Maciej Szczerba, PhD, DSc

Uwaga, otwiera nowe okno. PDFDrukuj

Address: Institute of Metallurgy and Materials Science PAS, 30-059 Kraków, 25 Reymonta Street

Tel.: 12-295 28 23, room 110, fax: +48-12-295 28 04
e-mail: Adres poczty elektronicznej jest chroniony przed robotami spamującymi. W przeglądarce musi być włączona obsługa JavaScript, żeby go zobaczyć.
From 2007 he is employed at the Institute of Metallurgy and Materials Science of the Polish Academy of Sciences in Krakow.
Scientific career:

  •  Master: AGH University of Science and Technology, Department of Mechanical Engineering and Robotics, 2006;
  •  PhD: Institute of Metallurgy and Materials Science, 2011;
  •  Habilitation: Institute of Metallurgy and Materials Science, 2017.
The most important publications:
  •  M.J. Szczerba, S. Kopacz, M.S. Szczerba, Experimental studies on detwinning of face-centered cubic deformation twins, Acta Materialia 104 (2016) 52-61.
  •  M.J. Szczerba, S. Kopacz, M.S. Szczerba, Detwinning of face-centered cubic deformation twins via the correspondence matrix approach, Acta Materialia 102 (2016) 162-168.
  •  R. Chulist, M. Faryna, M.J. Szczerba, Orientation relationship between austenite and non-modulated martensite in Ni-Mn-Ga single crystals, Acta Materialia 103 (2016) 836-843.
  • M.J. Szczerba, R. Chulist: Detwinnning of a non-modulated Ni-Mn-Ga martensite: From self-accommodated microstructure to single crystal. Acta Materialia 85 (2015) 67-73.
  •  E. Pagounis, A. Laptev, M.J. Szczerba, R. Chulist, M. Laufenberg, Acta Materialia 89 (2015) 32-40.
  •  M.J. Szczerba, Non-modulated martensite microstructure with internal nanotwins in Ni-Mn-Ga alloys, Archives of Metallurgy and Materials 60 (2015) 2267-2270.
  •  E. Pagounis, M.J. Szczerba, R. Chulist, M. Laufenberg, Large magnetic field-induced output in a NiMnGa seven-layered modulated martensite, Applied Physics Letters 107 (2015) 152407.
  •  M.J. Szczerba, R. Chulist, S. Kopacz, M.S. Szczerba: Effect of initial plastic strain on mechanical training of non-modulated Ni-Mn-Ga martensite structure. Materials Science and Engineering A 611 (2014) 313-319.
  •  E. Pagounis, R. Chulist, M.J. Szczerba, M. Laufenberg: Over 7% magnetic field-induced strain in a Ni-Mn-Ga five-layered martensite. Applied Physics Letters 105 (2014) 052405.
  • • E. Pagounis, R. Chulist, M.J. Szczerba, M. Laufenberg: High-temperature magnetic shape memory actuation in a Ni-Mn-Ga single crystal. Scripta Materialia 83 (2014) 29-32.
  • • M.J. Szczerba, M.S. Szczerba, Transformation of dislocations during twin variant reorientation in Ni-Mn-Ga martensite structures, Scripta Materialia, 66 (2012) 29-32.
  • • M.S. Szczerba, S. Kopacz, M.J. Szczerba: On the reverse mode of FCC deformation twinning. Acta Materialia 60 (2012) 6413-6420.

Research projects:
  • Project NCN OPUS: „Advanced experimental and theoretical study on shear band formation in layered twin-matrix FCC materials ". (2016/23/B/ST8/01193) Principle Investigator, 2017-2020;
  • Project Iuventus Plus pt.: „Studies on the effect of reverse twinning on mechanical properties of FCC materials" (Nr 0/600/IP2/2013/72), Principle Investigator, 2013-2015;
  • Project NCN: Advanced study of the effect of martensite variants reorientation in plastically deformed Ni-Mn-Ga single crystals.(NCN:2011/03/D/ST8/04017) Principle Investigator, 2012-2015;
  • Design and production of functional gradient materials, (Project PBZ-KBN-100/T08/2003), personnel, 2004-2007;
  • Development of technology for the production of structural elements of aircraft engines by the method of directional crystallization, (PBZ-MNiSW-03/I/2007), personnel, 2007-2011;
  • ERA-NET MNT/FP6: Nanostructured materials for biomedical circulatory systems (CardioBioMat), personnel, 2009-2012;
  • KMM-NoE Project FP6, Knowledge-based multicomponent materials for durable and safe performance; Stress related effects, 2004-2008.

Main scientific interests
Modern methods of material characterization with particular emphasis on electron microscopy, physico-mechanical properties of solids, single crystal growth technology, shape memory alloys.