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Abstract

The issue of constructing interface networks translating under the curvature driven migration

is addressed. The translating networks are the main accessory for testing capillarity driven

migration mode in grain growth simulations. They also arise in experimental studies of

boundary mobility and junction drag. The networks are constructed of pieces of simple

translating curves – lines and Grim Reapers – meeting at triple junctions. The primary

method of building the networks relies on a certain property of Grim Reapers which reduces

the construction to simple algebraic operations. At the outset, networks of interfaces having

different tensions are considered. More detailed discussion concerns a restricted model in

which the migration speed does not depend on the tensions. In this second case, the networks

have noteworthy properties: some cell dimensions are directly related to angles at triple

junctions, there are simple expressions for area sweeping rates, and there is a convenient

and elegant alternative way of constructing these particular networks.
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1. Introduction

Grain growth in pure single-phase metals is the ’testing ground’ for continuum-based com-

putational methods for simulation of evolution of polycrystalline microstructures [1]. To

simplify the problem, many simulations are based on two-dimensional (2D) microstructure

models. The grain coarsening is a result of decrease in free energy of grain boundaries via

reduction of boundary length [2]. 2D grain boundary networks have the topology of polyg-

onal complexes (plane filling polygons attached edge-to-edge) with three edges meeting at a

vertex. Geometrically, the boundaries are non-intersecting curves meeting at triple junctions

at angles satisfying equilibrium conditions.

The phenomenon of grain growth has many aspects, but the fundamental one is the

kinetics of the boundary motion. In the key model – the so-called capillarity-driven growth,

the interface migration speed is proportional to local interface curvature. Before incorpo-

rating other aspects of grain growth, credible simulation software is expected to imitate the

capillarity-driven boundary migration. Simulation of grain growth is a persistent challenge

mainly due to complications at boundary junctions [3–5], and a thorough and constructive

testing of the capillarity-driven mode is an essential element of development of simulation

software. Simulation algorithms are best validated on boundary networks with theoretically

known paths of evolution. Particularly convenient are the networks which remain in steady

state, i.e., preserve their shape under the capillarity-driven migration. This paper concerns

some networks of this kind, namely networks which move by translation. Simple steady

networks have been used in the past [3–8] but their assortment was quite limited, and as

was noted in [8], ”we need a larger set of analytical benchmarks”.

Grain configurations which can be observed for prolonged times without changes of

shapes and sizes are also useful in experimental studies of grain growth or measurements of

grain boundary properties [9, 10]. In particular, such boundary configurations were applied

in research on boundary mobility and on drag caused by boundary junctions; see [11] and

references therein. From the experimental perspective crucial is the point that ”the steady-

state motion of a grain boundary system with a triple junction is only possible in a very

narrow range of geometrical boundary configurations” [12]. There is a question how narrow

this range really is, and it is interesting to learn more about possible steady configurations.

The 2D model of capillarity-driven grain boundary migration is directly related to the

mathematical subject known as the ’curve-shortening flow’. The curve-shortening formalism

deals with a smooth planar curve moving in the direction normal to the curve toward its

concave side with the speed equal to its local curvature. Some curves migrating in this

way remain self-similar [13]. Besides the trivial solution of a static straight line, there
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are rotating spirals or curves with the property of scaling. From the perspective of grain-

growth modeling, most interesting are the curves invariant under translations. Particularly

important are compound configurations with curve junctions. Such translating networks

of curves flowing by curvature have also been considered in mathematical literature; see,

e.g., [14, 15]. However, general mathematical deliberations largely concern existence and

uniqueness of flows, whereas developers of simulation software are more interested in explicit

and practical descriptions of theoretically supported models.

Moreover, there is a difference between the mathematical curve networks flowing by cur-

vature and the conventional model of capillarity-driven grain growth. Besides the interface

curvature, the physical grain boundary migration model involves an additional aspect – the

interface tension. The tension, generally different for different interfaces, affects the bound-

ary motion. Within the basic grain growth model, tensions of boundaries meeting at a triple

point determine the angles at which they meet, and the speed v of boundary migration is

not only proportional to the local curvature κ, but also to the tension σ [2], i.e., one has the

tension-weighted curvature flow v ∝ σκ. This kinetic law of boundary migration and the

’curve-shortening flow’ can be combined in

v = µσMκ , (1)

where M is allowed to take the values of 0 and 1.

With M = 1, both the interface speed and the angles depend on tensions ascribed to

interfaces. With M = 0, the tensions do not affect the speed but they are assumed to

determine the angles. If all tensions are equal (σ = const), the formula for speed reduces to

that of ’curve-shortening flow’, and the equilibrium angles between interfaces are 2π/3; this

approach is known as the ”uniform boundary model” or UBM [16]. Only these three cases

are considered below. Generally, the interface tension is a tensorial quantity [17, 18], but

in this note, tensions are assumed isotropic and numerically equal to free energy densities.

Moreover, the mobilities µ of particular boundaries may differ [2], but here the coefficient

µ is assumed to be constant.

We begin with a brief reminder of 2D translating curves. In passing, we set forth our

notation, and we introduce a property of 2D translating curves which reduces the construc-

tion of curve junctions with prescribed angles to simple algebraic operations. The property

is first used to characterize boundaries in tricrystals with equilibrated triple junctions and

migration speed affected by tensions (M = 1). Then we show how to construct more compli-

cated translating networks, with numerous cells and a diversity of shapes. Details are given

for what we call an extended ∩∩-shaped configuration. Construction of other translating

networks is only outlined as it can be performed in a similar way.
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The second part of the paper is devoted to the case of tension-independent speed of

migration (M = 0). As in the experimental works on junction drag [11, 12, 19], the angles

between interfaces at triple points may differ from 2π/3. These translating networks turn out

to have interesting geometry with some cell dimensions linked to angles between interfaces

at triple points in a simple manner. They implicate expressions for rates of areas swept by

the migrating networks. Finally, there is an alternative way of constructing these networks

based on a conformal transformation. Results of this part are also applicable to networks

within UBM with constant σ and all interface angles equal to 2π/3.

2. The Grim Reaper curve

The structures described below are based on a specific curve migrating by translation in-

troduced by Mullins [20]. It is assumed that the curve is a graph of a real-valued smooth

function y = y(x). With κ = κ(x) representing the signed curvature at x, v = v(x) being

the speed of the curvature-driven migration and V denoting the constant non-zero speed of

the curve displacement along the ordinate axis, one has

v/V =
(
1 + y2x

)−1/2
,

where yx is the derivative of y with respect to x and the argument is omitted. Based on (1)

and κ = −yxx/
(
1 + y2x

)3/2
, one gets the differential equation

yxx + c(1 + y2x) = 0 , (2)

where c = V/(µσM ). The equation is satisfied by

y(x) = Y + c−1 log (cos (c(x−X))) . (3)

The graph of this periodic function consists of U-shaped branches with extrema at (x, y) =

(X + 2kπ/c, Y ), where k is an integer. We are interested in a single branch contained in

the π/|c|-wide strip centered at x = X. The (assumed to be positive) constant c will be

used interchangeably with the width w = π/c. See Fig. 1. The particular curve log cosx

is known as the Grim Reaper (GR) [21]. This name will also be used in reference to its

(X,Y )-translated and c-scaled apparitions given by (3). The GR curves are steady under

curvature driven migration. Another curve with this property is the straight line along the

direction of migration. Physically, an individual GR or a straight line represent particular

interfaces separating two grains of a 2D bicrystal.

For describing interfaces meeting at a triple point, it is convenient to assume that the

junction is at (x, y) = (0, 0). The expression for a GR through (0, 0) such that limx→β y(x) =
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Figure 1: The Grim Reaper curve of width w = π/c. The symbol v⃗ denotes the velocity of

the curvature-driven migration, and V⃗ is the velocity of the curve displacement.

−∞ has the form

y(x) = f(x; c, β) = c−1 log (csc(cβ) sin(c(β − x))) ,

where 0 < |β| < w. If β = b is negative, i.e., it corresponds to the left asymptote, the right

asymptote is at β = b + w, and f(x; c, b + w) = f(x; c, b). The position of the GR curve

through (0, 0) is determined by unique b in the open interval (−w, 0). Below, we use both b

and β for specifying interfaces; in the latter case, we take β = b < 0 if the piece of the GR

forming an interface is to the left to the ordinate axis, and β = b+w > 0 if it is to the right

to the axis. The coordinates of the maximum of f(x; c, b) are

(X,Y ) =
(
b+ w/2, c−1 log (− csc(bc))

)
. (4)

With β → 0, the ordinate Y of the GR’s maximum tends to infinity, and the curve near

(0, 0) comes close to the straight vertical line. Therefore, in the description of interfaces

below, β is in the interval (−w,+w), with special interpretation of the corresponding curve

when β equals 0: in this case, the interface is a vertical half-line.

GR intersection angle

Before proceeding to the next section, we need to consider the angle of intersection between

two GRs migrating in the same direction. The angle is can be expressed by parameters of
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GRs using the observation that the integrated curvature
∫
κ of a piece of a GR with abscissa

between x1 and x2 equals c(x2 − x1). This follows directly from (2). Let us now consider a

cell between two interfaces described by f(x; cL, βL) and f(x; cR, βR). With βL < βR, the

integrated curvature of the interfaces equals cR βR − cL βL. The total curvature of the cell

boundary equals π, and it is the sum of the integrated curvature and the curvature π − θ

accumulated at the cell vertex with internal angle θ. Hence, one has

θ = cR βR − cL βL . (5)

If the intersecting GRs have the same widths, i.e., cR = cL = c, the intersection angle

depends only on the distance between symmetry axes of the GRs, i.e., a translation of

one of the GRs along its axis does not change the angle (Fig. 2). The expression (5) is

convenient for getting geometric parameters of structures built of pieces of GRs intersecting

under prescribed angles.

s s

θ

� -w
� -w

� -u

Figure 2: Illustration of the property of intersecting GRs of the same width w = π/c: the

intersection angles marked by disks are equal to θ = cu.

3. Networks of translating interfaces

For a network of pieces of GRs to migrate by translation, the individual GR curves must

have parallel symmetry axes and the same speed V . With M = 1, the equality of the speeds
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implies that the product σc is the same for all GRs. In other words, the widths of individual

GRs contributing to the network are proportional to tensions ascribed to the corresponding

interfaces.

A connected translating network of Grim Reapers and half-lines will be referred to as

’Grim Reaper troop’ or GRT. Without limiting generality, the widths of GRs in a GRT can

be seen as multiples of a certain scaling factor. The size of the GRT can be changed by

changing the scaling factor. The sizes of GRTs in figures below have been chosen for clarity,

and scales of figures are not the same.

We begin with considering translating boundaries in tricrystals – three grains separated

by three interfaces. These interfaces constitute a simple translating triod [14] with rays

meeting under equilibrium conditions.

Young equilibrium conditions and angles at triple points

Let σi (i = 1, 2, 3) be the tensions of three interfaces meeting at a junction, and let the

inequalities

0 < σi < σj + σk (6)

hold for all i and j ̸= k. Let θi (0 < θi < π) be the angle between interfaces j and k, where

i ̸= j ̸= k ̸= i. Equilibrium of tensions at the junction is described by Young conditions

sin(θ1)/σ1 = sin(θ2)/σ2 = sin(θ3)/σ3 .

Hence, the angles are determined by tension ratios

cos θi =
σ2
i − σ2

j − σ2
k

2σjσk
,

and the ratios can be obtained from the angles using σi/gs = 1−cot (θj/2) cot (θk/2), where

gs =
∑

k σk/2. Near the bounds (6), when σi → 0, then θi → π, and when σi → σj + σk,

then (θi, θj , θk) → (0, π, π).

∩∩-shaped GRT

Let us consider the junction of three interfaces, each being a piece of a GR. The convention

here is that the middle (or inner) interface is denoted by 1 and the outer right and left

interfaces are denoted by 2 and 3, respectively. See Fig. 3. Explicitly, the interfaces are

described by

f(x; c1, β1) with min(β1, 0) < x < max(β1, 0) ,

f(x; c2, β2) with 0 < x < β2 ,

f(x; c3, β3) with β3 < x < 0 ,
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where ci are related to tensions via σ1c1 = σ2c2 = σ3c3 implied by the equality of migration

rates of the GRs. Application of the formula (5) for GR intersection angle leads to

θ1 = 2π − c2β2 + c3β3 ,

θ2 = c1β1 − c3β3 ,

θ3 = −c1β1 + c2β2 .

(7)

These relationships remain valid if the interface 1 is a half-line along the direction of flow

with β1 equal to zero. With this provision, the above described triod will be referred to as

∩∩-shaped GRT.

1 23

θ1

θ2 θ3

0 β1 β2β3
b1 + w1 b2 + w2b3

Figure 3: Example ∩∩-shaped triod for (σ1, σ2, σ3) ∝ (w1, w2, w3) ∝
(
2, 1,

√
3
)
. The corre-

sponding angles are (θ1, θ2, θ3) = (3, 5, 4)π/6. The value of c1β1 is π/15.

To avoid interface intersections, there must occur

β3 < β1 < β2 . (8)

For given angles θi, the positions βi are given by (7), but since these relationships are

not independent (
∑

i θi = 2π), one parameter – let it be β1 – remains free. Thus, the

interface tensions do not fully determine the geometry of the ∩∩-shaped GRT. One has a

one-parameter family of configurations with the shapes of cells depending on the orientation

of lines tangent to interfaces at the junction. (For brevity, we will call it ”orientation of the

junction”.) By fixing β1, a unique configuration is selected. See Fig. 4. With c2β2 < π and

c3β3 > −π, one has

θ2 − π < c1β1 < π − θ3 . (9)

The closer c1β1 to the lower (upper) bound the closer the interface 3 (2) near the junction

to a vertical half-line.
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a b

c d

Figure 4: Family of configurations for the same parameters as the GRT in Fig. 3 except

c1β1 which equals −2π/15 in (a), 0 in (b), 2π/15 in (c) and 4π/15 in (d).

The sharper of the inequalities (8) and (9) determine the actual bounds on β1. The full

range of c1β1 given by the difference between the upper and lower bounds is also the range

of possible orientations of the junction. Violation of the conditions (8) is illustrated in Fig.

5, and with c1β1 reaching one of the bounds (9) one gets a triod which will be referred to

as (inverted) Y GRT.

Inverted Y configuration

We consider the case of β3 → −w3, i.e., c1β1 approaching the lower of limits (9). When the

limit is reached, the interface 3 is a vertical half-line. The GR-based left and right interfaces

are 1 and 2, respectively, i.e., b1 = β1 < 0 < β2 = b2 + w2. The relationships between β1

and β2 and the angles θi are the same as (7) with c3β3 replaced by −π. Clearly, since the

position of the interface 3 is fixed, the orientation of the junction is established, i.e., the

interface tensions uniquely determine the Y-shaped configuration.

Example Y-shaped GRTs are shown in Fig. 6. With σ1 = σ2, one has the symmetric

configuration used in studies of junction drag; see, e.g., [19]. Another interesting option is

σ2 → 0 and θ2 → π shown in Fig. 6b. Configurations of this type correspond to the so-called

”quarter-loop geometry” used to estimate grain boundary mobility in bicrystal specimens;

see, e.g., [10].
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1

2

3

β1 β3

Figure 5: Example configuration illustrating violation of conditions (8). The parameters of

the GRT are (σ1, σ2, σ3) ∝ (w1, w2, w3) ∝ (7, 10, 4) and c1β1 = −2.

Extended ∩∩-shaped GRT

An ∩∩-shaped GRT can be used to construct configurations consisting of a larger number of

interfaces and junctions. A given structure is naturally enlarged by adding a new junction

located on one of the interfaces. As an illustration, the simple case of extended ∩∩-shaped

GRTs constructed by adding new junctions on outermost interfaces will be considered in

details. Their junctions as vertices and bounded1 interfaces as edges form a path graph.

Below, we use the same conventions for interface designation as above plus an additional

bracketed index (n) indicating the junction to which a given entity belongs (n = 1, . . . , N),

e.g., the interfaces of the (n)-th junction are 1(n), 2(n) and 3(n), and σ
(n)
i is the tension of

the i-th interface of the (n)-th junction. Given σ
(n)
i for n = 1, . . . , N , i = 1, 2, 3, one also

has the parameters c
(n)
i and the angles θ

(n)
i .

Let the extension of an ∩∩-shaped GRT be to the right with the GR forming the interface

2(n−1) identified with the GR of the interface 3(n) (n = 2, 3, . . . , N). Clearly, the interface

tensions (and the widths of the GRs) need to be equal

σ
(n)
3 = σ

(n−1)
2 . (10)

Moreover, for the junction (n) to be to the right of the junction (n−1) on a GR, there must

occur

b
(n)
3 < b

(n−1)
2 .

The structure with N junctions is constructed iteratively: The first step is to get the geomet-

1A bounded interface (or a bounded cell) consists of points which are within finite distance of each other.
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a

1 2

3

θ1θ2

θ3

1 2

3

θ1 → 2π/3
θ2 → π

θ3

b

Figure 6: Inverted Y-shaped GRTs. (a) For the same parameters as the GRT in Fig. 3

except c1β1 is which in this case approached θ2 − π = −π/6, i.e., the low limit in (9). (b)

For (σ1, σ2, σ3) ∝ (1, ϵ, 1 + ϵ/2) with ϵ → 0 and (θ1, θ2, θ3) → (2, 3, 1)π/3.

ric parameters of the interface triod of junction (1) located at (0, 0). Having the structure

based on junctions (1)–(n−1), one needs to add the part corresponding to the junction (n).

Again, the geometric parameters of the junction (n) are obtained with the junction initially

located at (0, 0). This structure is then appended to the known structure of (1)–(n − 1)

junctions in such a way that the GR of the interface 2(n−1) overlaps with the GR of the

interface 3(n). To this end, the junction (n) with its interfaces is translated from (0, 0) by

the vector

t(n) = t(n−1) + p
(n−1)
2 − p

(n)
3 ,

where p
(n)
i =

(
X

(n)
i , Y

(n)
i

)
is the position of the maximum of the GR representing the

interface i(n) given by (4), i = 2, 3, n = 2, 3, . . . , N and t(1) = (0, 0). The final (i.e.,

translated) positions of the maxima and junctions are used to get the domains of individual

interfaces. In the process, one needs to check whether there are no intersections of the

unbounded interfaces, i.e., whether the inequalities

β
(1)
3 < β

(1)
1 , β

(n−1)
1 −X

(n−1)
2 < β

(n)
1 −X

(n)
3 (n = 2, 3, . . . , N) , β

(N)
1 < β

(N)
2

are satisfied. They replace the conditions (8) used for single-junction ∩∩-shaped GRT. The

procedure is stopped after the N -th junction is appended.

The construction of extended ∩∩-shaped GRTs is illustrated in Fig. 7. This and other
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a b

c

(1)
(2)

(6)

(1)
(2)

(6) (7)

t(7)

Outermost
interface ︸ ︷︷ ︸

Unbounded inner interfaces

Outermost
interface

Figure 7: Schematic illustration of the construction of extended ∩∩-shaped networks. The

extended six-junction ∩∩-shaped GRT shown in (a) is appended with the ∩∩-shaped troid

(b) by translating the latter so the maxima marked by disks overlap. The resulting extended

∩∩-shaped GRT (c) has seven junctions.

figures with GRTs except Fig. 16 are drawn using a Mathematica code based on the above

formulas.

Periodic ∩∩-shaped GRTs

Like the network in Fig. 7, an extended ∩∩-shaped GRT can be ended by two outermost

GRs. (’Walls’ like the one in Fig. 6b are a similar type of ending.) In contrast, typical

structures used in testing of simulation algorithms are periodic. They are constructed by

repeating a unit element containing Nu (≥ 1) junctions. See Fig. 8a. In our notation,

periodicity of an extended ∩∩-shaped GRT means that σ
(n)
i = σ

(n+Nu)
i and β

(n)
1 = β

(n+Nu)
1

for arbitrary integer n. Typically Nu = 1 is used; e.g., [3,5]. In this case, the above condition

and (10) imply that σ
(n)
i have the same value for all n and i = 2, 3, and β

(n)
1 have the same

value for all n. Example periodic network of this kind is shown in Fig. 8b.

Other structures of similar kind are obtained by adding a reflection with respect to a line

parallel to the migration direction and passing through a junction or through a maximum

of a GR. The simplest network of the second type (mirror line through the maximum) built

of an element with a single junction is illustrated in Fig. 8c. (See also [4].)
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a

b

c

Figure 8: (a) Example periodic network for Nu = 4. (b) A periodic network for Nu =

1, (σ1, σ2, σ3) ∝ (w1, w2, w3) ∝
(√

3, 1, 1
)
. The corresponding angles are (θ1, θ2, θ3) =

(2, 5, 5)π/6. The value of c1β1 is −π/20. (c) A network with reflection, Nu = 1, the period

of 2Nu = 2, and the parameters of an individual triod as in Fig. 3.

More complex networks

An extended ∩∩-shaped GRT can be enlarged by adding new junctions on its unbounded

inner interfaces. The construction is analogous to that of the extended ∩∩-shaped GRTs.

The GR forming the interface kp of the predecessor junction (np) needs to be identified

with the GR of the interface ks of the successor junction (ns). Clearly, tensions of these

interfaces need to be equal, i.e., σ
(ns)
ks

= σ
(np)
kp

. The junction (ns) is translated by the vector

t(ns) = t(np) + p
(np)
kp

− p
(ns)
ks

, where p
(n)
i =

(
X

(n)
i , Y

(n)
i

)
is the position of the maximum of

the interface i(n) given by eq.(4). Interfaces of an N -sided bounded cell satisfy the closing

condition: The GR forming the interface kp of the last junction (N) is identified with the

GR of the interface ks of the first junction (1), their interface tensions are equal σ
(1)
ks

= σ
(N)
kp

,

and t(N) +p
(N)
kp

−p
(1)
ks

= 0. These structures and GRTs containing Y-shaped junctions will

be illustrated below for networks involving GRs of the same width.
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4. Networks built of GRs of the same width

Translating networks have remarkable properties when they satisfy constraints imposed by

UBM. Some of these properties are also relevant in the more general setting with same-

width GRs and the angles different from 2π/3. Therefore, the case of M = 0 is considered.

Results corresponding to UBM are obtained by fixing the angles at 2π/3.

With the speed of migration independent of tension, the widths of all GRs of a given

GRT are equal. Formally, since such GRs, and in consequence the GRT, are scaled by

w = π/c, one could confine the derivations to unit c. Below, however, to facilitate practical

applications, the coefficient c is retained.

∩∩-shaped GRT

For brevity, the distance between asymptotes of infinite-length boundaries of an unbounded

cell will be referred to as the ’asymptotic cell width’ or briefly the ’cell width’. With

c1 = c2 = c3 = c, it follows from (7) that the asymptotic widths d1 = β1 − β3 and

d2 = β2 − β1 of cells of a ∩∩-shaped GRT and its total width D = d1 + d2 are directly

related to the angles

cD = 2π − θ1 , cd1 = θ2 , cd2 = θ3 . (11)

The rate c and the widths dn (n = 1, 2) determine the angles. On the other hand, given

the migration rate and the angles θi, the widths of cells are determined, but the position β1

of the inner interface remains free. Thus, there is a one-parameter family of configurations

with the same widths dn and D but with the shapes of cells depending on the orientation

of the junction.

With three GRs of the same width, the condition (8) reflects only the convention used

for numbering the interfaces, i.e., differently than in section 3, it does not limit the possible

orientations of the junction. The parameter β1 is limited only by eq.(9). Thus, the full

range of cβ1 is (π − θ3)− (θ2 − π) = θ1, i.e., the range of orientations is θ1.

Extended ∩∩-shaped GRT

The relationships (11) can be easily generalized to extended ∩∩-shaped GRTs. Let d1 and

dN+1 be the widths of the outermost cells, and let dn (n = 2, . . . , N) denote the width of the

n-th cell with vertices at the junctions (n−1) and (n). Based on the property of intersecting

GRs, the curvature integrated over the interfaces of the n-th cell equals∫
κ = cdn . (12)

The total curvature of the cell boundary is the sum of
∫
κ and the angles supplementary to

14



the internal angles of the cell. Hence, with θ
(0)
3 = π = θ

(N+1)
2 , one has

cdn = θ
(n−1)
3 + θ

(n)
2 − π , (13)

where n = 1, . . . , N + 1. Thus, for a given migration rate, the angles θ
(n)
i determine the

widths of the cells. Since the positions β
(n)
1 of the inner interfaces remain free, there are

translating networks having the same rate c, the same sets of angles θ
(n)
i (n = 1, . . . , N) and

cell widths dn (n = 1, . . . , N + 1) but different shapes2; see Fig. 9.

a

b

� -d2
� -d1

� -d8

� -d2
� -d1

� -d8

F

Figure 9: Two extended ∩∩-shaped configurations for UBM. In (a), all β
(n)
1 are 0, i.e., all

internal interfaces are straight. In (b), the parameters β
(n)
1 are chosen randomly within the

constraints (9). The asymptotic cell widths dn in (b) are the same as in (a). The thicker

curve in (b) marks the front F .

Let F denote the ’front’ of migration of an extended ∩∩-shaped GRT, i.e., the path

linking the triple points plus two outermost interfaces (Fig. 9). Summation of (12) over n

gives the curvature integrated over F (as the integrals over common interfaces of neighboring

2On the other hand, given c and the widths dn (n = 1, . . . , N + 1), there are N + 1 conditions on 2N

independent angles θ
(n)
i , i.e., there are N − 1 free parameters. Thus, only in the case of one junction, the

rate c and widths dn of the cells determine the angles.
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cells are canceled out). Hence, one has∫
F
κ =

N+1∑
n=1

c dn = cD ,

where D =
∑N+1

n=1 dn is the total width of the extended ∩∩-shaped GRT. Using the property

of intersecting GRs, one gets cD +
∑N

n=1(θ
(n)
1 − π) = π. Thus, for a given c, the total

width D is determined by the sum
∑N

n=1 θ
(n)
1 of the angles opposite to the unbounded inner

interfaces. The term cD is directly linked to the time derivative Ȧ of the area A swept by

the front F : Ȧ = DV = µcD. Hence, one has

cD = Ȧ/µ = (N + 1)π −
N∑

n=1

θ
(n)
1 .

In particular, if tensions are all equal, all θ
(n)
i are 2π/3, the outermost cells have the widths

d1 = 2w/3 = dN+1, the widths of inner cells are all dn = w/3 (n = 2, . . . , N), and the total

width D of the structure and the sweeping rate are given by cD = Ȧ/µ = (N + 3)π/3.

GRTs with Y-shaped triods

One may also consider structures similar to extended ∩∩-shaped GRTs (multi-junction, path-

based, with unbounded inner interfaces), but with some straight interfaces directed up, i.e.,

GRTs involving both ∩∩-shaped and Y-shaped junction configurations; see Fig. 10. Similarly

to eq. (13), the relationships between the widths of other cells and angles follow form (5).

In the case of a single triple point and Y-shaped configuration, the width D = β2−β1 of the

cell between interfaces 1 and 2 is related to the θ3 angle via cD = θ3. If the number of triple

points is N , and NY is the number of Y-type junctions, then
∫
F κ−

∑N
n=1 pn

(
π − θ(n)

)
= π

or

cD = Ȧ/µ = (N − 2NY + 1)π −
N∑

n=1

pnθ
(n) ,

where pn = +1, θ(n) = θ
(n)
1 if the unbounded inner interface at the junction (n) is directed

down, and pn = −1, θ(n) = θ
(n)
3 if it is directed up. Thus, the width of the structure and

the rate of sweeping the area are determined by the angles θ(n).

In the case of UBM, the above expression takes the form cD = Ȧ/µ = (N − 2NY + 3)π/3.

The widths of cells below the front F are 0, w/3 and 2w/3. The widths of cells above the

front are multiples of w/3, and so are the distances between half-lines above the front and

the asymptotes of GRs.

Tree-like structures

Other configurations can be constructed by developing the lower parts of GRTs described
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F

Figure 10: Example GRT with Y-shaped triods. The thicker curve marks the front F .

above: the interface 1(np) of such a GRT is identified with either interface 2(ns) or 3(ns) of an

additional triod. In such cases, the total width of the structure and the area swept by it are

not affected. An example GRT of this kind is in Fig. 11. The figure also shows that a GRT

which is not extended-∩∩-shaped can be path-like, and illustrates the way of extending a

GRT into a tree-like structure with finite-length interfaces constituting a connected graph

without cycles (i.e., a structure without bounded grains).

t

Figure 11: A tree-like structure. If the junction marked by the disk in is removed, the GRT

is based on a path of junctions.

Clearly, adding new junctions to unbounded inner interfaces is strongly limited. In

particular, in the case of UBM, asymptotes of interfaces are distributed at the steps of w/3.

One cannot add a new junction on an inner interface sharing its asymptote with another

interface as this would lead to interface intersection. This is illustrated in Fig. 12.
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a b c

x

Figure 12: GRTs illustrating vanishing of asymptotic cell widths in the case of UBM net-

works. (a) GRT with Y-shaped triod. The width of the cell with this triod is zero. (b)

A path-based network. (c) A tree-like network. A new junction cannot be added to any

unbounded inner interface except the one marked by x in (b).

Structures with bounded cells

More complicated configurations contain bounded cells. A basic feature of bounded cells

follows again from the property (5) of intersecting GRs. Let the vertices of an N -sided

bounded cell be numbered by n, and let ϕn be the internal angle at vertex (n). With

the curvature κn = π − ϕn concentrated at the vertex, and the curvature integrated over

boundaries of the cell equal to zero, one has the closing condition 2π =
∑

κn + 0 or

N∑
n=1

ϕn = (N − 2)π , (14)

i.e., the same formula as that for the sum of interior angles of an N -sided polygon. This

is in agreement with the rule for the rate Ȧ of change of cell area applicable in the case of

cells with boundaries migrating by curvature and arbitrary angles at triple-points

Ȧ ∝ (N − 2)π −
N∑

n=1

ϕn .

In view of (14), the area A of the cell built of GRs remains unchanged as expected for steady

(i.e., also area-preserving) flow of the network. Example networks with single bounded cells

are shown in Fig. 13. Clearly, one may consider GRTs with multiple bounded cells; an

example is shown in Fig. 14.

If the angles at triple points are ϕn = 2π/3, then eq.(14) implies that N = 6. This

agrees with the classic Mullins extension of the von Neumann’s law: within UBM, the area

of a bounded cell is preserved if and only if the cell is six-sided [20].
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a

b

Figure 13: Example bounded cells. (a) ”Triangular” equi-angle configurations. The internal

angles of the bounded cells are π/3 and all remaining angles between interfaces are 5π/6.

(b) Six-sided equi-angle UBM configurations. All angles are 2π/3.

Figure 14: Example GRT with three six-sided UBM cells. It was built by adding new cells

to the asymmetric GRT of Fig. 13b. All angles are 2π/3.
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a b

c d

e f

Figure 15: Images of GRTs transformed to (x′, y′) coordinates. They correspond to networks

shown in Fig. 9a (a), Fig. 9b (b), Fig. 10 (c), Fig. 11 (d), the middle structure of Fig.

13b (e) and Fig. 14 (f ). In (c), the segments meeting at the point (x′, y′) = (0, 0) marked

by disk correspond to the (directed up) half-lines of the network. All angles in (a), (b), (e)

and (f ) are 2π/3.
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Another way of constructing GRTs

The networks above were described by Cartesian coordinates (x, y) of points of interfaces.

GR curves andl lines translating along −y, after transformation to

(x′, y′) = exp(−cy) (cos(cx), sin(cx)) (15)

become straight lines. With complex numbers z = x+iy and z′ = x′+iy′, the transformation

(15) has the form z′ = exp(icz). Since the function z′ = z′(z) is holomorphic and its

derivative is non-zero on the whole complex plane, the transformation is conformal on the

plane. It transforms GRTs to complexes of polygons and half-lines meeting at the same

angles as the corresponding interfaces (Fig. 15). Images of upper unbounded interfaces of

a GRT meet at the origin of the complex plane and those of lower unbounded interfaces

extend to complex infinity. It is easy to see that if a network is translated along y by ty,

its image is scaled by exp(−cty). Translation along x by tx results in rotation of the image

about the origin (x′, y′) = (0, 0) by ctx. The function exp(icz) is periodic with the period

2π/c = 2w, i.e., for given y, points spaced by 2w along x are all mapped to the same z′. In

effect, mapping of wide structures leads to overlappings (Fig. 15a) and intersections (Fig.

15b) of interface images.

The transformation

(x, y) = c−1
(
arctan(x′, y′), − log

√
x′2 + y′2

)
, (16)

inverse to (15) can be used to get translating networks from complexes of polygons and

half-lines.3 It is easy to see that the resulting structure depends on the location of the

complex in the reference frame; this is illustrated in Fig. 16. Clearly, not every complex of

polygons and half-lines will lead to a sensible translating network of interfaces. No segment

or half-line can cross the negative real axis (y′ = 0 and x′ < 0). The shorter form

z = −ic−1 log(z′)

of the inverse transformation (16) indicates that a natural setting for constructing translat-

ing networks from suitably designed complexes is the Riemann surface of the multivalued

log function. Overlapping parts of complexes need to be mapped on different sheets of

the surface. This method of constructing translating networks based on conformal trans-

formation is easy to implement and more elegant than the brute-force approach of section

3, but it is limited to the case of M = 0 (equal widths of GRs). It is also worth noting

3The function arctan at (x′, y′) gives the principal value of the argument of z′ = x′ + iy′, its codomain is

(−π, π], and it is indeterminate at (0, 0).

21



a b

c d

Figure 16: Example complex of of hexagons and half-lines with the angles of 2π/3 (a) and

three GRTs obtained by transformation (16). The one shown in (b) is obtained when the

origin of the (x′, y′) reference frame is at the point marked by circle, (c) corresponds to

the point marked by disk, and (d) corresponds to square. In (c) and (d), the complex is

mapped on a GRT and a disconnected line.

that the representation by complexes of polygons and half-lines on the complex plane can

be a step toward a more complete characterization of the translating networks. By inverse

stereographic projection of the plane, one gets simple geometry of images of unbounded

interfaces; they meet at the poles of the sphere (Fig. 17). Such projections can be also be

obtained directly form (x, y) coordinates using

(xs, ys, zs) = (sech(cy) cos(cx), sech(cy) sin(cx), − tanh(cy)) , (17)

where (xs, ys, zs) are Cartesian coordinates of points on the unit sphere. In the case of

UBM-based translating networks, images of unbounded interfaces on the sphere meet at the

angles being multiples of π/3.
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a b

Figure 17: Projection (17) of the structure shown in Fig. 16d on sphere (or stereographic

projection of the complex plane of Fig. 16a with the origin marked by square). (a) View

on the pole which is the meeting point of lower unbounded interfaces of Fig. 16d (or the

complex infinity). (b) View on the pole which is the meeting point of upper unbounded

interfaces (or projection of the origin of the complex plane).

5. Concluding remarks

The paper describes construction of translating interface networks applicable in verification

of algorithms and testing of computer codes for simulation of capillarity-driven boundary

migration during grain growth in polycrystalline materials. The networks are built of pieces

of half-lines and Grim Reapers meeting at triple junctions at angles determined by equilib-

rium conditions. The construction is described for the principal case (M = 1) with interface

tensions influencing the speed of migration and equilibrium angles. Interesting properties

arise in more specific situations: first, when all GRs are of the same width (M = 0), and

second, in the case of UBM when all GRs are of the same width, and all angles are 2π/3

(σ = const). The equality of GR widths, makes it possible to construct translating net-

works by a conformal mapping of properly arranged complexes of polygons and half-lines

with triple points. Moreover, there are simple relationships between cell dimensions and an-

gles at triple junctions, and simple expressions for the rates of areas swept by the networks.

The construction and detailed understanding of properties of theoretically solvable mod-

els is essential for identifying strengths and deficiencies of grain growth simulation algorithms

and software. Besides the curvature-driven migration mode, the grain growth simulations

must deal with other aspects of the phenomenon, in particular, with its 3D character,

anisotropy of the interface energy, variability of interface mobilities, topological changes,

et cetera. These issues are beyond the scope of this paper. Let us only note that the 2D

translating networks are not easily generalizable to 3D (e.g., [22]), but – in principle – 3D
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Figure 18: Schematic of the cylinder over one of the GRTs of Fig. 13b.

simulations can be tested using cylinders over the GRTs (Fig. 18). Specimens used in

junction-drag experiments and boundary mobility measurements [10–12] had the form of

cylinders over Y-shaped triods.

With verification of algorithms and testing of simulation codes in mind, there is a ques-

tion of stability of the analytical translating networks to perturbations. The answer will

depend on the character of perturbations, but some results indicate stability in relatively

general settings; see, e.g, the analysis of Y-shaped GRTs (named ”equal-order grain bound-

ary model”) in [23]. Assuming stability, the simplest approach to testing would be to start a

simulation using an analytically obtained translating boundary network and check whether

the simulated structure does move by translation. An ideal simulation code would deal with

arbitrary translating network. In practice, after large time increments, real programs will

fail to preserve complicated structures. One may devise measures of the quality of imitat-

ing the curvature driven migration by quantifying deviations from a chosen exact steady

network. They can be based on measures for the dissimilarity of figures (like Fréchet or

Hausdorff distances, e.g., [24]).

The extension of the catalog of translating configurations and knowledge on their prop-

erties can be also useful for designing grain growth related experiments. With the devel-

opment of sophisticated crystallization techniques (e.g., [25, 26]), better understanding of

steady-state networks can help devising new configurations for measurements of physical

properties of boundaries.
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