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Abstract

In a recent publication [Scripta Mater. 56 (2007) 37], the rate of curvature driven growth of two

dimensional regular cells was calculated. It was claimed that the formula for the rate differs from

the von Neumann’s law. However, the calculations leading to that conclusion were inconsistent

with the von Neumann’s kinetic postulate underlying the law. We show that after correcting the

error, the model of a regular cell leads to the von Neumann’s relationship.
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In a recent article, Nordbakke [1] considered curvature driven growth of two dimensional regular

cells. The author derived a formula for the rate of their area change as a function of the number

of cell sides. That expression considerably differs from the well–known von Neumann’s law [2].

However, the paper does not explain the reasons for the discrepancy. Below, we sort out what

was actually calculated in [1]. Then the derivation leading to the von Neumann’s law is given.

We use the notation of [1] (plus two additional symbols, fn and α0, defined below). We also refer

to points O, A,B,C, which are marked in Fig. 2 of [1]. The model is a regular n–sided cell with

circular arcs of radius R as boundaries. The boundaries move towards the centers of the circles

with velocities proportional to their curvature. With internal vertex angles of the cell equal to

2π/3, the model has geometric features of a foam bubble.

In the calculations of [1], a tacit assumption is that the angle supporting a boundary arc

(2α) is constant. With constant α and changing length of the chord AB, the center (C) of the

boundary arc must move with respect to the center of the cell (O). In this case, due to the

shrinkage of R, the cell area gets smaller even if n is larger than 6. To eliminate this obvious

difficulty, the additional factor sign(n− 6) was ’artificially’ introduced in Eqs (6) and (7) of [1].

Now, in the von Neumann’s kinetic postulate of proportionality between the boundary velocity

and its curvature, the velocity is presumed to be given with respect to an immobile external

reference frame. When writing the postulate in the form of Eq.(5), one accepts that the centers

of the boundary arcs (point C) are fixed in that frame. In other words, their distance to the

cell center O is constant. Hence, the angle α depends on R. This means that the expression

for the derivative dA/dR used in [1] and, consequently, the final formula given as Eq.(7) are

not consistent with the von Neumann’s kinetic postulate . Needless to say, the discussion which

follows Eq.(7) is groundless1.

The correct calculation is slightly more involved than that of [1]. The expression (4) of [1] for

the cell area A can be written as

A = A(R) ≡ R2fn(α) ,

where fn(α) = n
(
2α + 2 cot(π/n) sin2(α)− sin(2α)

)
/2, and α depends on R. Due to the kinetic

postulate (dR/dt = −C/R, C = const > 0),

dA

dt
= −C

(
2fn(α) + R

dfn

dα

dα

dR

)
.

With the internal vertex angles equal to 2π/3, one has α = α0 ≡ π (1/n− 1/6). The values of fn

1Moreover, there are misprints in expressions for t2 and t1 · t2.
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and dfn/dα at α = α0 are

fn (α0) = π +
n

12

(
3 cot

(π

n

)
− 3

√
3− 2π

)
and

dfn

dα
(α0) =

n

2

(
3−

√
3 cot

(π

n

))
,

respectively. The calculation of R (dα/dR) is more tedious but still elementary. Here is a sketch

of it for the case n < 6 shown in Fig. 2. From the law of cosines for the triangle OCB

R2 = |OC |2 + r2 − 2 |OC | r cos(π − δ/2) ,

where r = R sin(α)/ sin(δ/2). One can verify by substitution that one of the solutions of this

equation is R = |OC | csc (δ/2− α) sin(δ/2). Hence, R (dR/dα)−1 = tan (δ/2− α). With δ =

2π/n and α = α0, one gets (
R

dα

dR

)

|α=α0

=
√

3
3

.

Analogous calculation for n > 6 gives the same value. Substitution into the expression for the

rate of area change gives dA/dt = Cπ(n− 6)/3, i.e., Eq.(1) of [1]. In conclusion, the model of a

regular cell bounded by circular arcs moving with constant velocities −C/R with respect to fixed

arc centers leads exactly to the von Neumann’s relationship.

For completeness, the following remark is in place. The growth of a regular two dimensional

cell with (three) circular arc boundaries was considered earlier by Gusak and Tu [3]. That analysis

also leads to a formula different from the von Neumann’s law. The discrepancies have an origin

in different interpretation of the kinetic postulate. Circular arcs moving with constant velocities

with respect to fixed arc centers violate the requirement that internal vertex angles must equal

2π/3. Above, to get the von Neumann’s formula, the rate dA/dt is calculated at the instant when

the angles reached this particular value. In the derivation of Gusak and Tu [3], as in [1], the

vertex angles are fixed at 2π/3, and – to maintain circular shape of boundaries – the arc centers

are mobile. Differently than in [1], the boundary velocity of [3] is adjusted so it is the same as

in the von Neuamann’s case in the vicinity of vertices. Since the boundary velocities differ, the

resulting expressions for the rate are different. An extensive discussion about the validity of these

and other formulations of the kinetic postulate is beyond the scope of this note. We only point

out that the scenario of Gusak and Tu [3] seems to be more realistic than the one leading to the

von Neumann’s law, and the case considered in [1] does not reflect features of curvature driven

coarsening.

Finally, let us note that an analysis similar to that of [3] and [1] can be performed for three

dimensional regular cells [4]. This would be another derivation of the rate of cell volume change

as a function of the number of faces.
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