Dyfrakcja elektronów wstecznie rozproszonych Analiza punktowa

EBSD - Electron Backscatter Diffraction

- **EBSP Electron Backscatter Pattern**
- **BKP Backscatter Kikuchi Pattern**

Obrazowanie orientacji COM - Crystal Orientation Mapping ACOM - Automatic Crystal Orientation Mapping OIM® - Orientation Imaging Microscopy

(TexSEM Laboratories trademark)

Analiza punktowa

Skanowanie wiązką elektronową

Pierwszy obraz linii dyfrakcyjnych uzyskany przez Kikuchiego w 1928 roku z kryształu kalcytu CaCO₃

Shoji Nishikawa and Seishi Kikuchi "*The Diffraction of Cathode Rays by Calcite"* Proc. Imperial Academy (of Japan) 4 (1928) 475-477

Punktowe źródło elektronów

Elektrony wstecznie rozproszone ulegają dyfrakcji tworząc dla każdej płaszczyzny krystalograficznej stożki dyfrakcyjne o dużym kącie rozwarcia (tzw. stożki Kossela)

Przecięcie tych stożków z ekranem luminoforu – układ równoległych linii (pasm) zwanych liniami (pasmami) Kikuchiego unikalny dla danej orientacji krystalitu

EBSD z krystalitu FeTiO₃

1 utworzenie źródła elektronów w warstwie podpowierzchniowej kryształu – elektrony rozpraszane są we wszystkich kierunkach. Część ulega dyfrakcji zgodnie z prawem Bragga:

$$\lambda = 2\mathbf{d}_{hkl} \sin \theta$$

2 Kąt Bragga jest mały (1° dla 15 kV) – stożki są duże – linie przecięcia z ekranem prawie proste; odległość pomiędzy liniami proporcjonalna do tan(θ) a linia środkowa pomiędzy przecięciami stożków jest <u>rzutem gnomonicznym</u> płaszczyzny krystalograficznej uginającej elektrony

Technika badawcza bardzo czuła powierzchniowo

Dodatkowy detektor elektronów rozproszonych "do przodu" (forward scattered) umieszczony na kamerze CCD służy do rejestracji obszarów, z których rejestrowane są dyfrakcje

Przestrzenna zdolność rozdzielcza EBSD

Zależy: • od rodzaju materiału • od źródła elektronów (FEG z termoemisją!)

70.53

Zależność zdolności rozdzielczej od napięcia przyspieszającego dla Al, Cu i Ag

Cu, ECAP step size 200 nm FEI FEGSEM

Schemat systemu EBSD

- 1 kolumna elektronooptyczna
- 2 próbka
- 3 kamera CCD
- 4 sterownik kamery
- 5 komputer sterujący wiązką oraz
 - przeprowadzający analizę obrazu
- 6 obraz dyfrakcyjny

Jak otrzymać mapę orientacji?

TO NIE JEST TYLKO KOLOROWA MAPA!!!

Akwizycja – odejmowanie tła

Dyfrakcja wyjściowa

Dzielenie przez tło

Detekcja linii na dyfrakcji – transformata Hougha P.C.V. Hough "Method and means for recognising complex pattern" US Patent 3 069 654, 1962

- Przez pojedynczy pixel na układzie X-Y można przeprowadzić nieskończoną liczbę linii
- Linia ta może być opisana przez parametry Hougha "ρ" i "θ", gdzie "ρ" reprezentuje odległość linii od początku układu a "θ" – kąt pochylenia linii
- Punkt w przestrzeni obrazu jest przedstawiony jest jako sinusoida w przestrzeni Hougha

- Rozważmy 4 piksele leżące na jednej linii. Dla każdego piksela obliczamy wszystkie możliwe wartości " ρ " dla kąta " θ " w zakresie od 0° do 180° zgodnie z równaniem: $\rho = x\cos\theta + y\sin\theta$.
- Otrzymujemy 4 krzywe sinusoidalne przecinające się w punkcie o koordynatach "ρ" i "θ", odpowiadających koordynatom "ρ" i "θ" dla linii w układzie X-Y.
- Linia w układzie X-Y przekształca się w punkt w układzie ρ - θ (transformata Hougha).

Transformata Hougha

Detekcja linii - transformata Hougha

100

[211]

[210]

[221

Detekcja linii za pomocą transformaty Hougha

Dyfrakcja z ceramiki mulitowej (układ ortorombowy) (3Al₂O₃ 2SiO₂), 10 kV

Rozwiązanie dyfrakcji nałożone na realną dyfrakcję orientacja {370}<7-34>

Symulacja orientacji krystalitu mullitu

Symulacja dyfrakcji – pasma Kikuchiego o intensywności większej niż 10% najbardziej intensywnych pasm

EBSD – analiza dyfrakcji

Identyfikacja odpowiednich wskaźników *hkl* przez porównanie wartości kątów pomiędzy dwoma pasmami z wartościami kątów z Tablic

ß	e

Angle	(hkl) ₁	(hkl) ₂	Angle	(hkl) ₁	(hkl) ₂
25.2	200	311	64.8	220	311
29.5	111	311	70.5	111	111
31.5	220	311	72.5	200	131
35.1	311	311	80.0	111	311
35.3	111	220	84.8	311	131
45.0	200	220	90.0	111	220
50.5	311	311	90.0	200	020
54.7	111	200	90.0	200	022
58.5	111	311	90.0	220	113
60.0	220	202	90.0	220	220
63.0	311	131			

Zestaw możliwych rozwiązań dla 3 pasm Kikuchiego otrzymamy poprzez porównanie wartości zmierzonych kątów na realnej dyfrakcji z wartościami z Tablic

Angle	(hkl)1	(hkl)2
25.2	200	311
29.5	111	311
31.5	220	311
35.1	311	31-1
35.3	111	220
45.0	200	220
50.5	311	3-1-1
<u>58.5</u>	111	<u>31-1</u>
60.0	220	202
63.0	311	13-1
64.8	220	3-11
70.5	111	11-1
80.0	111	3-1-1
84.8	311	1-31
90.0	111	2-20
90.0	200	020
90.0	200	022
90.0	220	1-13
90.0	220	2-20

 Identify the <i>hkl</i> of the high contrast bands (bands likely to be detected by the Hough transform). 	200 111 220 311	
2) Determine all of the symmetrically equivalent <i>hkl</i> 's.	200, 020, 002 111, 11 T, 1 T 1, T 11 220, 220, 202, 202, 022, 022 311, 311, 3 T 1, 31 T, 131, T 31, 13 I, 13 T, 113, T 13,	173, 113
3) Form all possible pairs.	200, 020 200, 002 200, 111 200, 111 020, 002 020, 111 020, 111 020, 111 002, 111 002, 111 002, 111 002, 111 :	
4) Calculate the angles between the plane pairs.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$= 54.7^{\circ} 200 \angle 11\overline{1} = 54.7^{\circ} \cdots$ = 54.7° 020 ∠1 $\overline{1}$ 1 = 54.7° ···· = 90° 002 ∠ $\overline{1}$ 11 = 90° ····
5) Throw out duplicates and sort.	$200 \angle 311 = 25.2^{\circ}$ $111 \angle 220 = 35.3^{\circ}$ $111 \angle \overline{3}11$ $111 \angle 311 = 29.5^{\circ}$ $200 \angle 220 = 45.0^{\circ}$ $220 \angle 202$ $220 \angle 311 = 31.5^{\circ}$ $311 \angle \overline{3}11 = 50.5^{\circ}$ $311 \angle 13\overline{1}$ $311 \angle \overline{3}11 = 35.1^{\circ}$ $200 \angle 111 = 54.7^{\circ}$ $220 \angle 3\overline{1}1$	$= 58.5^{\circ} 111 \angle 11\overline{1} = 70.5^{\circ} \\ = 60^{\circ} 200 \angle 131 = 72.5^{\circ} \\ = 63.0^{\circ} 111 \angle \overline{3}11 = 80^{\circ} \\ = 64.8^{\circ} \qquad \vdots$

Dla układu 3 pasm Kikuchiego porównanie wartości kątów pomiędzy płaszczyznami z realnej dyfrakcji i wartościami kątów z Tablic daje 3 możliwe rozwiązania Które jest właściwe?

$$\#triplets = \frac{n!}{(n-3)! \cdot 3!}$$

For a given number of bands, *n*, used for pattern indexing, the number of band triplets is determined by this formula.

Typically 7 to 9 detected bands are used for automatic indexing.

n	# triplets
3	1
4	4
5	10
6	20
7	35
8	56
9	84

Dla zestawu 5 pasm – możliwe 10 kombinacji trójkowych Dla 10 kombinacji trójkowych - tylko rozwiązanie V_1 (10 głosów). Rozwiązanie V_2 (1 głos) i rozwiązanie V_3 (1 głos)

C-SEM (HV)

Kilka uwag praktycznych

próbka

(1)

oś stożka Kossela

(2)

płaszczyzna krystalograficzna Ι

Wpływ napięcia przyspieszającego (zależność w od λ)

EBSD z Si przy 10 kV i 30 kV

V (kV)	λ (nm)		
20	0.00859		
30	0.00698		
40	0.00602		
50	0.00536		
60	0.00487		
70	0.00448		
80	0.00418		
90	0.00392		
100	0.00370		
200	0.00251		
300	0.00197		
400	0.00164		
500	0.00142		
600	0.00126		
700	0.00113		
800	0.00103		
900	0.00094		
1000	0.00087		
2000	0.00050		
4000	0.00028		

Szerokość pasm Kikuchiego jest odwrotnie proporcjonalna do odległości międzypłaszczyznowej "d"

(zależność "w" od "d")

Natężenie pasma Kikuchiego pochodzącego od danej płaszczyzny *hkl*:

$$\mathbf{I}_{hkl} = \left[\sum_{i} f_{i}(\Theta) \cos 2\pi (hx_{i} + ky_{i} + lz_{i})\right]^{2} + \left[\sum_{i} f_{i}(\Theta) \sin 2\pi (hx_{i} + ky_{i} + lz_{i})\right]^{2}$$

gdzie: $f_i(\theta)$ atomowy czynnik rozpraszania dla elektronów, ($x_i y_i z_i$) cząstkowe koordynaty dla atomu *i* w komórce elementarnej.

Zarejestrowany obraz dyfrakcyjny porównujemy z obrazem dyfrakcyjnym, na którym natężenie pasm zostało wyliczone na podstawie powyższego równania, uważając aby uwzględniać tylko te płaszczyzny które uginają elektrony, gdyż tylko one biorą udział biorą udział w tworzeniu dyfrakcji. gdzie:

Z – liczba atomowa, f_x – czynnik atomowy na rozpraszanie promieniowania rentgenowskiego, Z– f_x – rozpraszanie elektronu na elektronach powłok $\lambda/\sin\theta$ – opisuje rozpraszanie

Rutherforda elektronu na jądrze atomowym (L.REIMER)

Ta

b

Czynnik strukturalny

Umożliwia przewidywanie obecności lub nieobecności refleksów dyfrakcyjnych od różnych płaszczyzn krystalograficznych a także proporcje ich intensywności. Opisywany przez niego efekt spowodowany jest interferencją fal cząstkowych ugiętych na poszczególnych atomach komórki elementarnej.

$$\mathbf{A}_{\mathbf{hkl}} \propto \mathbf{F}_{\mathbf{hkl}} \mathbf{A}_{\mathbf{0}}$$

 \mathbf{A}_{hkl} – amplituda wiązki elektronowej ugiętej na płaszczyźnie hkl

A0- amplituda wiązki elektronowej padającej

 F_{hkl} – czynnik strukturalny dla płaszczyzny *hkl*

$$F_{hkl} = f_1(\theta) \exp[-2\pi i(hu_1 + kv_1 + lw_1)]$$

+ $f_2(\theta) + \exp[-2\pi i(hu_2 + kv_2 + lw_2)]$
+ ...
+ $f_n(\theta) \exp[-2\pi i(hu_n + kv_n + lw_n)]$

$$\mathbf{F}_{hkl} = \sum_{j=1}^{n} \mathbf{f}_{j}(\boldsymbol{\theta}) \exp[-2\pi \mathbf{i}(\mathbf{hu}_{j} + \mathbf{kv}_{j} + \mathbf{lw}_{j})]$$

Dla n liczby atomów w komórce elementarnej

W pewnych przypadkach płaszczyzny nie uginają elektronów – dyfrakcja nie zachodzi – *forbidden reflections*

Czynnik strukturalny

100 dla fcc (Au) – atomy Au rozmieszczone są na narożach komórki elementarnej i na środkach płaszczyzn. n = 4 (bo cztery atomy tworzą komórkę elementarną zajmując pozycje: [0,0,0], [0,1/2,1/2], [1/2,0,1/2], [1/2,1/2,0])

$$F_{hkl} = f_{1}(\theta) \begin{pmatrix} exp[-2\pi i(1\cdot 0 + 0\cdot 0 + 0\cdot 0)] \\ + exp[-2\pi i(1\cdot 0 + 0\cdot \frac{1}{2} + 0\cdot \frac{1}{2})] \\ + exp[-2\pi i(1\cdot \frac{1}{2} + 0\cdot 0 + 0\cdot \frac{1}{2})] \\ + exp[-2\pi i(1\cdot \frac{1}{2} + 0\cdot \frac{1}{2} + 0\cdot 0)] \end{pmatrix} = \begin{pmatrix} exp[0] \\ + exp[0] \\ + exp[-\pi i] \\ + exp[-\pi i] \end{pmatrix} = 0$$

Zwykle stosuje się równoważną, bardziej praktyczną postać wyrażenia na F_{hkl}

$$F_{hkl} = \sum_{j=1}^{n} f_{i}(\Theta) \cos 2\pi (hx_{n} + ky_{n} + lz_{n}) - i\sum_{j=1}^{n} f_{i}(\Theta) \sin 2\pi (hx_{n} + ky_{n} + lz_{n})$$

x, y, z – położenia atomu n

hkl-wskaźniki Millerowskie płaszczyzn

http://www.ftj.agh.edu.pl/~Wierzbanowski/Dyfrakcja.pdf

F_{hkl} dla FCC

warunkiem wystąpienia refleksu w sieci FCC jest, aby

Wskaźniki "h k l" były tego samego rodzaju (parzyste lub nieparzyste),

wtedy suma dwóch wskaźników będzie zawsze parzysta (w tym przypadku F_{hkl} = 4f), dlatego eliminujemy płaszczyzny: 100, 110, 210, 211...., a zostają płaszczyzny: 111, 200, 220, 311, 222, 331, 422, 333, 440, 531, 442, 533

Reflectors	No.	d-spacing, Å	Intensity %
{111}	4	2.338	100.0
{200}	3	2.025	69.4
{220}	6	1.432	27.6
{311}	12	1.221	18.2
{222}	4	1.169	16.2
{331}	12	0.929	9.0
{422}	12	0.827	6.6

F_{hkl} dla BCC

warunkiem wystąpienia refleksu w sieci BCC jest, aby

Suma wskaźników "h k l" była zawsze parzysta

Pattern Centre – dlaczego pochylamy próbkę o 70°?

Pattern Centre (PC) Punkt na ekranie luminoforu leżący najbliżej źródła elektronów generującego dyfrakcje

Gdy zmienia się WD (*Working Distance*) ulega zmianie położenie PC (*Pattern Centre*)

Zmiana położenia PC (*Pattern Centre*) wraz ze zmianą WD (*Working Distance*) Austenit – WD od 7 mm do 25 mm (zmiana co 2 mm)

Przygotowanie próbek do badań

Ponieważ informacja pochodzi z głębokości ~50 nm, dlatego konieczna jest:

- Ciągłość struktury krystalograficznej aż do powierzchni próbki
- Gładka powierzchnia bez wypukłości ("shadowing")
- Brak warstwy zdeformowanej, tlenkowej, napylonej

AFM profile across WC grain

Trawienie termiczne *Y-TZP (0.2 - 0.3 μm)/WC* Polerowanie koloidalną krzemionką Y-TZP (0.2 - 0.3 μm)/WC

Przykłady

Granice międzyziarnowe w mosiądzu Mapa orientacji

Granice CSL (Coincidence Site Lattice) w mosiądzu Σ3 (granice bliźniacze) – 67%

Prof. J.Humphries, UM

Analiza tekstury

Stop AA5182 walcowany na gorąco

Prof. J.Humphries, UM

Fe0.05wt%C 725°C 554h

Dodatkowy detektor elektronów rozproszonych do przodu (foreward scattered electrons) do obrazowania miejsc na próbce, z których rejestrowane są dyfrakcje

Mapa zmian orientacji All Euler Map

Fe0.05wt%C 725°C 554h

Fe bcc

101

Mapa IPF (*Inverse Pole Figure Map*) Kodowanie kolorów wskazuje kierunek kryształu równoległy do kierunku referencyjnego

Fe0.05wt%C 725°C 554h

=100 μm; Copy of Map4; Step=1 μm; Grid343x253

=100 μm; Copy of Map4; Step=1 μm; Grid343x253

Mapa BC (Band Contrast)Mapa TC (Texture Component Map)Idealna orientacja ziarna 1:
 $\varphi_1=130.6^\circ$, $\Phi=40.1^\circ$, $\varphi_2=67.0^\circ$,
odchylenie od idealnej orientacji 1°

Mapa orientacji

Mapa fazowa

Mapa orientacji + granice fazowe

EBSD/OIM – technika wymagająca wzorców

Add Match U Phase databa	nit(s) ise: NIST structural database
13502 entries	
Phases	▲
Co Ni2 S4	(Cubic, SG=227)
Co Ni2 S4	(Cubic, SG=227)
Co Ni5 S8	(Cubic, SG=227)
Co 0	(Cubic, SG=225)
Co 0	(Cubic, SG=225)
Co 0	(Cubic, SG=225)
CoO	(Cubic, SG=225)
Co P	(Orthorhombic, SG=62)
Co P	(Orthorhombic, SG=62)
Phase name	Ac Select Cancel

Solutions:			
Phase	MAD	Bands	
Aluminium	0.0521	6	
Al As2 Cs3	1.9693	6	
Al As2 Cs3	1.9697	6	
Al As2 Cs3	1.9829	6	

SZMERGIEL (skała zawierająca m.in. korund i magnetyt) Mapa BC (*Band Contrast*) Mapa fazowa

Mapa BC (Band Contrast)

Mapa fazowa

	Total	Partition
Phase	Fraction	Fraction
Chalcopyrite	0.395	0.445
Cubanite	0.330	0.372
Amphibole	0.010	0.011
Iron Oxide	0.115	0.130
Iron Sulfide	0.039	0.044

Forescatter electron image

General microstructure of the analyzed area.

Three prominent inclusions in dark grey, two of which shows the coesite-quartz transformation (radial fractures visible as dark lines).

Grey scale variations in the surrounding garnet represent differences in crystal orientations ("chanelling contrast")

Koezyt – odmiana wysokociśnieniowa (20-80 kbar) SiO₂ o strukturze jednoskośnej C2/c Kwarc – odmiana niskociśnieniowa SiO₂ o strukturze trygonalnej P3₂22 Granat - $(Mg,Fe)_3Al_2[SiO_4]_3$

EBSD quality map

General microstructure of the analyzed area

Two of the inclusions (in the centre and lower left part of the image) are prominent with radiating fractures, visible as black lines (poor EBSD quality)

Horizontal join of the 2 maps is visible across the centre of the image. Scale bar = $400 \mu m$

Phase map

Distribution of three phases across the area

Garnet is marked in green, quartz in blue and coesite in red. The central inclusion has a core of coesite surrounded by a rim of quartz. The lower-left inclusion has completely reverted to quartz. Radiating from the prominent inclusions are fractures, visible as black lines (poor EBSD quality)

Orientation map

Crystallographic orientations of all three minerals Colors corresponding to the Euler angles. Grain boundaries are marked in black, phase boundaries are marked in red The whole area is comprised of only a few garnet grains. The quartz in the inclusions is polycrystalline with grain boundaries radiating from the centre. The coesite in the central inclusion is a single crystal

Deformation map

Deformation of the garnet around the coesite/quartz inclusions

The attempted change from coesite to quartz has tried to expand the inclusion, thereby causing radial cracks and deformation in the garnet.

This means that the garnet crystal has acted as a protective pressure vessel so that pieces of coesite have been preserved.

Small scale of deformation in the large garnet grain (less than 2°)

Technika EBSD jest ograniczona przez przestrzenną zdolność rozdzielczą wynikającą z oddziaływania: wiązka elektronów – próbka. Najlepszą przestrzenną zdolność rozdzielczą uzyskujemy dla materiałów o średniej liczbie atomowej; jest ona rzędu 30 nm!!!