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Heat treatment effect on PHysical ProPerties of stainless steel / inconel Bonded  
By directed energy dePosition

in this study, stainless steel 316L and inconel 625 alloy powders were additively manufactured by using directed energy deposi-
tion process. And heat treatment effect on hardness and microstructures of the bonded stainless steel 316L/inconel 625 sample was 
investigated. The microstructures shows there are no secondary phases and big inclusions near interfacial region between stainless 
steel 316L and inconel 625 except several small cracks. The results of Tem and Vickers Hardness show the interfacial area have 
a few tens of micrometers in thickness. interestingly, as the heat treatment temperature increases, the cracks in the stainless steel 
region does not change in morphology while both hardness values of stainless steel 316L and inconel 625 decrease. These results 
can be used for designing pipes and valves with surface treatment of inconel material based on stainless steel 316L material using 
the directed energy deposition.
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1. introduction

Additive manufacturing (Am), also known as 3D printing, 
is a promising technology that manufactures parts by stacking or-
ganic/inorganic materials using digital design data [1-3]. Additive 
manufacturing processes using metal materials such as powder 
are classified into Powder Bed Fusion (PBF) and Directed energy 
Deposition (DeD) processes. The PBF process is advantageous 
for producing precise and complex parts, and the DeD process 
has advantages in terms of large-sized products, repair, and main-
tenance compared to the PBF process. in particular, in the case 
of parts that simultaneously shape or join two or more materials, 
the DeD method is the only additive manufacturing process [4,5].

The DeD process is mainly applied to the surface treat-
ment as well as the building of the entire parts such as surface-
hardening or maintenance [6-8]. An expensive nickel-based alloy 
such as inconel has a drawback of inferior economic efficiency 
to use after processing it into a single material. Therefore, the 
practical applications of inconel are trend using for the surface 
exposed to the internal/external environment and which replac-
ing the rest region of part with inexpensive materials. For ex-
ample, for accessories such as pipes and valves in contact with 

seawater, the material of the outer diameter portion responsible 
for rigidity and the inner diameter portion requiring chemical 
and abrasion resistance must be different. The conventional 
technology was difficult to manufacture parts by using different 
materials together, whereas the introduction of the DeD process 
can overcome these difficulties.

Despite the interest in the bonding of different materials 
through the DeD process [9,10], the studies of the process 
parameters or microstructure such as cracks of build structures 
have been limited compared to the PBF process. Although the 
DeD-joined bulk structures with nickel-based materials which 
are known to have good bonding properties with iron-based 
materials have wide applications, the research of DeD process 
have only conducted for the controlling process parameters 
such as laser power or gas supply rate [9-12]. in particular, the 
research field of the bonding interface formed by constructing 
iron-based powder (316L stainless steel alloy, STS 316L) and 
nickel-based powder (iN 625) has been little studied. 

Thus, in this study, both interfacial microstructures includ-
ing cracks and Vickers hardness near the interface were inves-
tigated to the bulk tubular-structure manufactured by the DeD 
process using two materials of STS 316L and iN 625.
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2. experimental

The DeD process (Directed energy Deposition, ins-
sTek Co., South Korea) was performed using iN 625 powder 
 (53-150 µm) and STS 316L powder (45-150 µm) provided by 
KoSWire Co. (Korea). The STS 316L is a low-carbon steel 
and has excellent intergranular corrosion resistance in a welded 
state [13]. The iN 625 that have resistance to oxidation and 
corrosive environments, is mainly used in marine equipment 
such as piping and valves for chemical and pollution prevention 
facilities [14]. The process parameters of DeD additive manu-
facturing are unique data secured by inssTek Corporation. The 
STS 316L material was used as the substrate, and a pipe-shaped 
body (Fig. 1(a)) of iN 625 inside and STS 316L outside was 
additively manufactured.

The fabricated bulk structure prepared by mounting and 
polishing process for the microstructure analysis was observed 
using the field emission scanning electron microscope (Fe-Sem, 
JSm-7100F, JeoL Co., Japan) and the scanning transmission 
electron microscope (STem, Jem-Arm200F, JeoL Co., Japan). 
The Fe and Ni elements distribution of the surface was performed 
by the eDS (energy Dispersive X-ray Spectroscopy) mapping. 
Vickers hardness (Hm-211, mitutoyo Co., Japan) was measured 
to confirm the change of hardness around the interface onto the 
polished specimen. The load of indenter tip was set to 3.92 N 
and the holding time was set to 10 seconds. in order to the physi-

cal properties change due to heat treatment, the bulk structures 
were heated up to 1065, 1130, and 1200℃ at the heating rate of 
10℃/min. The specimens were holding for 90 min at each set 
temperature and the finally water-cooled.

3. results and discussion

Fig. 1(a) shows a photograph of a bulk structure in which 
dissimilar materials of iN 625 (inside) and STS 316L (outside) 
are additively manufactured in a pipe form onto a substrate made 
of STS 316L. Fig. 1(b) shows the cross-sectional Sem image at 
the interface between the both materials in the fabricated pipe. 
it was found that the interface appears to be sound and there 
are no detachment between two materials. However, there were 
several cracks with a few tens of micrometer in the STS 316L 
region in the samples as shown in Fig. 1(c), which must be 
defects caused by the difference in coefficient of thermal expan-
sion (CTe) of the two materials. That is, since the difference in 
CTe values causes tensile stress in the STS 316L region during 
laser melting and solidification of DeD process, the cracks can 
be formed [15].

Fig. 1(d) shows that there are fine pores of about 200 and 
400 nm inside STS 316L and iN625 region, respectively. it is 
analyzed that these spherical nano-pores are normally originated 
from the trapped pores contained in the initial metal alloy powder, 

Fig. 1. (a) A photo of dissimilar metal pipe of iN 625 and STS 316L materials manufactured by DeD process, (b) microstructure image and (c) 
observed crack of iN 625/STS 316L interface area, (d) a image of macro-pore inside the both materials
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or that gas that could not escape during the laser melting process 
was captured as it was after cooling. The observed pore size of 
STS 316L is relatively large compared to that of iN 625 in the 
whole sample. The origin of this different pore size could be 
described due to that the thermal conductivity of each material 
is also different. it is known that the high thermal conductivity 
of stainless steel compared to that of inconel 625 provides rapid 
cooling rate [9] that does not contribute further diffusion of voids 
near pores. Thus, it is analyzed that the pore size has become 
relatively large in STS 316L.

Fig. 2 shows Tem results on interfacial region between 
STS316L/iN625 materials. As shown in Fig. 2(a), there were no 
visible defects, and they were well-bonded like one material. The 
area indicated by the dotted line is estimated by the interface, 
and it was possible to clearly distinguish the interface through 
eDS analysis as shown in Fig. 2(b). Fig. 2(c) and (d) shows high 
magnification Tem images on STS 316L and iN625 region and 
there were no big inclusions or defects in both materials. it is also 
analyzed that the crystal plane of two materials is correspond-
ing to [111]. And the lattice distance of 0.208 nm in Ni-based 
materials was observed as shown in Fig. 2(d).

Fig. 3(a) shows comparison of cross-sectional Sem images 
with heat-treatment. The effect on the interface due to heat treat-
ment does not appear to be significant. interestingly, it was still 
found that several large cracks were not removed with a heat 

treatment as shown in Fig. 3(b). Considering the temperatures 
of 1065 and 1200°C are fit for STS 316L and iN 625, respec-
tively, we also introduced intermediate temperature of 1130°C 
as heat-treatment for interface. Fig. 3(c) shows comparison of 
Vickers hardness values with heat-treatment. Heat treatment 
was performed at 1065, 1130, and 1200°C, respectively, and 
water-cooling was immediately performed thereafter. in order 
to measure the hardness without being affected by each other, 
the indenter tip was taken with a sufficient distance at intervals 
of 0.7 mm. As shown in Fig. 3(c), it was confirmed that the 
hardness value changed greatly around the bonding interface. 
When the thickness of the mixed zone is inferred approximately 
as hundreds µm through the change of the hardness value. All 
heat-treated samples show lower Vickers hardness value than 
as-built sample. When heat-treatment temperature is 1065℃, 
average hardness value of STS 316L decreases from 223 Hv to 
186 Hv. And it is measured that the value at 1130℃ is somewhat 
less reduced. This tendency is similarly observed in iN 625 re-
gion. However, both materials show big drop in hardness values 
at 1200°C heat treatment. Hence, if there are no problem in the 
interfacial region, it can be described that the heat treatment 
temperature should be considered between 1130 and 1200°C. 
This phenomenon appears to be the difference in microstructure 
growth according to the heat treatment temperature, and the size 
of the grains was measured.

Fig. 2. (a) A cross-sectional Tem image of the iN 625/STS 316L interface area and line eDS (inset) analysis result, (b) eDS mapping distribu-
tion of the Fe and Ni elements in the interface area, and Hr-Tem images and SAeD patterns of the (c) Fe-rich and (d) Ni-rich zones from the 
both sides of the interface
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Fig. 4(a)~(d) show microstructures in which the charac-
teristics of grains inside STS 316L are displayed. There was a 
clear difference between microstructures according to the heat 
treatment. in Fig. 4(e), the average grain size measured by eBSD 
equipment is shown according to the heat treatment temperature. 
As the heat treatment temperature increased, the average grain 
size increased from 42 to 85 μm. This change in the average 
grain size can explain the results in Fig. 3(c). The Hall-petch 
equation (eq. (1)), which is a general correlation between grain 
boundaries and hardness, is as follows.

 Hv = H0 + KH d –1/2 (1)

Here, Hv is the hardness value, H0 and KH are constants depend-
ing on the hardness, and d is the size of the grain. it is possible 
to explain the decrease in hardness value due to heat treatment 
through eq. (1). it can be seen that as the heat treatment tempera-

ture increases, grain growth occurs, the average size increases, 
and thus the hardness value decreases. As shown in Fig. 4(e), 
the grain sizes of STS 316L become similar due to grain growth 
caused by high heat-treatment temperature at 1130 and 1200°C, 
respectively. Therefore, even though grain growth of STS 316L 
occurs, the temperatures of 1065 and 1130°C should be consid-
ered as appropriate post-heat treatment condition in viewpoint 
of less drop in hardness of iN 625.

4. conclusions

in this study, the effect of heat treatment on the change 
of microstructures and harness in the bonding interface was 
confirmed in samples obtained by additively manufacturing 
stainless steel alloy powder (STS 316L) and inconel alloy 

Fig. 3. Fe-Sem images of the interface area of (a) the dissimilar metal pipe with/without heat treatment and (b) including crack after heat treat-
ment, and (c) Vickers hardness changes of the dissimilar metal pipe as heat treatment and the position of practical measured indenter tip
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powder (iN 625) by DeD process. overall, it can be seen that 
the Fe-based stainless alloy and the Ni-based inconel alloy are 
directly bonded, and even though the interface bonding area is 
very narrow, no abnormal structure at the interface was found. 
Furthermore, post-heat-treatment experiment was clearly per-
formed to check for achieving sound interfacial microstructures 
as well as suitable mechanical performance. Hardness values 
in both STS 316L and iN 625 are sensitively changed, which 
appears to be a difference in grain growth according to the heat 
treatment temperature. These results can be used as fundamental 
information for designing pipes and valves with surface treat-
ment of inconel material based on STS 316L material using the 
directed energy deposition process.
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