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Grain boundaries are frequently classified into tilt, twist and mixed-type

boundaries. However, the classification (into tilt and twist) is not a dichotomy;

due to crystal symmetries, some boundaries may be concurrently tilt and twist

boundaries. Formal conditions for a planar homophase boundary between

crystals with m3m symmetry to be a tilt as well as a twist boundary are

determined, and a procedure for verification of whether a boundary has such

dual character is given.

1. Introduction

In addition to grain boundary geometry, details of structure

and bonding are needed for predicting boundary properties.

However, assessment of geometry is the first step for all more

in-depth analyses. Therefore, there is considerable interest in

geometry-based classifications of boundaries. One such clas-

sification is the distinction between tilt, twist and mixed-type

(or general) boundaries (see e.g. Sutton & Balluffi, 1995).

Most grain boundary studies and experimental data concern

tilt and twist boundaries in cubic materials.

Because of crystal symmetry, some pure twist boundaries

can be also characterized as pure tilt boundaries. The best

known example is the coherent twin boundary in face-centred

cubic materials, which can be obtained by twisting a part of a

crystal about the [111] direction by 60� or by tilting it about

½110� by 70.53�.
In this paper, we address the problem of the formal

conditions required for a planar homophase boundary

between crystals with m3m (Oh) symmetry to be simulta-

neously a tilt and a twist (or T and T) boundary. Similar

conditions were briefly considered some time ago by Fortes

(1973) but that approach was not complete.

2. Preliminaries

For specifying a boundary in a bicrystal, boundary parameters

are needed. We will use the Cartesian coordinate systems

defining the cubic lattices of crystals. Macroscopic boundary

parameters can be given in the form of the 4 � 4 interface

matrix

B ¼ 0 mT
2

m1 M

� �
with m2 ¼ �MTm1; ð1Þ

where M ( 6¼ identity matrix) is the 3 � 3 special orthogonal

matrix of the misorientation between the coordinate systems

of the first and second crystals, and m1 (m2) is the unit vector

normal to the boundary plane given in the coordinate system

of the first (second) crystal. Representations symmetrically

equivalent to B have the form

0 ðC2m2ÞT
C1m1 C1MCT

2

� �
or

0 �ðC2m2ÞT
�C1m1 C1MCT

2

� �
; ð2Þ

where Ci (i = 1, 2) are special orthogonal matrices of proper

symmetry operations (Morawiec, 1998). A special orthogonal

matrix can be expressed in a standard form as

�ijðn; �Þ ¼ �ij cos �þ ni nj ð1� cos�Þ � "ijknk sin �; ð3Þ

where n denotes a unit vector along the rotation axis and �
denotes the rotation angle (see, for example, Morawiec, 2004).

Explicit matrix components are used in equation (3) and

summation over matrix indices which appear twice in a single

term is assumed. The letter " denotes the permutation symbol

and � is the Kronecker symbol.

For a tilt boundary, the rotation axis lies in the boundary

plane. Thus, the vector n along the axis is perpendicular to the

vectorsmi , i.e.mi � n ¼ 0 for i = 1, 2. We refer to a boundary as

(properly) quasisymmetric if the crystallographic planes in the

two crystals are symmetrically equivalent in the sense that

m2 = �C0m1, where C0 is an orthogonal matrix representing

a symmetry operation by (proper) rotation. For a twist

boundary, the rotation axis is perpendicular to the boundary

plane. Thus, the twist boundary can be parameterized in such a

way that m1 = �m2, and these vectors are parallel to the

rotation axis with m1 = n = �m2, i.e. the interface matrix may

have the form

Btwist ¼ 0 �nT

n �ðn; !Þ
� �

: ð4Þ

Btwist is determined by misorientation parameters n and !,
with �180� < ! � 180�.

3. T and T boundaries

There are two issues to be considered: first, what are the

conditions for a given tilt boundary to be also a twist

boundary, and second, what are the conditions for a given

twist boundary to be a tilt boundary. We begin with the first

one.
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It is easy to see that for B0 equivalent to Btwist the normals

m1 = C1n and m2 = �C2n are related via m2 ¼ �C2C
T
1 m1, and

the same occurs form1 =�C1n andm2 = C2n. Thus, every twist

boundary has a proper quasisymmetric representation. A

convenient way of recognizing the twist character of a

boundary originates from the related statement: every proper

quasisymmetric boundary is equivalent to a twist boundary. To

show this, we assume that m2 = �C0m1 for the boundary given

by equation (1), and we consider its symmetrically equivalent

representation obtained by application of C1 = C0,

0 mT
2

C0m1 C0M

� �
¼ 0 m0T

2

m0
1 M0

� �
: ð5Þ

Based on equation (5) and m0
2 ¼ �M0Tm0

1, one has

m0
2 ¼ m2 ¼ �C0m1 ¼ �m0

1;

M0Tm0
1 ¼ �m0

2 ¼ m0
1 and

M0m0
2 ¼ �m0

1 ¼ m0
2; ð6Þ

i.e. m0
2 ¼ �m0

1 and both m0
1 and m0

2 are parallel to the rotation

axis ofM0. Thus, the representation in equation (5) satisfies the
conditions for a twist boundary.

Now, we proceed to the question of which twist boundary is

also a tilt boundary. Let B0 be a symmetrically equivalent

representation of Btwist. If C1 = C2, the interface matrix B0 also
contains parameters with the rotation axis perpendicular to

the boundary plane, i.e. it also explicitly represents a twist

boundary1. This generally does not occur if C1 and C2 differ.

The matrix B0 will represent a tilt boundary if the normals C1n

and C2n are perpendicular to the rotation axis of C1�ðn; !ÞCT
2 .

Since C1�ðn; !ÞCT
2 is a special orthogonal matrix, it can be

expressed via �,

C1�ðn; !ÞCT
2 ¼ �ðk; �Þ; ð7Þ

where k is a unit vector along the rotation axis and � is the

rotation angle. For B0 to be a tilt boundary, the relations

ðCinÞ � k ¼ 0 must occur. The condition ðC1nÞ � k ¼ 0 is

equivalent to n � k0 ¼ 0, where k0 ¼ CT
1 k. Let C ¼ CT

2 C1. Since

�(k0, �) = CT
1 �ðk; �ÞC1 = �(n, !)C, and for non-symmetric

�(k0, �) the vector k0 satisfies k0i / "ijk�jkðk0; �Þ, the relation

n � k0 ¼ 0 leads to

"ijk�jlðn; !ÞClkni ¼ 0: ð8Þ
Using equation (3), one obtains

"ijkniCjk cos!� ðCkk�ij � CijÞninj sin! ¼ 0: ð9Þ
If the matrix �(k0, �) is symmetric, one has k0ik

0
j =

½�ij þ �ðk0; �Þij�=2, and n � ðCT
1 kÞ ¼ nik

0
i ¼ 0 can be replaced

by nik
0
ik

0
j ¼ 0 or

ni þ Cijnj ¼ 0: ð10Þ
One can proceed in the same way with the second condition

ðC2nÞ � k ¼ 0; it involves the matrix C�(n, !) instead of

�(n, !)C, and it leads to the same equations (9) and (10)

depending on whether C�(n, !) is symmetric or not.

In order to obtain the parameters of twist boundaries which

are T and T boundaries, we solve equations (9) and (10) to

obtain the following solutions:

! ¼ 180� and arbitrary n; ðS1Þ

ni ¼ 0 for a given i and arbitrary !; ðS2Þ

ni � nj ¼ 0 for i 6¼ j and arbitrary !; ðS3Þ

tanð!=2Þ � ni ¼ 0 for a given i; ðS4Þ

tanð!=2Þ � n1 � n2 � n3 ¼ 0; ðS5Þ
where the ‘zero’ misorientation with ! = 0 is excluded.

Visualization of the last two cases (S4 and S5) in the angle–

axis parameterization is complicated. More convenient for this

are the Rodrigues parameters ri = nitan(!/2) (Frank, 1988).

With these, S1 has an awkward form

rkrk ¼ 1; ðS1Þ
but the remaining four are simple:

ri ¼ 0; ðS2Þ

ri � rj ¼ 0; i 6¼ j; ðS3Þ

rkrk � ri ¼ 0; ðS4Þ

rkrk � r1 � r2 � r3 ¼ 0: ðS5Þ
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Figure 1
Schematic illustrations of Rodrigues ‘vectors’ given by solutions S2 (a),
S3 (b), S4 (c) and S5 (d).

1 An analogous statement applies to tilt boundaries: for an explicit
representation of a tilt boundary with a rotation axis in the boundary plane,
the symmetrically equivalent representation [equation (2)] based on C1 = C2

also satisfies the conditions for a tilt boundary.
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These relations represent two-dimensional surfaces in the

three-dimensional ‘Rodrigues space’. Clearly, cases S2 and S3

are planes. Points satisfying relations S4 are located on six

spheres of the same radius of 1/2 centred at (r1, r2, r3) =

(�1
2, 0, 0), (0, �1

2, 0) and (0, 0, �1
2). For case S5, these

are eight spheres of radius 31=2=2 centred at (�1
2, �1

2, �1
2)

(Fig. 1).

One may examine whether a given boundary has dual T

and T character by completing the following steps. After

determining the interface matrix, one needs to examine

whether m1 and m2 are related by a proper symmetry opera-

tion. If this occurs, the considered case is a proper quasi-

symmetric boundary, and application of the symmetry

operation to the initial interface matrix, as in equation (5),

will lead to Btwist explicitly representing a twist boundary. The

last step is to check whether Btwist satisfies any of the condi-

tions S1–S5. If it does, the case under consideration is a T and

T boundary. An example of this procedure is given in

Appendix A.

For completeness, we recall related facts concerning

symmetric tilt boundaries. A tilt boundary is referred to as

symmetric if the boundary plane is a mirror plane between

crystal structures. A mirror reflection with respect to a plane

perpendicular to m is an improper rotation represented by the

matrix [�ij � 2mimj]. Since inversion is assumed to be a

symmetry operation, the reflection is symmetrically equivalent

to the proper rotation given by �(�ij � 2mimj) = �ij(m, 180�).
This leads to the well known conclusion (e.g. Wolf & Lutsko,

1989) that every symmetric tilt boundary can also be seen as a

180� twist boundary. Conversely, a twist boundary is equiva-

lent to a symmetric tilt boundary if it can be expressed as a

180� twist boundary. Moreover, the misorientation matrix

�(k, !) of the symmetric tilt boundary can be written as

�(k, !) = �(m, 180�)C, where k �m ¼ 0 and C is a special

orthogonal matrix of a symmetry operation. Since �(k, !)k =

k and �(m, 180�)k = �k, one has Ck = �k. Therefore, C must

be a half-turn, with the rotation axis s perpendicular to k,

i.e. C = �(s, 180�) and s � k ¼ 0. Since the only half-turns

among the symmetry operations of m3m are the rotations

around h100i and h110i, the rotation axis of a symmetric tilt

boundary lies in one of the mirror planes {100} or {110} (see

Sutton & Balluffi, 1995).

4. Final remarks

One may consider what would be the frequency of occurrence

of T and T boundaries, or, assuming a certain tolerance, the

fraction of such boundaries among randomly ‘generated’

boundaries. This is an aspect of the broader issue of

frequencies of specific boundaries. The problem can be

addressed numerically but the results will depend on an

assumed measure in the boundary space.

The discussion of the structure or dislocation content of T

and T boundaries is beyond the scope of this work. However,

it is worth mentioning that low-� coincident lattice (CSL)

misorientations satisfy the conditions for being T and T. The

lowest � which cannot correspond to a T and T boundary is

�39 ([123], 50.13�). Some CSL misorientations comply with

multiple conditions (e.g. �3 satisfies all conditions S1–S5).

Most low-� CSL misorientations fit some of conditions S1, S2

and S3; the first one fulfilling conditions S4 and S5 but no

other is �63 ([123], 56.25�). A twist boundary which has

integer Miller indices and which satisfies relations S1, S4 or S5

is a CSL boundary.

Complete characterization of the geometry of a boundary is

not always simple. The conditions for T and T listed in this

paper may make the task somewhat easier. Only the case of

m3m crystal symmetry has been analysed here, but a similar

approach can be applied to other symmetries. For non-cubic

lattices, the manipulations will be less convenient but the

general principles will be the same. Some differences will

appear if the crystals have no inversion symmetry.

APPENDIX A
An example is given of the procedure for checking whether a

given boundary is T and T. Let us take the boundary with the

planes (245) and (254), with the misorientation given by

rotation axis [11 9 1] and rotation angle arccos(�11/18). The

boundary is represented by the matrix

B ¼
0 �2a �5a 4a

2a 22b 46b 37b

4a 53b 2b �34b

5a �26b 43b �38b

2
664

3
775;

where a ¼ 51=2=15 and b = 1/63. The vectors normal to the

boundary plane are related by the symmetry operation C0 =

�([1,0,0]T, 270�) = [�1i�1j + "1ij]; one has ½254�T = �C0[245]
T.

Thus, B corresponds to a proper quasisymmetric boundary.

Application of the symmetry operation C1 = C0 to B gives the

representation

Btwist ¼
0 �2a �5a 4a

2a 22b 46b 37b

5a �26b 43b �38b

�4a �53b �2b 34b

2
664

3
775;

with the plane Miller indices ð254Þ and ð254Þ and rotation axis

½254� perpendicular to the boundary plane, i.e. with the explicit
characteristics of a twist boundary. For the above Btwist, one

has n ¼ ð51=2=15Þ½2; 5;�4�T and tanð!=2Þ ¼ 51=2=3, and these

parameters satisfy S4. Thus, the boundary being considered

has dual T and T character. Indeed, the symmetry operation

C2 = �([0,1,0]T, 90�) = [�2i�2j � "2ij] leads to

B0 ¼
0 4a �5a 2a

2a 37b 46b �22b

5a �38b 43b 26b

�4a 34b �2b 53b

2
664

3
775;

with the planes ð254Þ and ð452Þ and rotation axis ½123� in the

boundary plane, i.e. B0 explicitly represents a tilt boundary.
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