
Arch. Metall. Mater. 67 (2022), 4, 1459-1463

DOI: https://doi.org/10.24425/amm.2022.141074

Young-Sin Choi 1,2, Do-hun Kwon 1, Min-woo Lee 1, eun-Ji Cha 1,  
JunhYup Jeon 3, SeoK-Jae Lee 3, JongrYouL KiM 2, hwi-Jun KiM 1*

A Study on the optimizAtion of metAlloid ContentS of fe-Si-B-C BASed AmorphouS  
Soft mAgnetiC mAteriAlS uSing ArtifiCiAl intelligenCe method

The soft magnetic properties of Fe-based amorphous alloys can be controlled by their compositions through alloy design. 
experimental data on these alloys show some discrepancy, however, with predicted values. For further improvement of the soft 
magnetic properties, machine learning processes such as random forest regression, k-nearest neighbors regression and support 
vector regression can be helpful to optimize the composition. in this study, the random forest regression method was used to find 
the optimum compositions of Fe-Si-B-C alloys. as a result, the lowest coercivity was observed in Fe80.5Si3.63B13.54C2.33 at.% and 
the highest saturation magnetization was obtained Fe81.83Si3.63B12.63C1.91 at.% with r2 values of 0.74 and 0.878, respectively.

Keywords: Fe-based amorphous; Soft magnetic properties; artificial intelligence; Machine learning; random forest reg- 
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1. introduction

Fe-Si electrical steels have been widely used in electri-
cal machinery due to their excellent soft magnetic properties. 
however, the operation frequency of these steels is generally 
limited to under 400 hz due to high eddy current loss [1-3]. in 
order to increase the operation frequency without loss of soft 
magnetic properties, Fe-based amorphous and nano-crystalline 
alloys have been developed and widely used in high frequency 
applications using a rapid solidification process at a high cooling 
rate (>104 K/s). To obtain an amorphous structure, various met-
alloids (i.e. boron, silicon), non-metallic elements (i.e. carbon, 
phosphorus) and transition metals (i.e. copper, niobium) are 
incorporated in Fe-based amorphous alloys [4,5]. in addition, 
the amorphous structure is known to enhance the soft magnetic 
properties such as the permeability and coercivity [6,7] but 
also reduce the saturation magnetization [4,6-8]. in response, 
the nano-crystalline structure has been widely used to increase 
the saturation magnetization, however, deteriorates the soft 
magnetic properties. 

among Fe-based nano-crystalline alloys, the Fe-Si-B-nb-
Cu alloy has been the most widely used in field [8-11]. This alloy 

shows a coercivity of 25 a/m or less but a saturation magnetiza-
tion value of 150 emu/g which corresponds with magnetic flux 
density of 1.2 T. Due to this low flux density, there is strong 
demand to develop a new soft magnetic material with a satura-
tion magnetization up to 170 emu/g and a coercivity of less than 
30 a/m. This indicates that the amounts of metalloids should 
be controlled in the range of 15~20 at.% [12]. previous studies 
revealed that soft magnetic properties in Fe-based amorphous al-
loys are very sensitively dependent on the amounts and ratios of 
metalloids and transition metals [4,8]. however, their effects on 
the soft magnetic properties have not been clarified. The machine 
learning process uses a large amount of experimental data to 
predict results based on the results derived from the training. The 
problem of the effectiveness of metalloid elements on soft mag-
netic properties will be solved by trained algorithm processes.

in this study, we investigated the correlation between 
compositions and soft magnetic properties through machine 
learning methods. The saturation magnetization and coercivity 
of Fe-Si-B-C amorphous alloys was predicted through random 
forest regression (rFr), k-nearest neighbors (k-nn) and sup-
port vector regression (SVr) and the results were compared to 
experimental data. 
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2. experimental 

2.1. Sample preparation

The mother alloy of Febal.(SiaBbCc) (16 ≤ a + b + c ≤ 21 at.%) 
alloys were prepared by an arc melting process. Fe (99.90 wt.%), 
Si (99.90 wt.%), Fe-B (Fe : 83.87 wt. %, B : 16.13 wt. %) and 
Fe-C (Fe : 95.7 wt.%, C : 4.3 wt.%) powders were used to fabri-
cate the mother alloy. The contents of metalloids and non-metal-
lic elements were controlled in the range of 1 at. % ≤ Si ≤ 6 at.%,  
10 at.% ≤ B ≤ 15 at.% and 0.5 at.% ≤ C ≤ 3 at.%. The ribbons 
were solidified by a single melt-spinning apparatus under 
ar atmosphere. The thickness of the ribbons was measured 
as approximately 25 μm. The soft magnetic properties of the 
 Fe-Si-B-C amorphous alloys were evaluated using a vibrating 
sample magnetometer (VSM) (Lakeshore, 7410). The coercivity 
(hc) and the saturation magnetization (Ms) was evaluated by 
an applied magnetic field of 125 g and 5000 g, respectively.

2.2. data collection 

Datasets were collected from the soft magnetic properties of 
31 different Fe-Si-B-C amorphous alloy samples in the experi-
mental process. The datasets contained the saturation magnetiza-
tion and coercivity according to various metalloid contents. Ta-
ble 1 shows the compositional ranges of the  Fe-Si-B-C samples.

TaBLe 1

The compositional ranges of Fe-Si-B-C (at.%)

element minimum maximum Average deviation
Si (at.%) 1 6 4.49 1.80
B (at.%) 10 15 13.13 1.42
C (at.%) 0.5 3 1.83 0.77

2.3. machine learning training

The correlation between the magnetic properties of 
 Fe-Si-B-C amorphous alloys and metalloid contents was evalu-
ated using machine learning algorithms, specifically rFr, k-nn, 
and SVr. rFr was employed to train the target values using 
decision trees and estimate the average values [13,14]. rFr was 
trained 1 to 100 decision trees. k-nn meanwhile was predicted to 
the average value of the nearest data used to the k nearest value, 
with k values ranging from 1 to 22. SVr was shown to be affected 
by factors C, ϒ, and ε. The set of C was 1, 10, 100, and 1000. 
The ϒ values were 1, 0.1, and 0.001. We used ε sets of 0.0001, 
0.0005, 0.001, 0.005, 0.01, 0.05, and 0.1 [15]. we used a radial 
basis kernel with a constant value of 0.1. The dataset for three 
algorithms, such as rFr, k-nn, and SVr, was divided into 70% 
for training with 30% for testing, and the predicted R2 values, 
which identify the accuracy of predicting magnetic properties 
related to metalloid contents was calculated. 
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eq. (1) shows R2 the values. algorithm assessments were 
performed by scikit-learn Version 0.23.1 module in python 
Version 3.7, uSa. 

3. results and discussion

3.1. magnetic properties of experimental data

The magnetic properties of Fe-Si-B-C ribbons fabricated 
by the melt spun process are presented in Fig. 1. Fig. 1(a) shows 
the changes in the magnetic properties by controlling the Fe, 
B + C, and Si contents. The highest coercivity was observed 
at a Si content of 6 to 7 at.% and a B + C content of 12 at.% 
and less. however, the coercivity was shown to be effectively 
decreased when the B + C content was over 14 at.% even at the 
same Si range. Fig. 1(b) shows the effect of C content. as shown 
in the figure, the coercivity increased as the C contents exceeded 
2 at.%. Despite that the content of C was only 1 to 2 at.%, the 
coercivity increased when the B + Si contents was 16 at.% or 
more. Fig. 1(c) shows the B effect. with increasing the B con-
tent, the coercivity decreased to 14 at.%. The lowest coercivity 
was found in the composition range of 5 to 6 at.% Si + C and 
13.5 at.% of B. however, when the B content was 12.5 at.% or 
more, the coercivity did not always decrease. Figs. 1(d)~(e) show 
that the saturation magnetization is not linearly dependent on the 
Fe content. as shown in the figures, high Fe content does not 
mean high saturation magnetization values. These data clearly 
show that there should be an optimized chemical composition 
of Fe- based amorphous material. 

3.2. magnetic properties of machine learning results

The pearson correlation coefficient values ‘r’ was calculated 
by a correlation analysis of metalloid elements to predict the 
sensitivity of soft magnetic properties according to metalloid 
elements and the results are shown in Figs. 2(a) and (b). Figs. 2(a) 
and (b) show the effects of the elements on the saturation mag-
netization and the coercivity, respectively. The correlation coef-
ficient can be negative or positive correlation values. in general, 
the range of 0.7 to 1.0 means a perfect positive relationship, 
the range of 0.3 to 0.7 is a high positive relationship, and the 
range of 0.1 to 0.3 is a low positive relationship. The tendency 
of the negative values is the same as that of the positive values, 
for example, the range of –0.7 to –1.0 is a perfectly negative 
relationship [16], and so on. Fe is shown to have a high positive 
relationship with saturation magnetization. This means that the 
saturation magnetization is roughly linearly dependent on the 
Fe content. however, since Si has a high negative relationship 
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with the saturation magnetization, it should cause a decrease 
of the saturation magnetization as the Si content increases. 
however, elements such as B and C show a weak relationship, 
indicating that the saturation magnetization is strongly affected 
by their contents.

Fig. 3 shows the accuracy of R2 using various machine 
learning algorithms: SVr, rFr, and k-nn. The rFr method 
exhibits the highest R2 values of 0.74 for coercivity and 0.878 for 
saturation magnetization, as presented in Fig. 3(a). it is generally 
held that the data are reliable if the R2 value is above 0.6 and 
accurate if the R2 values are above 0.9 [13]. 

This means that the computational value of 0.74 is not suf-
ficiently accurate to determine the metalloid content ranges to 

obtain the desired soft magnetic properties. previous literature, 
rFr and k-nn were used to estimate R2, which represents the 
accuracy of soft magnetic properties. The computational R2 
values for saturation magnetization used rFr algorithm was 
0.86 and R2 values for coercivity was 0.76 [13]. The R2 values 
calculated by the experimental results are similar to or higher 
than the data from previous study. 

Fig. 3(b) shows the accuracy of the coercivity of the rFr. 
The R2 values for the training and test sets were 0.802 and 0.625, 
respectively. Fig. 3(c) shows the accuracy of the saturation 
magnetization of the rFr and the R2 values for the training and 
test sets were 0.937 and 0.649, respectively. The R2 values of the 
test set were lower than those of the training set due to a limited 

Fig. 1. Ternary diagram of coercivity and saturation magnetization of amorphous Fe-Si-B-C alloys at room temperature. (a) shows the Si effects 
on soft magnetic properties compared with B + C ratio, (b) shows B effects on soft magnetic properties compared with Si + C ratio, (c) shows C 
effects on soft magnetic properties compared with Si + B ratio

Fig. 2. prediction of pearson correlation coefficient values by a correlation analysis for sensitivity of metalloid elements. (a) shows average 
sensitivity for saturation magnetization, (b) shows average sensitivity for coercivity
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amount of data onto calculation. Thus, more data collection for 
Fe-Si-B-C alloys with various metalloid contents would increase 
the accuracy of the prediction of their soft magnetic properties. 

Fig. 4(a) shows the effects of Si element on the coercivity 
and saturation magnetization by the computational results of the 
rFr algorithm for Fe-Si-B-C alloys with fixed B and C content. 
Fig. 4(b) and (c) show the effects of B and C calculated in the 
same manner as done for the Si effect, respectively. Fig. 4(a) 
shows that the lowest coercivity was obtained at a Si content 
of 3.2 at.% and that the coercivity increased but the saturation 
magnetization decreased as the Si content increases. as presented 
in Fig. 4(b), the minimum coercivity was obtained at a B content 
of 14.2 at.%. Fig. 4(c) shows the effect of C on the soft mag-
netic properties. The tendency of coercivity was similar to that 

of saturation magnetization and as the C content increased, the 
coercivity and saturation magnetization decreased. The metal-
loid contents to obtain minimum coercivity was evaluated by the 
rFr method with optimized Si, B, and C contents. The weighted 
values of each element were equal. For example, the chemical 
composition providing the lowest coercivity with various Si 
amounts and fixed B, and C was Fe81.6Si3.2B13.2C2 at.%. addition-
ally, the lowest coercivity composition among various B contents 
with fixed Si, and C was Fe79.95Si3.85B14.2C2 at.%. The optimized 
content of elements affecting soft magnetic properties was cal-
culated as an average value. Consequently, the lowest coerciv-
ity was observed in Fe80.5Si3.63B13.54C2.33 at.% and the highest 
saturation magnetization was obtained in Fe81.83Si3.63B12.63C1.91 
at.%, as predicted by the trained rFr algorithm. 

Fig. 3. results of the accuracy by the machine learning algorithm process and R2 values with rFr algorithm; (a) R2 accuracy of magnetic prop-
erties for coercivity and saturation magnetization with three machine learning algorithms, SVr, rFr, and k-nn program, (b) Comparison of 
coercivity between computational values calculated by rFr algorithm and experimental results; black square point is dataset for train process and 
red circle is dataset of test results, (c) Comparison of saturation magnetization between computational values calculated by the rFr algorithm 
and experimental results; black square points are dataset for the training process and red circles are the dataset of test results

Fig. 4. The soft magnetic properties with changes in metalloid contents; (a) Si effect – B of 13.2 at.% and C of 2 at.% were fixed, (b) B effect – Si 
of 3.85 at.% and C of 2 at.% were fixed, (c) C effect – B of 13.2 at.% and Si of 3.85 at.% were fixed
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4. Conclusions

in this study, the soft magnetic properties obtained from ex-
perimental data of Fe-Si-B-C amorphous ribbon were evaluated 
to reduce the coercivity and increase the saturation magnetization 
by controlling the metalloid composition. in the experimental 
data, the lowest coercivity was obtained in the composition of 
6~7 at.% Si, and above 14 at.% B+C content and the saturation 
magnetization was uncertain of metalloids effects. The rFr 
machine learning algorithm was used to predict the effects of 
metalloid contents on the soft magnetic properties. when Si con-
tent of 3.2 at.%, B content of 14.2 at.%, and C content of 3 at.% 
were added, the coercivity decreased to 31 a/m in the Fe-Si-B-C 
amorphous soft magnetic composition of calculating data. The 
saturation magnetization of an alloy used calculating data onto 
3.2 at.% Si, 11.5 at.% B, and 1.7 at.% C reached 177.5 emu/g. 
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