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Introduction

Distribution of excess free energy over the network of grain boundaries in polycrystals is considered
to be an important factor for properties and processes controlled by the boundaries. Assuming
that grain boundary energy depends only on grain misorientations and is independent of the
boundary orientation (“isotropic” case), the energy is equal to the magnitude of tension force. The
equilibrium condition, understood as the balance of tension forces at a triple junction, determines
relative values of energy for boundaries meeting at the junction. This method of estimating the
distribution of energy over grain misorientations has been known since the Dunn and Lionetti
experiments with tilt boundaries in silicon steel [1,2]. The main ideas of a similar experiment on
much larger scale are described in [3]. It is based on using EBSP to determine grain orientations
and on precision sectioning to obtain microstructural features, including true dihedral angles
between boundaries at triple junctions. The ultimate goal is to take boundary orientations into
consideration, but the first step is to get distributions over complete space of grain misorientations,
without differentiating between boundary orientations. It means that an ”average” energy over
all boundary orientations is to be assigned to each misorientation. This paper presents a method
to overcome the technical problem of tessellating the space of grain misorientations. We are
particularly interested in homophase boundaries of materials with cubic (Oh) symmetry, and we
will concentrate on this case.

Procedure

Let γi (i = 1, 2, 3) denote the energy of the i-th boundary at the triple junction, and let ti

be a unit vector tangent to the i-th boundary (at the junction), perpendicular to the junction,
and directed towards the boundary side of the junction. The Herring [4,5] equilibrium condition
(without torque) has the form

∑
i γ

iti = 0. By taking the scalar product of the Herring formula
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and vectors tj, (j = 1, 2, 3) one gets three equations

∑

i

(ti · tj) γi = 0 . (1)

The scalar product ti · tj is equal to the cosine of the dihedral angle between boundaries i and j.
With known true dihedral angles and grain misorientations, one wants to calculate the distribution
of γ over all possible grain misorientations. Each triple line provides equations (1) linear with
respect to γ. The idea is to discretize the domain of the energy function so instead of a continuous
misorientation g, the function depends on a discrete index, say m (γ(g) ← γ(m) = γm, m =
1, ..., M). Assuming N triple junctions are analyzed, this approximation of γ by a ’step function’
leads to a system of 3N linear equations of the type (1) with respect to non-negative γm. They
can be written as ∑

m

Akmγm = 0 , k = 1, ..., 3N . (2)

The system is homogeneous, and we normalize the coefficients so for a given k they satisfy∑
m AkmAkm = 1. Because of the homogeneity only relative values γm/γ0 can be determined.

From now on, the symbol γm denotes this ratio, not the absolute value of the energy. The con-
stant γ0 is chosen in such a way that the integral of the ratio over the ’misorientation space’ is
equal to 1, i.e., the distribution is normalized to 1.

To get the sought distribution, it is sufficient to solve the system (2) with respect to γm. It
sounds simple but in practice, the procedure is complicated. The reason lies in difficulties with
the discretization of the misorientation space and in symmetry requirements. The most obvious
of these requirements is that the energy of the boundary between grains 1 and 2 is the same as the
energy of the boundary between 2 and 1. Additional conditions arise from the crystal symmetry.
The symmetries in the general case involving boundary orientations are considered elsewhere [6].
In the simplified situation, with γ depending only on grain misorientations, there must occur
γ(g) = γ(gT ) = γ(ckgcl), where g is the proper orthogonal matrix of grain misorientation, T
denotes transposition, and orthogonal matrices ck and cl represent proper symmetry operations
of the crystal point group. In the case of cubic symmetry, there are 24 proper (point) symmetry
operations; hence, k, l = 1, ..., 24, and the number of equivalent misorientations at which the
distribution must take equal values reaches 2× 24× 24 = 1152.

A simple idea would be to use the asymmetric domain — a part of the space in which a
physically unique misorientation is represented by a unique point. Such domains are known
for all crystallographic symmetries in Rodrigues parameterization of rotations [7]. The problem
is that even in Rodrigues parameterization the shape of the domain is relatively complex and
all tessellations are rather awkward. Additional complications arise due to non-uniformity of
the Rodrigues ’space’1. This makes the tessellation into cells of equal volume (which is most
appropriate) even more difficult.

To avoid these problems we used the parameterization by Euler angles. With the angles
(ϕ1, φ, ϕ2) defined as in [8] and Φ = cos φ, the complete domain for all possible rotations is
given by 0 ≤ ϕ1, ϕ2 < 2π and −1 ≤ Φ ≤ +1. The asymmetric domain for cubic case in Euler
angles parameterization is known [9], but its very complicated shape prohibits any reasonable
tessellations. In what follows, the complete domain can be used but it is more efficient to use

1Random misorientation distribution is represented by non–uniform density in the parameter space. In other
words, cells of equal shapes confine different volumes.
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the sub–domain D with parameters ϕ1, ϕ2 in the range from 0 to π/2 and 0 ≤ Φ ≤ Φ0(≤ +1).
If Φ0 ≥ 1/3 the domain D containes the asymmetric domain. To make our consideration simple
we take Φ0 = 1 throughout the rest of the paper.2 The points of this region are related to
equivalent points outside it via translations and mirrors in the space of Euler angles, so it is easy
to reconstruct the whole space. The relations between equivalent points within the domain D are
complicated. The maximal number of equivalent points within D is 1152/(4× 4× 2) = 36.

The advantage of parameters (ϕ1, Φ, ϕ2) lies in the fact that the space is uniform. (The
invariant volume is given by const×dϕ1 dΦ dϕ2.) Therefore, the complete space can be tessellated
into cells of equal volume by suitably selected planes ϕ1 = const, Φ = const, ϕ2 = const. This is
also the case for the sub–domain D. Moreover, because the cells have equal volumes, normalization
of the distribution is trivial: γm ← γm(M/

∑
l γl), where M is the number of cells in the domain.

The only disadvantage is that there are still equivalent misorientations within that domain and
one must keep track of them when solving the system of equations.

A simple iteration was applied to solve the system (2). In the ideal case, the right–hand side of
the equations vanishes. However, for the approximation known in the n-th iterative step, the sum∑

m Akmγ(n)
m is non–zero. The deviation is used to modify values of the distribution in the next

iteration step. In order to involve all symmetries, we actually use the residual r
(n)
k =

∑
m AkmΓ(n)

m ,
where for each considered misorientation the quantity Γ(n)

m is the arithmetic average of values of
γ(n)

m at all symmetrically equivalent locations within D. The iteration step we applied had the
form

γ(n+1)
m = C(n) max

{
0 , γ(n)

m − 1

Nm

∑

k

Akmr
(n)
k

}
,

where C(n) denotes a normalization coefficient, and Nm is equal to the number of equations
involving γm. The initial value is γ(0)

m = 1. The quantity R(n) =
∑

k | r
(n)
k | is a measure of

discrepancy between a correct solution of the system and its approximation in the n-th iterative
step. Decrease of R(n) with growing n indicates convergence of the iteration process.

Tests

The simplest way to test the whole procedure is to assume a valid energy distribution, gener-
ate misorientations at triple junctions, calculate the corresponding dihedral angles, and finally,
recalculate the distribution from the misorientations and the dihedral angles.

Our model for testing is based on Read–Shockley type formula for energy of low angle bound-
aries with γ ∝ x(1 − ln(x)), where x is the ratio between misorientation angle to a fixed angle
limiting the angular range of applicability of the expression [10]. We shaped all energy cusps by
slightly modifying Read–Shockley formula. Let a function f be defined as

f(x, a) = ax(1− ln(x))+(1−a) for 0 < x ≤ 1, f(0, a) = 1−a and f(x, a) = 1 otherwise.

Parameter x determines the ’distance’ from the center of a cusp, and a (0 ≤ a ≤ 1) corresponds
to its depth. To define the energy function properly, we need to include some more steps. The
smallest rotation angle between rotations represented by matrices g1 and g2 is given by ω(g1, g2) =

2It must be noticed, however, that for the tessellations we use, the diameter (misorientation angle between most
distant points) of the cells increases with Φ approaching 1 and the reconstruction is better when Φ0 is smaller than
1.
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arccos((tr(g1 gT
2 ) − 1)/2). For misorientations of symmetric objects, the misorientation angle is

ωs(g1, g2) = mink,l{ω(ckg1cl, g2)}. Moreover, to take into account the equivalence between g and
gT , we define Ω(g1, g2) = min{ωs(g1, g2), ωs(g

T
1 , g2)}. The energy function was assumed to have

the form of the product
γ(g) ∝ ∏

n

f(Ω(g, gn)/Wn, an) ,

where gn determines the location of the n-th cusp, Wn is its half–width, and an corresponds to
its depth. We chose the cusps to be located at the misorientations defined by coincidence lattice
relationships with Σ in the range from 1 to 49. They were enumerated in the standard order as
Σn with n = 1, 2, ..., 48 (i.e., Σ1 = 1, Σ2 = 3, ..., Σ48 = 49). The half–widths of cusps are given by
Brandon criterion Wn = (π/12)Σ−1/2

n , and their depths are determined by an = Σ−1/2
n (Fig.1).

Figure 1. Sections through normalized model distribution. The first one corresponds to fixed misorientation
axis < 1 1 1 > and the angle changing from 0 to 120◦. The second figure is the stereographic projection for fixed
misorientation angle of 60◦ and axes covering hemisphere. The isolines are 0.70, 0.90, 0.97 and 1.00, with the latter
constituting the external perimeter of each cusp. The symmetry of the model is clearly visible.

Random grain orientations were generated by taking random numbers within [0, 1) as ϕ1/(2π),
(Φ + 1)/2 and ϕ2/(2π). With a known distribution of energy and grain misorientations, cosines
of the dihedral angles at the triple junction were calculated by solving (1) with respect to ti · tj;
for i 6= j one has ti · tj = (χ2/2− (γi)2 − (γj)2)/(γiγj), where χ2 = (γ1)2 + (γ2)2 + (γ3)2.

The reconstruction procedure was applied to the generated data. The result displayed in Fig.2
corresponds to a set of 106 triple junctions. The cell dimensions were ∆ϕ1 = (π/2)/90 = ∆ϕ2 and
∆Φ = 1/90. The iteration process was terminated after 50 steps. The reconstructed distribution
is in good agreement with the model.

We performed a test of the sensitivity of the procedure to experimental errors. Grain misori-
entations are determined with relatively high accuracy (of about 0.5◦). The largest experimental
errors will come from dihedral angles. Therefore, the directions of ti vectors were disturbed by
random angles (θ) generated according to von Mises distribution exp(κ cos θ), with the concentra-
tion parameter κ equal to 1000 (Fig.3a). The result of reconstruction from such inaccurate data
is shown in Fig.4. Despite the errors the quality of the result is still good because the number of
used triple junctions is large. (For this particular case, narrow cusps are indistinguishable if the
number of junctions is smaller than about 105.)
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Figure 2. Sections through the reconstructed distribution. Data were given in a mesh with the step size of 1◦.
The same levels as in Fig.1 are shown. The levels were smoothed by the drawing program we used.

Figure 3. (a) Part of von Mises distribution in the range from −10◦ to 10◦. (b) The ratio R(n)/R(0) versus n.
Diamonds and stars correspond to reconstructions given in Figs 2 and 4, respectively.

Figure 4. Sections through the distribution reconstructed from inaccurate data. The isolines on the stereographic
projection are 0.70, 0.90 and 0.97.

5



Real cases will be even more intricate. The system of equations (2) is expected to be seriously
inconsistent and under–determined. Inconsistency appears not only because of experimental errors
but also due to the dependence of γ on boundary orientation. For reasonable cell sizes, some cells
may be empty due to non-uniformness of misorientation distribution. Extrapolation of the energy
distribution over such regions is questionable because it is difficult to justify any assumptions
concerning smoothness of this function. Resolution of the method is directly related to the cell
size and determined by the number of available triple junctions and the level of experimental
errors.

Summary

Details of the numerical procedure for reconstruction of distribution of grain boundary free energy
over grain misorientations are considered. Efficiency of the procedure is tested on a model distri-
bution and computer generated data. The model satisfies conditions caused by crystal symmetry.
The conditions are also incorporated into the reconstructing procedure, so they are satisfied by
the reconstructed function.

Let us also mention that an effort is under way to collect experimental data (orientations and
true dihedral angles) for several thousand grains in polycrystalline MgO.
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