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Simple SyntheSiS of Black tio2 nanofiBerS Via calcination in inert atmoSphere

Black Tio2 nanofibers have recently emerged as a promising material that has both advantages of black metal oxide and one-
dimensional nanostructure. However, current reduction-based synthesis approaches are not compatible with practical applications 
because these processes require high process costs, complicated processes, and sophisticated control. Therefore, it is still necessary 
to develop a simple and facile method that can easily introduce atomic defects during the synthesis process. This work suggests 
an electrospinning process with an antioxidant and subsequent calcination process for the facile synthesis of black Tio2 nanofib-
ers. The synthesized black Tio2 nanofiber has an average diameter of 50.3 nm and a rutile structure. Moreover, this nanofiber 
represented a noticeable black color and a bandgap of 2.67 eV, clearly demonstrating the bandgap narrowing by the introduced 
atomic defects.
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1. introduction

one-dimensional (1D) oxide nanofiber that has a high 
aspect ratio and specific surface area has attracted enormous 
attention in various photoelectrochemical applications due to 
dimensionality for easily separating electron-hole pairs and large 
active sites [1,2]. among the various oxide materials, the black 
Tio2 that contains a surface disordering region and a crystalline 
core has been regarded as one of the most promising materials in 
various applications such as visible-light-driven environmental 
remediation, water splitting, energy storage, and photothermal 
conversion due to its superior properties induced by atomic 
defects in a disordering region [3-6].

Since the pioneering report of Chen and Mao on the sub-
sequent hydrogenation methods for black Tio2 nanoparticles 
received much attention [4], there have been many efforts to 
develop a facile synthesis strategy for black Tio2 nanoparticles. 
The partial reduction method of pre-synthesized white Tio2 
nanofibers using hydrogenation and high energy processes is 
a general method for the synthesis of black Tio2 nanoparticles. 
However, these methods have some drawbacks such as high 
process cost, a prolonged reaction time, and sophisticated and 
harsh experimental conditions to introduce atomic defects 

 [7-11]. Recently, in order to overcome the drawbacks of the 
partial reduction process, the controlled oxidation process has 
been reported, which induces the defects without an additional 
reduction process during nucleation and growth steps of spe-
cies by blocking oxygen atoms or using chemical antioxidants 
[12-16]. However, almost all solution-based processes have 
limitations in controlling the chemical bonding with oxygen 
during the growth process into fibrous form, so there is no report 
on the facile synthesis method for black Tio2 nanofibers using 
this concept without post-treatment. Therefore, there are still 
remaining challenges in the development of a simple synthesis 
method for black Tio2 nanofibers.

in the present work, we suggest a simple and facile syn-
thesis of black Tio2 nanofibers induced oxygen vacancies and 
Ti3+ defects. The central concept is that atomic defects occur in 
polymeric nanofibers with antioxidants during nucleation and 
growth steps of Tio2 and further oxidation is inhibited utilizing 
an oxygen-deficient atmosphere. For this purpose, the electro-
spun nanofibers containing precursors were calcined in the ar 
atmosphere. To the best of our knowledge, this is the first report 
that uses electrospinning process for the synthesis of black Tio2 
nanofibers without a reduction process.
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2. experimental 

Titanium tetraisopropoxide [TTiP, Ti[oCH(CH3)2]4, 
99.99%], polyvinyl pyrrolidone (PVP, Mw = 1 300 000, 99.9%), 
acetic acid, citric acid, and anhydrous ethyl alcohol were pur-
chased from Sigma-aldrich (St. Louis, Mo, uSa) and were 
directly used as they were received without any further purifi-
cation. The viscous electrospinning solutions were prepared by 
dissolving 0.45 g of polyvinylpyrrolidone (PVP, Mw: 1,300,000) 
and 1.5 g of titanium tetraisopropoxide in 12 ml of ethanol under 
vigorous stirring at a rate of 200 rpm for 1 h, ensuring that all 
chemicals have dissolved. Then, 3 ml of acetic acid was added 
to alleviate the hydrolysis reaction of the titanium precursor 
and 1.5 g of citric acid was further added as an antioxidant and 
totally dissolved.

The solution was transferred into syringes attached needle 
adaptor with a 0.25 mm inner diameter needle. a rotating metal 
collector covered by an aluminum foil was used as the cathode 
collector and the distance between the nozzle tip and collector 
was fixed at 12 cm. The precursor solution was injected through 
a syringe pump (KDS200, KD Scientific inc., Holliston, Ma, 
USA) controlled at a rate of 0.3 ml∙h–1 and the solution was nega-
tively electrified at 20 kV by a power supply (HV60, nanonC 
Co., Ltd, Seoul, Korea). The as-spun nanofibers were calcined 
at 700oC for 6 h with a heating rate of 5oC/min in air and ar 
atmosphere to remove PVP and crystallize into Tio2. 

The crystal structure of the obtained nanofibers was char-
acterized by X-ray diffraction (XRD, X’Pert Powder, Malvern 
Panalytical, almelo, netherlands). The crystallite size was calcu-
lated by Scherrer’s equation from XRD patterns. Raman spectra 
were obtained by a LabRaM HR spectrometer (HoRiBa jobin 
yvon, France) with an excitation wavelength of 514 nm to inves-
tigate the structural variation. The morphology and microstruc-
ture of the nanofibers were analyzed by field-emission scanning 

electron microscopy (Fe-SeM, S-4800, Hitachi, ibaraki, japan) 
and transmission electron microscope (TeM, jeM-2100F, jeoL, 
Tokyo, japan). The average diameters and size distribution were 
determined by manually selecting and measuring around 200 na-
nofibers from obtained micrographs using software imagej. 
The variation of chemical bonding was analyzed using X-ray 
photoelectron spectroscopy (XPS, K-alpha+, Thermo Fisher 
Scientific, united States). The optical absorbance and diffuse 
reflectance spectra were recorded on a  uV-vis spectrophotometer 
(SHiMaDZu uV-2600, SHiMaDZu japan) equipped with 
an integrated sphere, using BaSo4 as a reference. The bandgap 
energy of the synthesized nanofibers was calculated by the 
Kubelka-Munk function from the diffuse reflectance spectra.

3. results and discussion

The morphology of as-spun nanofibers with or without citric 
acid, represented in Fig. 1(a,d), are piled up randomly oriented in 
nonwoven form and show a well-defined fibrous structure with 
a smooth surface with an aspect ratio of over several thousand. 
after the calcination process in air (Fig. 1(b,e)) or ar (Fig. 1(c,f)) 
atmosphere, all nanofibers maintain the initial fibrous structure 
with a high aspect ratio. However, a rougher surface and smaller 
average diameter than as-spun nanofibers are observed (Fig. 2). 
it is attributed to the removal of polymer matters and the crys-
tallization into Tio2 during the calcination process, resulting 
in the shrinkage of total volume with the formation of primary 
particles [17]. The digital photographs (inset of Fig. 2) clearly 
present the effect of the atmosphere during the calcination. The 
colors of both nanofibers calcined in the air atmosphere are white 
regardless of the addition of citric acid. on the other hand, the 
nanofibers calcined in the ar atmosphere respectively have gray 
and black colors. The change of color suggests the introduc-

Fig. 1. Low magnification Fe-SeM images of (a,b,c) nanofibers non-containing citric acid and (d,e,f) nanofibers containing citric acid: (a,d) 
as-spun nanofibers, (e,f) calcined nanofibers in air atmosphere, (c,f) nanofibers in ar atmosphere
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tion of oxygen vacancies by the incomplete oxidation of Tio2 
nanofibers, because oxygen vacancies form the intermediate 
state in the energy forbidden region and extend the absorption 
spectrum [1,2,11]. Furthermore, the darker color of nanofibers 
containing citric acid indicates that citric acid actively inhibits 
the oxidation process of nanofibers (Fig. 2(i)).

The crystal structure of the obtained white, gray, and black 
nanofibers was investigated by X-ray diffraction patterns and 
the results are exhibited in Fig. 3(a). all nanofibers have only 
the Tio2 crystal structures without the impurity phases. The 
white-colored nanofiber has a composite structure that is con-
sisted of anatase (jCPDS no. 21-1275) and rutile (jCPDS no. 
21-1276) phases but, the gray and black nanofibers only have 

the rutile phases of Tio2. The difference in the crystal structure 
of nanofibers calcined in air and the ar atmosphere is ascribed 
that oxygen vacancies are formed during the initial crystalliza-
tion in the ar atmosphere, which can lead to accelerated phase 
transformation from anatase into the rutile phase by the decrease 
of activation energy [18-20]. Furthermore, the diffraction pat-
terns of black Tio2 nanofibers exhibit lower diffraction inten-
sity than that of gray nanofibers in spite of the similar average 
diameter (Fig. 2(f,l)) and crystallite size (TaBLe 1) of both 
samples.  alleviation of intensity indicates the high concentration 
of oxygen vacancies in black Tio2 nanofibers because oxygen 
vacancies are crystallographic defects that disrupt the periodic 
arrangement of crystals [9,11].

Fig. 2. High magnification Fe-SeM images of (a,b,c) nanofibers non-containing citric acid and (g,h,i) nanofibers containing citric acid, and digital 
images of the corresponding samples (inset of Fe-SeM image). The graphs showing the size distribution of (d,e,f) nanofibers non-containing citric 
acid and (i,k,l) nanofibers containing citric acid: (a,d,g,j) as-spun nanofibers, (b,e,h,k) calcined nanofibers in air atmosphere, (c,f,i,l) nanofibers 
in ar atmosphere
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TaBLe 1

Crystallites sizes of calcined Tio2 nanofibers calculated  
by Scherrer’s equation

Nanofibers hkl 2Ɵ (degree) fWhm 
(rad)

crystallite 
size (nm)

gray Tio2 nFs 110 27.481 0.00724 19.71
101 36.120 0.00761 19.17
111 41.358 0.00880 16.85
211 54.360 0.00848 18.38

Black Tio2 nFs 110 27.417 0.00962 14.84
101 35.998 0.00946 15.41
111 41.241 0.00813 18.21
211 54.357 0.00942 16.54

Raman spectroscopy was conducted to examine in detail 
the structural variation of calcined nanofibers according to the 
atmosphere and chemical agent. as shown in Fig. 3(b), the 

four characteristic peaks of rutile phase, which are located at 
142, 239 446, and 610 cm–1, are clearly observed in all nanofib-
ers [21]. However, it is widened and weakened most peaks of 
gray and black nanofibers than a white nanofiber. as previously 
reported, this change is associated with the breaking down of 
the symmetry of the Tio2 crystal and the local disordering that 
originated from the oxygen vacancies [8,22,23]. The detailed 
investigation of the microstructure of gray and black Tio2 
nanofibers was conducted through TeM analysis, shown in 
Fig. 3(c-h), in which is clearly observed the individual fibrous 
form constructed by nanoscale crystallites fully bonded with 
neighboring crystallites. The lattice fringe with the interplanar 
spacing of 0.324 nm corresponding to (110) plane of rutile Tio2 
is distinctly observed in HR-TeM images of both Tio2 nanofib-
ers (Fig. 3(d,g)). However, the disordered region, which is the 
typical structural feature of black Tio2, on the surface is only 
observed in HR-TeM images of black Tio2 nanofibers [4,22]. 

Fig. 3. (a) XRD patterns and (b) Raman spectra of white, gray, and black Tio2 nanofibers (inset of figure: enlarged Raman spectra). TeM,  HR-TeM 
images and SaeM patterns of (c,d,e) gray and (f,g,h) black Tio2 nanofibers
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The SaeD patterns with distinguished rings, presented in Fig. 
3(e,h), show that both calcined nanofibers are well-crystallized 
rutile Tio2 and have polycrystalline, which is consistent with 
the above results. 

The chemical state of white and black Tio2 nanofibers was 
determined by XPS analysis. The high-resolution spectra of 
Ti 2p state of white Tio2 nanofibers clearly depict the two peaks 
centered at 458.8 eV (Ti 2p3/2) and 464.6 eV (Ti 2p1/2), which are 
consistent with the characteristic peaks of Ti4+ in the previous lit-
erature. on the other hand, in black Tio2 nanofibers, the chemical 
shift into lower binding energy and additional peaks centered at 
456.8 eV and 462.5 eV are observed, which are ascribed to Ti3+ 
in the lattice. The effect of oxygen vacancies on chemical states 
is clearly observed in o 1s state (Fig. 4(b)). The o 1s spectrum 
of black Tio2 nanofibers clearly shows the shoulder form due 
to the higher intensity of peak centered at 532.0 eV originating 
from oxygen vacancies [24-27]. Fig. 4(c) shows the uV-Vis ab-
sorption spectra of black and white Tio2 nanofibers. white Tio2 
exhibits a large absorption at a wavelength shorter than 400 nm, 
which is attributed to the intrinsic bandgap of anatase Tio2, but 
the black Tio2 distinctly shows an extended absorption range 
from ultraviolet to near-infrared region. This is consistent with 
the reported major feature of black Tio2 by bandgap narrowing 

attributed to oxygen vacancies [4,10,22,23]. The bandgap of na-
nofibers was calculated according to the modified Kubelka-Munk 
function of (F(R)hv)1/2 versus the energy of absorbed light and 
the graphs are plotted in Fig. 4(d,e). The bandgap value for the 
black Tio2 is estimated to be 2.67 eV which is smaller than that 
of white Tio2 and it is attributed that oxygen vacancies narrow 
the bandgap of Tio2 [4,11].

4. conclusions

in this study, the black Tio2 nanofibers with an average 
diameter of 50.3 nm have been successfully synthesized by 
electrospinning using citric acid and subsequent calcination in the 
ar atmosphere. Moreover, it was clearly proved the main char-
acteristics of black Tio2 such as a disordered surface layer, vari-
ation of chemical environment and bandgap narrowing through 
various analysis tools. Through this study, it was demonstrated 
a simple route for the synthesis of black Tio2 nanofibers by the 
controlled oxidation process using an anoxic atmosphere and 
antioxidant. it is expected that our present work could provide 
useful information for future development of synthesizing 1D 
nanostructured black metal oxides.

Fig. 4. XPS spectra of white and black Tio2 nanofibers: (a) Ti 2p (b) o 1s. (c) uV-Vis absorption spectra and (d,e) the Kubelka-Munk plots 
obtained from uV-Vis diffuse reflectance spectra of white and black Tio2 nanofibers
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