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Abstract

Homophase grain boundaries are frequently classified into twist–, tilt– and mixed type boundaries.

With small deviations from pure twist and tilt allowed, there are finite probabilities of occurrence of

these particular boundary types in a set of random boundaries. These probabilities are determined

for the case of cubic crystal symmetry. If the limit on the deviations is 3 degrees, then 3.9% of

random boundaries have near–twist character, and as many as 84.0% of random boundaries are

near–tilt boundaries.
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There are a number of classifications of grain boundaries. The most basic is the distinction

between low– and high angle boundaries. Then, there is a division into successive coincident

lattice (CSL) boundaries and non–CSL boundaries. The third common classification is that

into twist –, tilt – and mixed type boundaries [1].

One of the basic and interesting issues is to find out the frequencies of occurrence of

boundaries of particular types. The frequencies for a given material can be referred to

the frequencies corresponding to the random case. Hence, there is an interest in the latter

numbers, i.e. in the fractions of special boundaries among random boundaries. In the cubic

case, the fraction of low angle (Σ1) boundaries defined by the 15◦ limit on the misorientation

angle is 2.3%. Assuming Brandon criterion, the probabilities for the CSL misorientations

of Σ3, 5 and 7 are 1.8, 1.2 and 1.0%, respectively [2, 3]. Now, a question arises about the

frequencies for the third classification: What are the probabilities for a random boundary

to have twist or tilt character? To our knowledge, despite the prominence of the tilt/twist

characterization, these probabilities have not been estimated before.

In contrast to CSL boundaries (including Σ1), which are ordinarily defined based on mis-

orientations, both misorientations and boundary plane inclinations are needed for describing

twist and tilt boundaries. Until recently, the interest in examining boundary inclinations

was limited because of experimental difficulties in their determination. However, this has

changed with the progress in automatic serial sectioning methods and 3D characterization

of materials [4,5], and the increased activity in the areas of statistical analysis involving all

five macroscopic boundary parameters (e.g., [6–8] and references therein).

Below, we calculate the frequencies of occurrence of near–twist and near–tilt boundaries

among random boundaries in the case of m3m (Oh) crystal point group. To introduce needed

quantities, we assume that Cartesian reference systems of the same handedness are attached

to crystallites. Relative orientations of the crystallites correspond to rotations relating

the systems; a special orthogonal matrix, say M , can be used to represent misorientation

between the first– and the second grain. To specify inclination of the boundary plane, we

use a unit vector m1 perpendicular to the plane, directed towards the second grain, with

coordinates given in the coordinate system of the first crystallite. Similarly, m2 = −MT m1,

with coordinates given in the coordinate system of the second crystallite, is normal to the

boundary and directed towards the first grain.
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The key question is how to calculate the frequencies. One can make a rough estimation

of the inequalities between fractions of special boundaries. A Σ–boundary is specified by

three macroscopic parameters and two parameters are free, whereas twist boundaries are

associated with three degrees of freedom and tilt boundaries are described by four continuous

parameters (e.g., [1]). Hence, assuming the same limitation on deviations in all these cases,

the fraction of tilt boundaries is expected to be larger than the fraction of twist boundaries,

and the latter, in turn, is expected to be larger than the fractions of particular Σ–boundaries.

This reasoning, however, does not indicate how big the differences can be.

To get quantitative results, a given boundary needs to be linked to its twist and tilt

”components”. The well known decomposition of Fortes [9] is not suitable for our purposes.

We apply a method analogous to that used for estimating the frequency of occurrence of CSL

boundaries [2,3]; boundaries are classified as twist or tilt boundaries if they are sufficiently

close to pure twist or pure tilt boundaries. Our calculations are based on an assumed dis-

tance function in the boundary space [10]1. The distance between the boundaries specified

by (M,m1) and (M ′,m′
1) equals

√
ω2 + (θ2

1 + θ2
2)/2, where ω is the angle of the rotation

leading from M to M ′, θi is the angle between mi and m′
i (i = 1, 2), and m′

2 = −M ′T m′
1.

Such a function determines a measure or model of uniformity for boundaries [10]. The

fractions can be obtained by integrating this measure over regions surrounding the twist–

and tilt boundaries (Fig.1). Analytical integration would be difficult due to intricacies of Fig.1

the boundary space and complications caused by crystal symmetry. Therefore, the problem

was resolved numerically. Random boundaries were generated according to the model of

uniformity following from the distance function. For each randomly generated boundary,

the distances to the nearest twist and tilt boundaries were calculated via function minimiza-

tion [14]. The free optimization parameters of a twist boundary were three misorientation

parameters (and the boundary plane was determined by the direction of the misorientation

axis). In the case of tilt boundaries, the optimization parameters were three misorientation

parameters and one parameter of the boundary plane (with the second one determined by

the perpendicularity of the axis and the normal to the plane). For a given boundary, all

its symmetrically equivalent representations were processed, and the smallest distance was

taken as the result. Finally, based on a large number of randomly generated boundaries,
1For alternative metrics, see [11,12].
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the fraction of boundaries within assumed limits was counted.

It must be stressed that the symmetry is an important factor. The symmetries involved

are the crystal symmetry and the interchange of the order of the crystallites [10]. This

amounts to 4 × 242 = 2304 equivalent points in the product space of special orthogonal

matrices representing misorientations and unit vectors representing inclinations. In a given

representation, a boundary may be seen as general, but it may have an equivalent represen-

tation indicating its closeness to a special boundary2.

As for the limitation on angular deviations, its choice might be based on arrangements

of dislocation networks but expressions for such limits would be complicated. Instead, one

may simply consider the limitation in relation to the accuracy of experimental measurements

of boundary parameters. Since the accuracy of misorientation determination by electron

backscatter diffraction (EBSD) is slightly better than one degree (e.g., [13]), and the errors

for inclinations are considerably larger (e.g., [8]), we explicitly list data for tolerances of

this order. Fractions for arbitrary limiting values can be read from cumulative distributions

shown in respective figures.

Our results are based on 5×106 (≈ 225) randomly generated boundaries. The probability

density function for the distances to the nearest pure twist boundary and the corresponding

cumulative distribution are shown in Fig.2. The fractions of boundaries with the distance Fig.2

to a pure twist boundary not larger than 1, 2 and 3◦ are 0.4, 1.7 and 3.9%, respectively.

The mean distance to the nearest twist boundary is 11.8◦, and the median equals 11.6◦.

The largest registered distance to the nearest twist boundary is 28.3◦.

The percentages of boundaries with the distance to the nearest pure tilt boundary not

exceeding 1, 2 and 3◦ are 39.0, 66.3 and 84.0%, respectively (Fig.3). The mean distance to Fig.3

the nearest tilt boundary is 1.6◦, and the median equals 1.4◦. The largest registered distance

to the nearest tilt boundary is 7.4◦.

Some boundaries are concurrently close to twist– and to tilt boundaries [15]. The frac-

tions of boundaries which are no further than 1, 2 and 3◦ from a twist– and a tilt boundary

are 0.2, 1.3 and 3.5%, respectively.
2For example, the boundary on the (1 1 1) plane with misorientation being the rotation about [0 1 2] by

131.81◦ can be also expressed as the boundary with (1 1 1) plane and tilt about [0 1 1] by 70.53◦, or with

(1 1 1) plane and twist about [1 1 1] by 60◦.
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Summarizing, the frequencies of occurrence of near–twist and near–tilt boundaries among

random boundaries were determined. The work was motivated by the interest in estimating

the incidence of these particular boundary types, and by the need for reference frequencies.

Only the case of the m3m crystal symmetry was considered (but a similar approach could

be applied to other symmetries). The method was based on an assumed distance function,

random generation of boundaries, and on counting boundaries within a given limit to the

nearest twist– and tilt boundaries. The results confirm rough estimates of the inequalities

between the frequencies of occurrence of CSL, twist and tilt boundaries. Noteworthy is the

percentage of random boundaries close to pure tilt boundaries; this number turns out to be

strikingly large comparing to the fractions of CSL and twist boundaries. With the current

accuracy of EBSD based data, most boundaries may be interpreted as having near–tilt

character.
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Captions

Fig. 1. Schematic illustration of the boundary space and the subspaces of twist– and tilt

boundaries. Arrows indicate the twist– and tilt boundaries nearest to the boundary A. The

boundary B is within assumed limit (marked by dashed lines) from pure twist boundaries.

The fraction of twist boundaries is obtained by calculating the ”volume” of the region be-

tween the dashed lines.

Fig. 2. (a) Probability density function for distances (in degrees) to the nearest twist bound-

ary. The long tick on the abscissa marks the average distance. (b) Cumulative distribution

function for the distances to the nearest twist boundary. The long tick marks the median.

Disks mark the largest registered distance. The figures are drawn based on data collected

in (1/3)◦–wide bins.

Fig. 3. Probability density function (a) and cumulative distribution (b) of the distances to

the nearest tilt boundary. The graphs are based on data collected in bins of width (1/10)◦.

Marks as in Fig.2.

7



Figure 1

(Morawiec, Frequency of occurrence of tilt and twist boundaries)
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Figure 2a

(Morawiec, Frequency of occurrence of tilt and twist boundaries)
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Figure 2b

(Morawiec, Frequency of occurrence of tilt and twist boundaries)
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(Morawiec, Frequency of occurrence of tilt and twist boundaries)
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Figure 3b

(Morawiec, Frequency of occurrence of tilt and twist boundaries)
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