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On ”The five-dimensional parameter space of grain boundaries”

by Sutton, Banks & Warwick

Abstract : In their recent paper [Proc. Roy. Soc. A 471, 2181 (2015)], AP Sutton, EP

Banks and AR Warwick criticized previous metrics in the space of macroscopic boundary

parameters and proposed a new function instead. However, some aspects of their analysis

need to be clarified. In particular, reasons for introducing one of the criticized metrics are

explained, and deficiencies of the new function are indicated.
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Sutton, Banks & Warwick have recently published an article about metrics in the space of

macroscopic grain boundary parameters [1]. The authors deserve credit for bringing the

subject to the attention of the scientific community. This comment is intended to correct

some issues raised in [1]. Particularly important is the categorical claim made by the authors

that a metric in the boundary space ”must” satisfy certain conditions and the observation

that the metric χ used in [2] does not fulfill them.1 The erroneousness of χ would have far-

reaching implications because a number of papers about grain-boundary populations (see,

e.g., [3] and references therein) tacitly rely on a measure derived from this metric.

1. It is worth explaining the original context and initial reasons for introducing the boundary-

space metric. Some years ago, experimental developments in automatic characterization

of polycrystalline materials opened the opportunity to study frequencies of occurrence of

macroscopic boundary types [4]. Two formal issues needed to be resolved to depict and

interpret these frequencies: first, it was necessary to determine the symmetry-caused equiv-

alence of boundary parameters, and second – as in all problems concerning geometrical

probabilities – one needed to specify a measure (or ’random’ distribution or ’volume el-

ement’) in the boundary parameter space. Solutions to these problems for both homo-

and hetero-phase boundaries were given in [5] and than described in more details in [6]

and [7]. The construction of the volume element was based on the metric tensor, and that

was the primary purpose of introducing the metric. Only later the distance in the space of

macroscopic boundary parameters arose as an independent subject [8, 9].

1The symbol ∆(M) used in [1] denotes χ2.
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2. As was explicitly stated in [5], the measure in the boundary space is not unique. Also

the choice of a metric from which the measure is derived is a matter of convention, but be-

cause of the physical interpretation, intuitive simplicity or computational convenience some

metrics are better than the others. On the other hand, the problem of equivalence between

boundary parameters has an unambiguous solution. Because of crystal symmetries, different

points in the boundary parameter space correspond to macroscopically identical boundary

configurations. In the case of homo-phase boundaries, the additional grain exchange sym-

metry may arise. The equivalence of boundary representations induces symmetries in the

space. (Alternatively, the actual boundary space can be seen as comprised of classes of

equivalent boundary representations [7], but this concept was not used in [1] and will be

omitted here.) Functions determined on the boundary space exhibit symmetries in the sense

that values of a given function at equivalent points are equal.

3. A metric as a (two-argument) function on the boundary parameter space must reflect

the symmetries of the space. More precisely, the transformations of the space by symmetry

operations need to be isometries, i.e., if b represents a boundary, and S(b) is the representa-

tion equivalent to b due to the symmetry S, then the distance d̃ (b1,b2) between boundary

representations b1 and b2 is expected to be equal to the distance between S(b1) and S(b2)

d̃ (b1,b2) = d̃ (S(b1),S(b2)) . (1)

A simple method of constructing the desired metric in the actual symmetry-affected bound-

ary space is by defining an auxiliary metric in a simpler provisional space devoid of some

symmetries, and then by extending it to a metric in the fully symmetric space. Preferably,

any physical meaning, intuitive simplicity or computational convenience of the auxiliary

metric should be passed to the extended metric in the fully symmetric space.

4. The auxiliary metric χ denounced in [1] was designed to be used in the case of homo-phase

boundaries in the presence of both crystal symmetry and grain exchange symmetry [5].

It is described in [1] as ”inconsistent” because of the ”lack of separation” between the

contributions from misorientations and boundary normals. In a more formal language, χ

is not a product metric although its domain is a Cartesian product; this obvious fact was

explicitly expressed in [7].

The ”lack of separation” is a feature of general spaces. In a space which is a Carte-

sian product, having the property of ”separation” is appealing, but it is not a necessary

requirement for a function to be referred to as a metric. The reason for endorsing χ was
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that it naturally satisfies eq.(1) with respect to both crystal symmetry and grain exchange

symmetry; see eq.(31) in [7]. Therefore, the step of extending χ to a metric in the symmetric

boundary space is straightforward [7].

5. The authors of [1] use a boundary parameterization with misorientations described by

Rodrigues parameters (ρ) and a vector (N̂) determined by boundary normals. With this

parameterization, an auxiliary metric ∆ (= ∆12) in the provisional space is introduced.

It has the appealing attribute of being a product metric. Just like χ [6], the metric ∆

breaks down at zero misorientation, but besides that, ∆ has the disadvantage that if both

the misorientation and the boundary planes are changed in such a way that N̂ is kept

constant, only the misorientation change contributes to the growing distance. This effect is

strongly pronounced when the misorientation angles approach π; in this case, the distance ∆

between very different boundaries can be negligibly small. (See Appendix A.) Thus, besides

the singularity at the point of zero misorientation, ∆ fails near the surface of half-turns in

the misorientation space.

The metric ∆ has the property described by eq.(1) with respect to the grain exchange

symmetry, but it does not have it with respect to some crystal symmetries; see Appendix

B. To account for all equivalences, the authors extend the auxiliary metric ∆ by taking

the ”minimum value of ∆ij” [1], i.e., for given two boundaries, the extended function, say

∆̃, is the smallest of distances ∆ of particular representations of the first boundary from

particular representations of the second boundary. The problem with this approach is that

the so-defined extension ∆̃ violates the triangle inequality; see Appendix C. Thus, the

extended ∆ proposed in [1] is not a metric in the true boundary space influenced by crystal

symmetry.

6. Summarizing the above, the metric χ is not a product metric, but it satisfies eq.(1), and

this allows for a simple extension to the actual boundary space. On the other hand, ∆ is a

product metric, but it does not fulfill eq.(1), and this complicates the step of extending it.

As was explained in [7], there is a general way of extending an auxiliary metric to the

space with classes of equivalent representations by using properly adapted metrics applicable

to sets. This can be the Hausdorff metric in the form given in [7], and the concept can be

applied to ∆. Although the Hausdorff-extended ∆ does not take into account the structure

of the equivalence classes and lacks any physical interpretation, it formally satisfies all

necessary conditions for being a metric in the symmetry-affected boundary space.
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7. In relation to the metric, the paper [1] deals with the problem of equivalent specifi-

cations of grain boundaries. Sutton, Banks & Warwick ignore previous accounts on this

subject [5–7] and present it as if it had not been considered before, although appropriate

rules are briefly reviewed in [2] – the paper they critically examined in [1]. Moreover, the

transcription of the rules from the matrix formalism of [2] to the Rodrigues-parameters for-

malism of [1] is imprecise. No distinction is made between the grain exchange symmetry and

the crystal symmetry, and the case of symmetries involving proper rotations (represented

by Rodrigues vectors) is mixed with symmetry operations in general (including improper

rotations, which are not represented by Rodrigues vectors). The imprecision is manifested

in arbitrariness of vector directions in [1]. (It adds to the confusion that at the outset only

non-enantiomorphism of crystals is assumed, thus allowing for non-enantiomorphic polar

crystals.) In a correct approach, any change of a vector direction should be linked to a

symmetry operation, and the application of the symmetry to a boundary normal should be

accompanied by application of this symmetry to misorientation parameters and vice versa.
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Appendix A: Example of arbitrarily small distance ∆ between different boundaries.

All symbols except those defined in this note have the meaning specified in [1]. With i = 1, 2,

let bi =
(
N(i),ρ(i)

)
, where ρ(i) = (0, 0, cot ϵi), N

(i) = (ϵ, 0, 1), and ϵ and ϵi (in radians) are

such that 1 ≫ ϵ1 ≫ ϵ ≫ ϵ2 > 0. The corresponding boundary normals are

n(1) = (ϵ, ϵ cot ϵ1, 1) ≈ (0, 0, 1), n′(1) = (ϵ,−ϵ cot ϵ1, 1) ≈ (0, 0, 1),

n(2) = (ϵ, ϵ cot ϵ2, 1) ≈ (0, 1, 0), n′(2) = (ϵ,−ϵ cot ϵ2, 1) ≈ (0,−1, 0).

The distance ∆ between b1 and b2 equals 2(ϵ1 − ϵ2) ≈ 2ϵ1, i.e., it is small despite very

different boundary planes; b1 represents a near-180
◦-twist boundary, whereas b2 corresponds

to a near-180◦-tilt boundary.

Appendix B: ∆ does not satisfy eq.(1) with respect to crystal symmetry.

The example below is based on two boundaries considered in [1] and expressed via direction

indices of the cubic lattice: b1 =
(
N(1),ρ(1)

)
= ([1 1 1], [1 1 1]/3) and b2 =

(
N(2),ρ(2)

)
=

([1 1 1], [2 3 4]/7). Let S correspond to the crystal symmetry represented by σ = [0 0∞]

and acting on the left side of ρ(i), i.e., the parameters of misorientations ρ(i) and boundary

normals n(i) are changed to σ ⋆ ρ(i) and σ ⋆ n(i) ⋆ (−σ), respectively. Hence, one gets the

equivalent specifications S (b1) =
(
[0 0 1], [1 1 3]

)
and S (b2) =

(
[1 2 7], [3 2 7]/4

)
. The

distance between b1 and b2 differs from that between their equivalents S (b1) and S (b2):

∆ (S (b1) ,S (b1)) = ∆ (b1,b2) + arccos(7
√
6/18).

Appendix C: ∆̃ violates of the triangle inequality.

Let the crystal point group be C2h with the two-fold axis along z. In this case, the only

non-trivial proper rotation among crystal symmetry operations corresponds to σ = [0 0∞].

With the grain exchange symmetry taken into account, a general boundary has 16 equivalent

representations in the space being a Cartesian product of proper rotations and the sphere

of unit vectors. The ’distances’ ∆̃ between the boundaries b1 and b2 listed in Appendix

B, and b3 =
(
N(3),ρ(3)

)
=

(
[0 1 1], [1 1 0]/4

)
are ∆̃ (b1,b2) ≈ 23◦, ∆̃ (b2,b3) ≈ 92◦ and

∆̃ (b3,b1) ≈ 55◦. Since ∆̃ (b2,b3) exceeds the sum of ∆̃ (b1,b2) and ∆̃ (b3,b1), the triangle

inequality is violated. For simplicity, the lowest non-trivial crystal symmetry with inversion

was assumed above, but numerical tests show that the conclusion is also true for higher

symmetries including the cubic holohedry Oh considered in [1].
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