4. Thermo-mechanical processing of car body steels and aluminium alloys for beverage cans

Iron-cementite phase diagram

Types of multiphase reactions in metals

	Reaction	Equation	Phase Diagram
	Eutectic	$L \rightarrow \alpha + \beta$	$\alpha \rightarrow \qquad $
	Eutectoid	$\gamma \rightarrow \alpha + \beta$	$\alpha \rightarrow \gamma \qquad \qquad$
2	Peritectoid	$\alpha+\beta\to\gamma$	$\alpha \xrightarrow{\alpha + \beta} \qquad $
	Peritectic	$\alpha + L \rightarrow \beta$	$\alpha \rightarrow \alpha + L \qquad L \qquad L$
	Monotectic	$L_1 \rightarrow L_2 + \alpha$	L_2 $\alpha + L_2$ α

Types of three-phase reactions in metals

Microstructure of:

Eutectoid vs. eutectic transformation

Austenite + Fe₃C

Perlite

ledebutite

Multiphase reactions in steels

Phases in peritectic steels

Phases in eutectoid steels

Phases in hypoeutectoid steels

Phases in hypereutectoid steels

Phase transformation hysteresis

Phase transformations do not occur at the same temperature in heating as in cooling.

- In heating, the Ac temperatures are somewhat higher than equilibrium temperatures Ae.
- On cooling the Ar temperatures are lower than equilibrium temperatures Ae
- The difference in temperature between the Ac and the Ar can vary in some cases as much as 24C.

Austenite transform to perlite when it is cooled slowly below the Ar critical temperature.

When austenite is more rapidly cooled, however, this transformation is retarded.

As the cooling rate is increased, the transformation temperature is lowered which results in the formation of the micro-constituents that are shown in table w

Constituents	Temperature Range		
Pearlite	705 to 535°C (1300 to 1000°F)		
Bainite	535 to 230°C (1000 to 450°F)		
Martensite	Below 230°C (450°F)		

Constituents formed during supercooling of austenite

Time-Temperature-Transformation

Isothermal Transformation Diagram Cooling rates: A-5°C, B-400°, D-50°C C-critical cooling rate, i.e. minimal cooling rate that must be maitained to obtain a completely martensitic microstructure

Continuous-cooling Transformation Diagrams

Types of heat treatment

Portion of the Fe-C diagrams showing temperature ranges for:

full annealing, normalizing, hot working and homogenizing

Process & recrystallization annealling stress relieving and spheroidizing

Heat Treatment Process	Microstructure				
Full annealing	Ferrite and pearlite				
Isothermal annealing	Ferrite and pearlite				
Normalizing	Ferrite and pearlite				
Spheroidizing	Ferrite and carbide				
Quenching and tempering	Tempered martensite				
Martempering	Tempered martensite				
Austempering	Bainite				
Dual-phase	Ferrite and martensite				

Microstructures produced by major heat treatment process

Thermo-Mechanical Processing of Steels

Steel for car body applications

Steel for car body applications

Weight fraction of different materials in standard passenger car

Factors that decides about formability of sheets:

- The langford coefficient (\overline{R}) deep drawibility
- The planar anisotropy (ΔR) earing
- The strain hardening coefficient (n) resistance to strain localization

Texture control (anisotropy and good drawibility) is crucial

Steel for car body applications Interstitial-free steels

The larger the \overline{R} value the better deep drawibility

The problem with these steels is to obtain a fine grain size after hot rolling

The influence of Ti, Ta, Nb content on \overline{R} -value (normal anisotropy coefficient). The graph shows the deficit excess in at% of the alloying elements relative to the C+N content

Steel for car body applications low carbon steels

IF-interstitial-free steels

Strenght increase:

IF-HSS – IF high strenght steels (+ Nb, Ta & Ti) BH – bake hardening steels **Rephos** – rephosphorised steels (P-0.04-0.08%) HSLA-high-strenght lowalloy steels (+ Nb & Ti) DP-Dual Phase (ferrite + 10-20% martensite) **TRIP-TR**ansformation-Induced Plasticity ferrite, bainite & retained austenite).

Deep drawibility as a function of the ultimate tensile strenghth (UTS) for several steel grades used in car body applications

Steel for car body applications - low carbon steels

Composition and properties of typical dual phase steel

Processing of dual phase (DP) steel by cold rolling and two-step annealing treatment

Steel for car body applications - low carbon steels

Steel	С _	Si	Al	Mn	Р	S	Ν	Reference
1.5 Si	0.11	1.50	0.04	1.53	0.008	0.006	0.0035	Girault et al. [2001]
0.8 Si	0.12	0.78	0.04	1.51	0.010	0.006	0.0035	Girault et al. [2001]
Si-Al	0.115	0.49	0.38	1.51	0.003	0.009	0.030	Jacques et al. [2001]
1.5 Al	0.110	0.06	1.50	1.55	0.012	0.007	0.017	Jacques et al. [2001]

Composition and properties of typical **TRIP steels**

TRIP steels can be considered as a further development of dual phase grades.

Starting structure – mixture of ferrite and austenite (high temperature annealing -1st) \rightarrow fast cooling

Final structure – austenite, ferrite, bainite (formed during low temperature annealing - 2nd) and martensite (formed during further rapid cooling to room temp.)

Steel for car body applications - low carbon steels (~0.1%C) TRIP steel – cold rolling route

Processing scheme and structural evolution during the two-step heat treatment of TRIP steel

Steel for car body applications - low carbon steels (~0.1%C) TRIP steel

Illustration of the structural changes in TRIP steel during the second isothermal treatment (above) and transformation products after rapid cooling

Steel for car body applications - low carbon steels (~0.1%C) TRIP steel – hot rolling route

- Hot rolling in the austenite region or in the intercritical (α+γ) region and cooled (quench finish temperature ~400°C),
- During annealing in the bainite region the residual austenite will partially transform into bainite, and the rejected carbon stabilize retaining austenite,
- After further cooling some austenite will be retained at RT

Consumption' of retained austenite during a uniaxial tensile test

Steel for car body applications - low carbon steels (~0.1%C) TRIP steel

Compilation of mechanical properties of some selected TRIP steels

Туре	C (wt%)	Si (wt%)	Mn (wt%)	YS (MPa)	UTS (MPa)	ε _{total} (%)	Lüders strain	n (5–15%)	R	LDR	$\mathrm{UTS} imes arepsilon_{\mathrm{total}}$
IF	0.006		0.12	133	298	51	0	0.24	2.1	2.34	1.5×10^{4}
Dual phase	0.10	0.2	0.7	350	600	27	0	0.18	0.9		1.6×10^{4}
TRIP 0.8 Si	0.12	0.78	1.51	374	635	29	1.1	0.25	1.14	2.20	1.8×10^{4}
TRIP 1.2 Si	0.11	1.18	1.55	339	614	35	Yes	0.244	0.86		2.2×10^{4}
TRIP 1.5 Si	0.11	1.50	1.534	452	698	31	1.5	0.24	1.0	2.24	2.2×10^{4}
TRIP 1.9 Si	0.14	1.94	1.66	530	890	32	Yes				2.6×10^{4}

Thermo-Mechanical Processing of Aluminium Alloys

Aluminium beverage cans

(a) A 'three-piece' container with welded seam, (b) 'two-piece' container, deep drawn or deep wall ironed

- The draw and wall-ironed cup is made of an AA3xxx alloy, in most cases AA3104 (~1%wt.Mn and ~1%wt.Mg,
- The lid AA5xxx alloy, e.g. AA5182 (4-5%wt. Mg and 0.3-0.4 %wt.Mn
- The pull ring is fabricated from another high-Mg AA5xxx alloy.

Scheme of the second deep-drawing pass, the three-wall ironing passes and the formation of a dome-shaped bottom in the 'bodymaker' press.

Schematic showing the variation in the wall thickness along the height of the cup. The thickness of the bottom (d_o) is closed to original sheet thickness.

Influence of some texture components on earing

Texture component	Name	Earing			
{100}<001>	Cube	4 ears; 0/90/180/270°			
{110}<001>	Goss	2 ears; 0/180°			
{110}<112>	Brass	4 ears; 45/135/225/315°			
{112}<111>	Copper	4 ears; 45/135/225/315			
{123}<412>	R or S	4 ears; 45/135/225/315°			

Illustration of how 45° and 0/90° ears can compensate each other

Composition of an AA5182 alloy

The 0/90° ears are gradually compensated by the 45° ears as a function of increasing cold rolling

Influence of large particles (>2.5 µm) on the texture after hot rolling and recrystallization

Weaker cube texture due to PSN and smaller grain size

Very large particles can promote fracture during can forming operations

homogenization

Direct casting or electro magnetic casting (750mm x 180mm)

~0.3 mm

(88%)

Typical production scheme for can body sheet