(ω4τ0)−X(x) cos(ω4t) sin(ω4τ0) =

= cos(β)w(x, t) − sin(β)
ω4

wt(x, t)

Hence the delayed argument function is replaced by a linear
combination of functions w and wt and the second term can
be thus interpreted as negative damping.

4.2. Band-roll interaction due to energy dispersion

Interactions associated with damping are referred to as
q2. Under the assumption made, the stress on the roll-band
interface is governed by the formula:

σT = ε1ẏ + ε2ẏ3 (6)

Parameters ε1 and ε2 are associated with damping and will be
obtained by numerical simulations. The interpretation of the
variable y is shown in Fig (3).

Fig. 3. Geometry of the roll bite- schematic diagram

Here the motion of the roll’s centre is replaced by the
motion of the band’s axis. Axis position remains unchanged
despite the vibrations, due to the backward motion of the work-
ing rolls. Fig (3) leads to simple relationships:

h2

2
+ R = R cos φ0 +

h1

2
;
h2

2
− w + R = R cos φ∗0 +

h1

2
(7)

They relate the function w to the parameters φ0 and φ∗0
w = R(cos φ0 − cos φ∗0) � Rφ0(φ0 − φ∗0)

Hence, after linearisation we get:

φ∗0 =

√
R

∆h0
+

1√
R∆h0

w

On the other hand, the relationship

h2

2
− w + R = R cosψ + y (8)

is true which implies that when we assume the uniform ro-
tary motion of the rolls with the velocity Ω, we get: ẏ =

−RΩ sinψ − ẇ Combining these relationships yields the full
loading q2 due to damping, as given by the formula:

q2 = −
φ∗0∫

0

[ε1ẏ + ε2ẏ3]Rdψ

Deleting the constant terms associated with the steady motion
of the band (no vibrations), after necessary transformations
we get the full dynamic loading of a roll due to the impacts
of the band.

qd
2 = α


ε1∆h0

σ∗
+

3
8
ε2v2∆h2

0

σ∗

 ẇ +
ε2∆h0

σ∗
ẇ3

 (9)

The introduced quantity ν = ΩR is the speed at which the
outer layers of the band leave the rollgap.
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5. Differential equations of motion

Recalling the assumptions leads to the modification of
equation (3), whereby the relevant functions are replaced.
Quantities involving qd

1 and qd
2 , defined by (5), (6) and (10)

describe partly linearised, dynamic interactions of the band in
the elasticity and damping domain The transition from partial
equations to an ordinary equation was performed using the
Galerkin method. Thus modified equations (3) describe the
self-excited process. In this case the applied Galerkin base
is limited to one element, wherein base vector is selected as
the eigenfunction corresponding to the frequency associated
with the self-excited process. High-frequency vibrations cor-
respond to the fourth mode, hence the vector is selected that
corresponds to this particular frequency.

z =


w
ϑ

 =


X4(x)
Φ4(x)

 u(t) (10)

Its components X4 and Φ4 are shown in Fig (2) in column II.
Including (10) to PDE (3) and making standard calcula-

tions of the Galekin’s method (ie. calculation inner product on
the [0,l] range) we can reduce PDE to ODE equations.

The calculation procedure yields the equation describing
and unknown function of time u(t)

[
kρc1

G
+
ρc2

E

]
ü +

kαγ1c1

GA
u̇ +

kαγ2c3

GA
u̇3+

+

[
kαc1

GA
+

GAc2

kEJ
+ c4 − GAc5

kEJ
− c6 − c7

]
u = 0

(11)

Coefficients ci are used to designate the following integrals:

c1 =

l∫

0

X2
4dx ; c2 =

l∫

0

Φ2
4dx ; c3 =

l∫

0

X4
4dx ; c4 =

l∫

0

X4Φ
′
4dx

c5 =

l∫

0

X4Φ
′
4dx ; c6 =

l∫

0

X
′′
4 X4dx ; c7 =

l∫

0

Φ
′′
4Φ4dx ;

(12)

γ1 =
− sin(β)
ω4

+
ε1∆h0

σ∗
+

3
8
ε2v2∆h2

0

σ∗
; γ2 =

ε2∆h0

σ∗

6. Results of the simulations

•Calculations were performed recalling Eq (11) and the
following parameters:

σ∗ =3.2*108[N/m2] ρ =36423[kg/m3]
ε1 =1.8007*108[Ns/m3] c0 =0.895*1010[N/m]
ε2 =3.2651*108[Ns3/m5] ∆h0 ∈(1.5,2.5)*104[m]
β ∈ (π/10, π /4) ν ∈(15,30)[m/s]

When investigating the effects of particular parameters,
such as ρ,R and c0, their value was varied in the range ±10%.
•The real energy dispersion in the system ought to take

into account the ’negative damping’, associated with the phase
shift of the function w and equal to

β = ω4τ0 (13)

between the axial stresses in the band and the function w. This
effect is illustrated in Fig. (4)

Fig. 4. Damping model taking into account the ’negative damping’.
µ = γ1u̇ + γ2u̇3(see eq. (11,12))

It appears that for middle values of the parameters listed
below and for β = π/5 and ω4 =4559[rad/s], vibrations occur
in the roller-band system associated with the limit cycle de-
fined by the zero of the characteristic. It is a typical effect,
occurring in self-excited systems. The appearance and scale
of this cycle depend chiefly on parameters in the calculation
procedure, particularly β, ε1 and ε2.
•Numerical simulation data reveal that vibration ampli-

tudes fall in the range (0-100)[µm] and vibrations appear to be
nearly perfectly harmonic, which is corroborated by Fig. (5),
showing the time patterns of the vibration and its spectral
analysis.

Fig. 5. Function u(t) and its FFT transform. Parameters taken in
calculations: ∆h0 =2*10−4[m], ν =25[m/s], β = π/5. The remaining
parameters are summarised above

That fully confirms the adequacy of the applied approx-
imation, where the delayed argument function w is replaced
by the linear combination of a function and its derivative with
respect to time.
•Among parameters used in this study, those involving

the highest level of uncertainty include damping factors, ε1
and ε2. Generally speaking, the values quoted in major publi-
cations [6, 11] are of the order of 108. It seems fully merited
to compare those parameters with the relevant values given
in the literature on the theory of vibrations with reference to
steel deformation processes [8]. This should not present any
major difficulty since the differential equation describing the
roll motion becomes an equation of an nonlinear, 1 DOF oscil-
lator. To handle such equations, a dimensionless coefficient ζ
is introduced associated with the linear component of damping
related to the mass and elasticity of the oscillator.
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ω2
00 =

kαc1

GA
+

GAc2

kEJ
+ c4 − GAc5

kEJ
− c6 − c7

kρc1

G
+
ρc2

E

kα
ε1∆h0

σ∗
+

3
8
ε2v2∆h2

0

σ∗



GA
(
kρc1

G
+
ρc2

E

) = 2ω00ζ

(14)

In this case the middle values of the relevant coefficients
are taken and v =23[m/s], β = π/5,ω4 =4559[rad/s] (726[Hz])
and finally we obtain:.

ζ = 0.03271 (15)

This value is very near to that assumed in the theory of vibra-
tions. It is reasonable to suppose, therefore, that the value of
coefficient ε1 is selected correctly. Parameters ε2 and β in the
simulations are controlled such that that for the predetermined
variability range of the system’s parameters, the amplitudes
should fall in the interval (0-100)[µm].
•For parameters of the rolling process and the rolling ma-

chine fluctuating round their medium values, the amplitudes
of vibration range from 0 to 100[µm]. Figures below show the
effects of major parameters on maximal amplitudes, derived
from the formula:

a = X4(
l
2
)u(t)max (16)

Amplitude variability characteristics are obtained at four ve-
locity levels: 15, 20, 25, 30 [m/s]. Equivalent density ρ has no
physical interpretation, nevertheless, it may be used in eval-
uating the total mass of the working and backing rolls. It is
readily apparent that its increase leads to intensification of
vibration. Fig. (6) shows the amplitude-draft ∆h0 relationship,
which is decidedly stronger than that between the amplitude
and roll mass. For small drafts, of the order of 0.1 [mm], the
amplitudes attain high values, approaching 140 [µm] and for
the medium draft they range from 20 to 50 [µm], depending
on the actual rate of travel.

An increase of this velocity has the damping effect on
the amplitude.

Fig. 6. The effects of the roll mass (A) and the draft (B) on vibration
amplitudes for the rate of travel: v1 =15,v2 =20,v3 =25,v4 =30[m/s]

Fig. (7) shows how geometric and elastic properties of the
rolling stand impact on the intensity of vibrations. One has to
bear in mind, however, that only the curves obtained for v=25
and 30[m/s] are of some importance for the rolling processes.
Such rates are characteristic of the final rolling stand in the
rolling line. The remaining rolling rates can be implemented
in the second or third stand from the end.

Fig. 7. The effects of the equivalent roll radius and rolling stand
rigidity on vibrations amplitude at the band centre, for the rates of
travel: v1 =15,v2 =20,v3 =25,v4 =30[m/s]

It is reasonable to suppose that the properties of the
rolling stand have a minor bearing on vibration intensity, un-
like the process parameters whose role seems predominant.
It is illustrated in Fig. (8) showing the effects of the rate of
travel on the amplitude of roll vibrations in the middle of the
band.

Fig. 8. Vibrations amplitude in the middle of the band vs the rate of
travel v. The remaining parameters are assumed to have the middle
values

The decay threshold is assumed at amplitudes less than
5 [µm], hence one is able to find the regions of vibration
occurrence in the domain of two selected parameters. Such
’map’ is shown in Fig. 9.

Fig. 9. Regions of vibration occurrence in the domain of travel rate
and draft

Knowing the position function X4(x) and the function of
time u(t) yielding the vibration amplitudes at selected roll sec-
tions, we are now able to explain the appearance of darkened
streaks on the surface of the sheet being rolled. The analysis
of the problem is briefly summarised below. In accordance
with the description of physical aspects of the rolling process-
es, the velocities when leaving the rollgap are different for
various filaments of the sheet being rolled, depending on their
actual distance from its centre of thickness. Most authors take
this distribution pattern to be parabolic, which is shown in
Fig. (10).
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Fig. 10. Distribution of velocity increment ∆ v in particular band
filaments

∆v denotes the increment of velocity of a filament posi-
tioned inside the band with respect to the quantity ΩR, defin-
ing the velocity of filaments in contact with the roll, assuming
no slipping. The quantity ∆vs stands for the average value of
this increment derived from the equation of stream continuity,
the spacing between the rolls being varied by 2w(x, t):

h1v10 = (h2 − 2w)(v20 + ∆vs)

In steady state conditions h1v10 = h2v20, we are able to obtain
∆vs:

∆vs = 2v20
w(x, t)

h2 − 2w(x, t)
= 2v20X4(x)

u(t)
h2 − 2X4(x)u(t)

(17)

v10 and v20 in the formulas above define the velocities at the
rollgap inlet and outlet, in steady-state conditions (no vibra-
tions). The positioning function X4(x) defines the fourth mode
of roll vibrations (bending line) under high-frequency vibra-
tions. In accordance with the assumption of parabolic distrib-
ution of the function ∆v:

∆v �
∆vmax

h2
2

(h2
2 − 4x2

2) (18)

Hence:

∆vs =
2
h2

h2
2∫

0

∆vdx2 =
2
3

∆vmax (19)

Extensions ∆s of particular filaments follow a similar pattern.
Accordingly, we get:

∆s �
∆smax

h2
2

(h2
2 − 4x2

2) ; ∆ss =
2
3

∆smax (20)

∆ss =

T
2∫

0

∆vsdt ; T =
2π
ω4

(21)

Function ∆s(x2) yields the shear angle δ of external filaments,
assuming no slipping. The angle is equal to:

δ = ∆s′(
h2

2
) = −4∆smax

h2
= −6∆ss

h2
(22)

Under these assumptions, the shearing stress in external fila-
ments is given as:

τ = G|δ| = 6G∆ss

h2
(23)

Assuming h2 =0.4[mm], v =25[m/s], ∆h0 =0.18[mm] and for
remaining parameters given in (13), the shearing stress is given
as:

τ1 =4.24*1012[Pa] When ∆h0 is increased to 0.2[mm],
this value is equal to:

τ2 =1.1554*1011[Pa] Both stress values vastly exceed the
critical shear stress limit, which is equal to 160[MPa]. It ap-
pears that the ’no-slipping’ assumption must not be main-
tained. Slipping occurring every period of the function u(t)
damages the surface of the steel sheet being rolled, leading to
formation of characteristic streaks. The spacing between those
streaks is given by the simple formula:

λ = ΩR
2π
ω4

(24)

For parameters considered in this study and for v =25[m/s],
this spacing becomes λ =0.034[m]. This value falls in the
interval of spacing value registered in real rolling systems [7].

Results imply that the physical model of high-frequency
vibrations proposed by the authors is correct and adequate.

7. Conclusions

The value of frequency and amplitudes of self-excited vi-
brations observed in a simulation of the mathematical model
of four-high mill are along with those found in real objects.

This allows to conclude that the suggested model was
appropriate and may be applied in analysis of the issue in
question. It is especially important if we consider that it is the
first time the reference literature presents this model as a key
to clarify the appearance of strips on the surface of a rolled
metal plate. In the case of four-high mills, the self-excited
vibrations appear in the last rolling stands milling with small
drafts.

Simulation results indicate that in order to reduce the
consequences of such vibrations, the drafts may not exceed
the value of Dh0 = 0.22 mm

The second technological parameter having a substantial
influence of the course of this process is the speed of rolling
which if reduced, has an impact on the drop of vibrations am-
plitude. This observation allows to adjust far better monitoring
and control over the process in question.
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