

Republic of Poland European Union European Social Fund

INSTYTUT METALURGII I INŻYNIERII MATERIAŁOWEJ im. Aleksandra Krupkowskiego Polskiej Akademii Nauk

Photovoltaic systems – theory and practice Part 4

Marek Lipiński

Kraków 2020

Projekt nr WND-POWR.03.02.00-00-IO43/16

Międzynarodowe interdyscyplinarne studia doktoranckie z zakresu nauk o materiałach z wykładowym językiem angielskim Program Operacyjny Wiedza Edukacja Rozwój 2014-2020, Działanie 3.2 Studia doktoranckie

Cours description

1. Introduction to photovoltaics

Basic information about the solar energy and photovoltaic Energy conversion

2. Technology of solar cells

The industrial technology of silicon solar cells and thin films solar cells will be presented

3. Emerging photovoltaics

Emerging materials and devices including dye-sensitized solar cell, organic solar cell, perovskite solar cell and quantum dot solar cell

4. Photovoltaic systems

Technology, applications, economics of photovoltaic systems

Projekt nr WND-POWR.03.02.00-00-1043/16

Międzynarodowe interdyscyplinarne studia doktoranckie z zakresu nauk o materiałach z wykładowym językiem angielskim Program Operacyjny Wiedza Edukacja Rozwój 2014-2020, Działanie 3.2 Studia doktoranckie

Best Research-Cell Efficiencies

In a semiconductor crystallite whose size is smaller than twice the size of its exciton Bohr radius (a_b) , the excitons are squeezed, leading to quantum confinement.

https://en.wikipedia.org/wiki/Quantum_dot

Material properties and Bohr radii a_B of various bulk semiconductors

		E_g (eV)	m_{e}^{*}/m_{0}	m_h^*/m_0		Electron a_B (nm)	Hole a_B (nm)	Exciton <i>a_B</i> (nm)
[]VI	CdS	2.48	0.25	0.6	5	1	<1	2
	CdSe	1.73	0.12	0.9^{a}	6	3	1^a	4
	CdTe	1.48	0.09	0.8^{a}	7	4	14	5
III–V	InP	1.34	0.073	0.45 ^a	11	7	1	8
	InAs	0.35	0.023	0.57^{a}	12	27	2	29
	InSb	0.17	0.012	0.44^{a}	16	59	2	61
IV-VI	PbS ^c	0.42	0.087^{b}	0.083 ^h	17	10	11	21
	PbSe ^c	0.28	0.047^{b}	0.041^{b}	23	26	29	55
	PbTec	0.31	0.034^{b}	0.032^{h}	33	56	48	104

 $a_B = \epsilon m_0/m^* a_0$

 a_0 Bohr radius $a_0 \approx 0.53$ nm

 ϵ semiconductor dielectiric constant

m* effective mass of electron of hole

or for exciton reduced mass ($m_{exe}^{*-1} = m_{e}^{*-1} + m_{h}^{*-1}$

[1] O. Madelung , Semiconductors: Data Handbook. Berlin:Springrer-Verlag,2004.

[2] T. D. Krauss and J. J. Peterson in Colloidal Quantum Dot Optoelectronics and Photovoltaics, edited by G. Konstantatos and E. H. Sargent

Semiconductor	Size (nm)	Eg (eV)
PbSe	8	0.27 i
PbSe	5.4	0.73
PbSe	4.7	0.82
PbSe	3.9	0.91
PbS	Ø	0.41 i
PbS	5.5	0.85
PbTe	œ	0.31 i
PbTe	5.5	0.91
Si	00	1.12
Si	2	1.7

• A.J. Nozik / Physica E 14 (2002) 115

• A. Luque, A. Marti, and A.J. Nozik, MRS Bulletin Vol. 32 (2007) 236

One photon two pairs e-h

The effects of quantum confinement in quantum dots

- Slowing down the cooling of excitons, strengthening the Auger process,
- There is no request to maintain the crystalline momentum
- One photon can generate many e-h pairs. Crash ionization multi-exciton generation by high energy photons
- Expanding the energy gap

(a) TEM image showing PbSe NCs with average diameter of
5.2nm. (b) Linear absorption spectra of a
series of PbSe NCs with average diameter ranging
from 3.3nm to 8.1nm. Strong excitonic absorption
and a blue-shift of the onset are signatures of quantum
confinement in NCs.

https://onlinelibrary.wiley.com/doi/pdf/10.1002/lpor.200810013

Quantum dot fluorescence (Q-dots) CdSe of various sizes when exposed to UV light

Solar cell configurations with quantum dots:

- 1. Photoelectrodes from QDs "arrays, (super-lattice)
- 2. Nanocrystalline TiO_2 sensitized QDs
- 3. QDs immersed in a polymer blend ("e" and "h")

1. Quantum super-lattice – p-i-n structure.

Slow down cooling process, transport and collection of hot carriers in p and n contacts - higher voltage or larger photocurrent as a result of MEG

A. Luque, A. Marti, and J. Nozik, MRS Bulletin Vol. 32 (2007) p. 236

NCs layer-deposited by "layer - by layer (LBL) dip coating", 60 nm thickness

J. M. Luther, M. Law, M. C. Beard, Q., M.O. Reese, R. J. Ellingson, and A. J. Nozik, Nano Lett., Vol. 8, No. 10,2008, p.3488.

2. QDs DSSC

- 1. Electrons of QD are excited by solar energy adsorption
- 2. Electron transfer from QD to TCO via TiO₂
- 3. Electrons get to the counter electrode after working at external load
- 4. $\frac{1}{2}I_3 e^- \rightarrow \frac{3}{2}I^-$ at counter electrode
- 5. $3/2 | \xrightarrow{-} 1/2 |_3 \xrightarrow{-} + e^-$ at QD

 TiO_2 : QD-sensitized negative charge carrier Electrolyte: iodine-triiodide redox couple QD: InP, CdSe, CdTe, PbS, etc. TCO: Transparent conducing oxide Pt : Catalyst

A. Luque, A. Marti, and J. Nozik, MRS Bulletin Vol. 32 (2007) p. 236

Barwnik w ogniwach DSSC zastąpiony jest przez QDs.

The schematic band energy structure of bulk-heterojunction organic cell used to produce the results (b)(left) a schematic showing random distribution of donor (P3HT) and acceptor (PCBM) regions in the blended bulk-heterojunction organic solar cell, (right) a schematic diagram of systematic alignment of donor and acceptor layers

IBSC cells from colloidal solutions of quantum dots

ARTICLE

DOI: 10.1038/s41467-018-07655-3 OPEN

Solution-processed intermediate-band solar cells with lead sulfide quantum dots and lead halide perovskites

Hiroji Hosokawa () ¹, Ryo Tamaki², Takuya Sawada¹, Akinori Okonogi¹, Haruyuki Sato¹, Yuhei Ogomi³, Shuzi Hayase () ³, Yoshitaka Okada () ² & Toshihiro Yano¹

a

TSPA

IBSC made from solutions. PbS quantum dots (4 nm) immersed in MAPbBr₃ perovskite

Silicon Quantum dots for III generation solar cells

Fig. 1. Scheme of formation of quantum dots (QDs) in silicon nitride multilayer according to Zacharias and Green (M. Lipiński in *Archives of Materials Science and Engineering*, 46 (2010) 69-87).

Silicon Quantum dots for III generation solar cells

Cross-sectional TEM images of the multilayer (a) low and (b) high magnification. The sample was annealed at 1100°C (M. Lipiński in Archives of Materials Science and Engineering, 46 (2010) 69-87).

Tandem silicon solar cells using Si Qdots

a) Scheme of a two-junction silicon cell. The upper cell is made of a silicon superlattice quantum dots with an energy gap of 1.7 eV, the bottom cell is a classic silicon link. These cells are connected with each other by a tunnel junction [1].
b) Scheme of the band structure of a two-junction cell [2].

[1] E.-C. Cho, M.A.Green, G. Conibeer et al., *Silicon quantum dots in a dielectric matrix for all-silicon tandem solar cells*, Hindwai Publishing Corporation, Advances in OptoElectronics (2007) 1-11
2] G. Coniber, Third-generation photovoltaics, Materials Today 10 (2007) 42-50.

Light converter from perovskite nanoparticles

STUDYING OF PEROVSKITE NANOPARTICLES IN PMMA MATRIX USED AS LIGHT CONVERTER FOR SILICON SOLAR CELL

Fig. 1. The TEM image of the CH₃NH₃PbBr₃ perovskite morphology (a), High Resolution TEM images (b,c) and electron diffraction pattern with two rings corresponded to (021), (221) and (003) faces of cubic phase according to ref. [27] (d) of the nanoparticles

Nanoparticles MAPbBr₃

Arch. Metall. Mater. 62 (2017), 3, 17331-1739

M. LIPIŃSKI*[#], R.P. SOCHA**, A. KĘDRA**, K. GAWLIŃSKA*, G. KULESZA-MATLAK*, Ł. MAJOR^{*}, K. DRABCZYK*, K. ŁABA***, Z. STAROWICZ*, K. GWÓŹDŹ****, A. GÓRAL*, E. POPKO****

Light converter from perovskite nanoparticles

Light converter from perovskite nanoparticles

Fig. 8. The external EQE (a) and internal IQE (b) quantum efficiencies of the solar cell with and without the composite (MAPbBr₃ in PMMA) layer. The solar cell is without ARC. The difference between the IQE curves is caused by absorption of the composite layer

Perovskite solar cells

Progress in perovskite solar cells

Source: Web of Science. Topic: Perovskite solar cells

A review of the patent landscape. Cintelliq https://go.nature.com/2IGsIR9 (2018).

Perovskite ABX₃

Perovskite - Calcium titanium oxide CaTiO₃ was discovered in the Urals Mountains in 1838 by Gustav Rose and named after Russian mineralogist Lev Perovski All materials with the crystallographic structure of calcium titanium oxide CaTiO₃ are named perovskites

The general chemical formula for pure perovskite compounds is ABX₃, where 'A' and 'B' are two cations of very different sizes, and 'X' is an anion that binds to both.

Ideal crystal structure of cubic perovskite

Halide perovskite ABX₃

Energy & Enviromental Science, 2014

Über die Cäsium- und Kalium-Bleihalogenide.

Von

H. L. WELLS.¹

Als Fortsetzung der in diesem Laboratorium² begonnenen Arbeit über Doppelhalogenide ist von den Herren G. F. CAMPBELL, P. T. WALDEN und A. P. WHEELER eine Untersuchung über die Cäsium-Bleisalze unternommen worden. Diese Herren haben die Untersuchung mit vielem Eifer und Geschick durchgeführt, und es macht mir Freude, ihnen meinen Dank auszusprechen. Sie haben die Existenz folgender Salze konstatiert:

Cs ₄ PbCl ₆	Cs ₄ PbBr ₆	
CsPbCl _s	CsPbBr _s ³	CsPbJ _s
CsPb ₂ Cl ₅	CsPb ₂ Br ₅	—

Sheffield Scientific School, New Haven, Conn., Oktober 1892.

Halide perovskite ABX₃

X = F, Cl, Br, I A = organic cation: MA ($CH_3NH_3^+$), FA ($CH_3(NH_{2)2}^+$) or Cs⁺ B = inorganic cations (Pb, Sn)

А	R _A [nm]
MA	0,18
FA	0,19-0,22
Cs	0,17
Rb	0,15
X	R _A [nm]
I.	0.220
Br	0.196
Cl	0.181
В	R _B [nm]
Pb	0.119

0.110

Sn

M. A. Green, A. H-Bailie, and H. J. Snaith, Nature Photonics, 8, 2014

Halide perovskite ABX₃

	t	phase, color	Phase after annealing	Eg	PCE
MAPbl ₃	0,89	Tetragonal, black	Tetragonal	1,5	20,3
FAPbI ₃	1,02	Hexagonal, yellow	regular	1,49	17
CsPbl ₃	0,79	Rhombic, yellow	Rhombic, yellow	1,72	10,77

 $FAPbI_{3-x}Br_{x'}$ E_g =1.48 – 2.23 eV

Electronic properties of perovskites

Perovskit	Cariers	D(cm ² s ⁻¹)	L _D (nm)
$CH_3 NH_3 PbI_{3-x} Cl_x$	electron	0.042±0.016	1069±204
	hole	0.054 ± 0.022	1213±243
$CH_3 NH_3 PbI_3$	electron	0.017±0.011	129±41
	hole	0.011±0.007	105±32

D diffusion coefficient L_D diffusion length

H.J. Snaith i współp.: Science 342 (2013) 341

Optical properties of perovskites

M. A. Green, A.H-Baillie and H. J. Snaith, NATURE PHOTONICS 8, 2014, 506.

Perovskite solar cells

ETL: TiO₂ , SnO₂,....

HTL: spiro-MeOTAD , PTAA

Absorber – Perowskit halogenkowy

spiro-MeOTAD =

2,2 0,7,7 0-tetrakis-(*N,N0*-di-*p*-methoxyphenylamine)- 9,9 0-spirobifluorene) LITFSI (lithium bis(trifluoromethanesulfonyl)imide) + TBP

PTAA - poly(triaryl amine)

Shockley - Queisser efficiency limit

Shockley - Queisser efficiency limit for an ideal solar cell versus band gap energy for: (a) unconcentrated 6000 K black body radiation (1595.9 Wm⁻²); (b) full concentrated 6000 K black body radiation (7349.0 × 104 Wm⁻²); (c) unconcentrated AM1.5-Direct [18] (767.2 Wm⁻²) and (d) AM1.5 Global (962.5 Wm⁻²)

Theoretical limit for tandem (2-junctions)

Top perovskite cell: $FA_{0.83}Cs_{0.17}Pb(I_{0.6}Br_{0.4})_3$ E_g = 1.72 eV botom cell Si: E_g = 1.12 eV

Advantages:

- Semiconductor with excellent opto-electronics properties,
- E_q can be changed in wide range :1.2 2.0 eV,
- High absorption,
- Low non-radiative carrier recombination rates,
- Excellent charge transport: diffusion of lenght > 1mm⁻⁾
- Low crystallization temperature
- Simple methods of manufacturing from solutions: spin-on, ink-jet printing, spray,
- Flexibility
- Earth-abundant elements: C, N, H, Pb, I..
- High efficiency > 20%

1. Eperon, G. E. et al. Perovskite-perovskite tandem photovoltaics with optimized bandgaps. Science 354, 861–865 (2016).

2. Eperon, G. E. et al. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. *Energy Environ. Sci.*7, 982–988 (2014).

3. Unger, E. L. et al. Roadmap and road blocks for the band gap tunability of metal halide perovskites. *J. Mater. Chem. A* 5, 11401–11409 (2017). 5. H.J. Snaith et al., *Science 342* (2013) 341

Disadvanges:

- Low stability
- Toxicity from Pb

K. Kalyanasundaram, S. M. Zakeeruddin, M. Grätzel, Material Matters, 2016, 11.1, 3

Halide perovskites ABX₃ and with mixed ions

$FAPbI_{3-x}Br_{x}$, $E_{g} = 1.48 - 2.23 \text{ eV}$

(B) Sn - decreases E_g (X) Br - increases E_g

	t	Eg	PCE
MAPbl ₃	0.89	1.5	20.3
FAPbI ₃	1.02	1.49	17
CsPbI ₃	0.79	1.72	10,77
$FA_{0.85}MA_{0.15}Pb(I_{0.85}Br_{0.15})_{3}$		1.62	22.1
$FA_{0.85}Cs_{0.15}PbI_3$	0.99	1.52	17.3
$FA_{0.85}Cs_{0.17}Pb(I_{0.83}Br_{0.17})_{3}$	1.01	1.74	20.0
$FA_{0.75}Cs_{0.25}Pb_{0.5}Sn_{0.5}I_{3}$		1.2	

T. Leijtens et al. , J. Mater. Chem. A, 2017, 5,11483

Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites

Michael M. Lee,¹ Joël Teuscher,¹ Tsutomu Miyasaka,² Takurou N. Murakami,^{2,3} Henry J. Snaith¹*

SCIENCE VOL 338 2 NOVEMBER 2012 643

Two etap method

ng-Hyeok Im i in., Morphology-photovoltaic perty correlation in perovskite solar cells: e-step versus two-step deposition of ₃NH₃PbI₃, APL Materials, 2014

 PbI_2

<u>Spin – coating:</u> 3000 r. p. m, 30s

<u>Annealing:</u> 40 ° C – 2 min., 100 ° C - 5 min.

CH₃NH₃I

<u>Dippng:</u>40 s

Annealing : 100 ° C, 10 min

Two-stage method - production of perovskites in mesoporous skeletal structures (TiO_x , ZnO)

one-step method

Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells

Wei Zhang¹, Michael Saliba¹, David T. Moore², Sandeep K. Pathak¹, Maximilian T. Hörantner¹, Thomas Stergiopoulos¹, Samuel D. Stranks¹, Giles E. Eperon¹, Jack A. Alexander-Webber¹, Antonio Abate¹, Aditya Sadhanala³, Shuhua Yao⁴, Yulin Chen¹, Richard H. Friend³, Lara A. Estroff^{2,5}, Ulrich Wiesner² & Henry J. Snaith¹

 $PbX_2 + 3CH_3NH_3I \rightarrow CH_3NH_3PbI_3 + 2CH_3NH_3X (X = Cl, I, Ac)$

NATURE MATERIALS , 2014

Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells

Nam Joong Jeon^{1†}, Jun Hong Noh^{1†}, Young Chan Kim¹, Woon Seok Yang¹, Seungchan Ryu¹ and Sang II Seok^{1,2*}

Division of Advanced Materials, Korea Research Institute of Chemical Technology, Korea, Department of Energy Science, University, Suwon , Republic of Korea

 $PbI_2 - DMSO - MAI \rightarrow MAPbI_3 + DMSO^{\uparrow}$

Characteristics of J-V perovskite cell made in LF IMIM PAN in Kozy

Cells developed at LF IMIM

I-V characteristic hysteresis

J-V characteristics of the perovskite cell for both scan directions for scanning speeds of 25 V / s (a), 1V / s (b) and 0.5 V/s. Cells made in LF IMIM PAN in Kozy

Stability

Opto-Electronics Review 25 (2017) 274-284

Searching of new, cheap, air- and thermally stable hole transporting materials for perovskite solar cells

K. Gawlinska^{a,*}, A. Iwan^{b,*}, Z. Starowicz^a, Grazyna Kulesza-Matlak^a, K. Stan-Glowinska^a, M. Janusz^a, M. Lipinski^a, B. Boharewicz^c, I. Tazbir^c, A. Sikora^c

^a Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, 30-059 Krakow, Poland

^b Military Institute of Engineer Technology, ul. Obornicka 136, 50-961 Wroclaw, Poland

^c Electrotechnical Institute, Division of Electrotechnology and Materials Science, ul. M. Sklodowskiej-Curie 55/61, 50-369 Wroclaw, Poland

Destruction of MAPbl₃ perovskite in the cell (without HTM and without encapsulation). A yellow color indicates the presence of PbI2. The cell exposed to sunlight. Test of S9 and S7 polymers (polyazomethines) for encapsulation 48

- Structure stability
- Thermal stability
- Atmospheric stability
- Oxygen interaction
- Water impact
- Stability to UV radiation

M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate and A. Hagfeldt, Incorporation of Rubidium Cations into Perovskite Solar Cells Improves Photovoltaic Performance, Science, 2016, 354(6309), 206.

CH3NH2 methylamine - volatile and water-soluble HIwater-soluble 1] $4MAPbI_3 + 2H_2O \leftrightarrow MA_4PbI_6 \cdot H_2O + 3PbI_2$

Another mechanism according to [2]

1. J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. Van Schilfgaarde and A. Walsh, Nano Lett., 2014, 14, 2584–2590 2. J. A. Christians , P. A. Miranda Herrera , P. V. Kamat , J. Am. Chem. Soc. 2015 , 137 , 1530 .

Thermal stability

Requirements: Cell operating temperature -40 to> 85 °C. Cell operation up to 85°C Lamination - 150 ° C

MAPbX₃ unstable at 85°C - MA sublimates at 85 °C even in an inert atmosphere

Filippo De Angelis, and Hans-Gerd Boyen*

Groenenborgerlaan 171, 2020 Antwerp, Belgium X-LaB, Hasselt University Agoralaan Building D, 3590 Diepenbeek, Belgium

Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO) CNR-ISTM, I-06123 Perugia, Italy

MAPbX₃ is not suitable for industrial production!

NATURE ENERGY | VOL 3 | JANUARY 2018 | 68-74 |

Article

pubs.acs.org/cm

Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys

Zhen Li,[†] Mengjin Yang,[†] Ji-Sang Park,[†] Su-Huai Wei,^{†,§} Joseph J. Berry,[†] and Kai Zhu^{*,†}

[†]National Renewable Energy Laboratory, Golden, Colorado 80401, United States [§]Beijing Computational Science Research Center, Beijing 100094, China

3D metal halide perovskites used in photovoltaics Mixed cations [FAMA], [FACs]

	t	Faza, kolor	Faza po wygrzaniu	Eg	PCE	Przejście fazowe
MAPbl ₃	0,89	Tetragonal, black	Tetragonal	1,5	20,3	Regular, 60° C
FAPbl ₃	1,02	Hexagonal, yellow	regular	1,49	17	Regular, 150° C
CsPbI ₃	0,79	Rhombic, yellow	Rhombic, yellow	1,72	10,77	Regular, 300° C
FA _{0.85} MA _{0.15} Pb(I _{0.85} Br _{0.15}) ₃		Regular, black	Regular black	1,62	22,1	
$FA_{0.85}Cs_{0.15}PbI_3$	0,99	Tetragonal, black	tetragonal	1,52	17,3	
$FA_{0.85}Cs_{0.15}Pb(I_{0.83}Br_{0.17})_3$	1,01	Tetragonal, blacka	tetragonal	1,74	20,0	

Tomas Leijtens, Kevin Bush, Rongrong Cheacharoen, Rachel Beal,

Andrea Bowring and Michael D. McGehee,

Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and thermal stability, J. Mater. Chem. A, 2017, 5,11483

Department of Materials Science, Stanford University, Lomita Mall, Stanford, CA, USA.

3D metal halide perovskites used in photovoltaics Mixed cations [FAMA], [FACs]

	Eg [eV]	PCE [%]	cell	ref
FA _{0.83} Cs _{0.17} Pb(I _{0.83} Br _{0.17}) ₃	1,74	23,6 PSC/Si	Tandem monolit PSC/Si	[2]
$FA_{0.75}Cs_{0.25}Pb_{0.5}Sn_{0.5}I_3$	1,2	17.0	Tandem PSC/PSC	[2]
$FA_{0.83}Cs_{0.17}Pb(I_{0.5}Br_{0.5})_{3}$	1,8	PSC/PSC		[3]

[1] High-performance photovoltaic perovskite layers fabricated through intramolecular exchange

Woon Seok Yang, 1* Jun Hong Noh, 1* Nam Joong Jeon, 1 Young Chan Kim, 1 Seungchan Ryu, 1 Jangwon Seo, 1 Sang II Seok $^{1,2} \dag$

¹Division of Advanced Materials, Korea Research Institute of Chemical Technology, 141 Gajeong-Ro, Yuseong-Gu, Daejeon 305-600, Korea. ²Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Korea.

Science, 2015, 348(6240),1234

[2] NREL, Best Research-Cell Efficiencies, 2017

ARTICLES PUBLISHED: 17 FEBRUARY 2017 | VOLUME: 2 | ARTICLE NUMBER: 17009

[2]

23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability

Kevin A. Bush^{1†}, Axel F. Palmstrom^{1†}, Zhengshan J. Yu^{2†}, Mathieu Boccard², Rongrong Cheacharoen¹, Jonathan P. Mailoa³, David P. McMeekin⁴, Robert L. Z. Hoye³, Colin D. Bailie¹, Tomas Leijtens¹, Ian Marius Peters³, Maxmillian C. Minichetti¹, Nicholas Rolston¹, Rohit Prasanna¹, Sarah Sofia³, Duncan Harwood⁵, Wen Ma⁶, Farhad Moghadam⁶, Henry J. Snaith⁴, Tonio Buonassisi³, Zachary C. Holman^{2*}, Stacey F. Bent¹ and Michael D. McGehee^{1*}

¹Stanford University, Stanford 94305, USA. ²Arizona State University, Tempe 85281, USA. ³Massachusetts Institute of Technology, Cambridge 02139, USA. ⁴University of Oxford, Oxford OX1 3PU, UK. ⁵D2 Solar LLC, San Jose 95131, USA. ⁶Sunpreme, Sunnyvale 94085, USA. [†]These authors contributed equally to this work. *e-mail: Zachary.holman@asu.edu; Mmcgehee@stanford.edu

[3]

Science

REPORTS

Cite as: G. E. Eperon *et al.*, *Science* 10.1126/science.aaf9717 (2016).

Perovskite-perovskite tandem photovoltaics with optimized bandgaps

Giles E. Eperon, ^{1,3}* Tomas Leijtens, ²* Kevin A. Bush, ² Rohit Prasanna, ² Thomas Green, ¹ Jacob Tse-Wei Wang, ¹ David P. McMeekin, ¹ George Volonakis, ⁴ Rebecca L. Milot, ¹ Richard May, ² Axel Palmstrom, ² Daniel J. Slotcavage, ² Rebecca A. Belisle, ² Jay B. Patel, ¹ Elizabeth S. Parrott, ¹ Rebecca J. Sutton, ¹ Wen Ma, ⁵ Farhad Moghadam, ⁵ Bert Conings, ^{1,6} Aslihan Babayigit, ^{1,6} Hans-Gerd Boyen, ⁶ Stacey Bent, ² Feliciano Giustino, ⁴ Laura M. Herz, ¹ Michael B. Johnston, ¹ Michael D. McGehee, ^{2†} Henry J. Snaith^{1†}

¹Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK. ²Department of Materials Science, Stanford University, Lomita Mall, Stanford, CA, USA. ³Department of Chemistry, University of Washington, Seattle, WA, USA. ⁴Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK. ⁵SunPreme, Palomar Avenue, Sunnyvale, CA, USA. ⁶Institute for Materials Research, Hasselt University, Diepenbeek, Belgium.

REPORTS

Cite as: M. Saliba et al., Science 10.1126/science.aah5557 (2016).

Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance

Michael Saliba,^{1*}† Taisuke Matsui,^{1,2*} Konrad Domanski,^{1*} Ji-Youn Seo,¹ Amita Ummadisingu,¹ Shaik M. Zakeeruddin,¹ Juan-Pablo Correa-Baena,³ Wolfgang R. Tress,¹ Antonio Abate,¹ Anders Hagfeldt,³ Michael Grätzel¹†

¹Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland. ²Advanced Research Division, Materials Research Laboratory, Panasonic Corporation, 1006 Kadoma, Kadoma City, Osaka 571-8501, Japan. ³Laboratory of Photomolecular Science, École Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland.

Mixed cations [RbCsMAFA]

A) J-V characteristic for 10 mVs⁻¹ cell with 21.8% efficiency (Voc = 1180 mV, J_{sc} = 22.8 mA cm⁻², FF 81%).
B) cell with the highest Voc. 19% PCE stabilized for 0.5 cm² cell.

Thermal stability test. Aging 500 hours at 85°C, full solar lighting at the point of maximum power in the atmosphere N2. Aging procedure more stringent than for industrial standards.

Layered perovskites

 $R_2(A)_{n-1}B_nX_{3n+1}$ (n=1, 2, 3, 4, ...) n the numer of layer (Ruddlesden-Popper structure).

Dla R= kation butyloamoniowy (n butylammonium) R – large alkylammonium cations: PEA = $C_8H_9NH_3$ phenylethylammonium cation BA = $C_4H_9NH_3$ butylammonium cation

Layered perovskites

 $(PEA)_2(MA)_2Pb_3I_{10}$

ARTICLES PUBLISHED: 14 AUGUST 2017 | VOLUME: 2 | ARTICLE NUMBER: 17135

Efficient ambient-air-stable solar cells with 2D-3D heterostructured butylammonium-caesiumformamidinium lead halide perovskites

Zhiping Wang, Qianqian Lin, Francis P. Chmiel, Nobuya Sakai, Laura M. Herz and Henry J. Snaith*

Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK.

```
3D perovkite FA0.83Cs0.17Pb(I yBr1-y)3
```

```
2D perovskite (BA)<sub>2</sub>(MA)<sub>3</sub>Pb<sub>4</sub>I<sub>13</sub>
```

```
2D-3D structure:
```

```
BA_{0.09}(FA_{0.83}Cs_{0.17})_{0.91} Pb(I_{0.6}Br_{0.4})_3 (x = 0.09)
```


Model struktury 2D-3D

Model of energetic bands of 2D-3D structure, CB- conductivity band, VB valence band.

Z Wang et al., NATURE ENERGY 2, 2017, 17135

 $FA_{0.83}Cs_{0.17}Pb(I_{0.6}Br_{0.4})_3 (x = 0)$

 $BA_{0.09}(FA_{0.83}Cs_{0.17})_{0.91} Pb(I_{0.6}Br_{0.4})_3 (x = 0.09)$

(a) J-V characteristics: 3D perovskite $FA_{0.83}Cs_{0.17}Pb(I_{0.6}Br_{0.4})_3$ (x=0) ($E_g = 1.72 \text{ eV}$) and for 3D-2D $BA_{0.09}(FA_{0.83}Cs_{0.17})_{0.91}Pb(I_{0.6}Br_{0.4})_3$ (x= 0,09)

(a) Stabilized cell efficiency (SPO) of the best cell (SPO ratio - ratio of SPO to PCE.

J-V characteristics: 3D perovskite for $BA_{0.05}(FA_{0.83}Cs_{0.17})_{0.95}Pb(I_{0.8}Br_{0.2})_3$ ($E_g = 1.61 \text{ eV}$). Statistical distribution

Table 1 | Solar cell performance parameters determined from *J*-*V* curves and stabilized power output measurements.

Device	PCE (%)	$J_{\rm sc}$ (mA cm ⁻²)	V _{oc} (V)	FF	SPO (%)
Wide-bandgap FA	A _{0.83} Cs _{0.17} Pb(I _{0.6} Br _{0.4}) ₃	x = 0			
Average Champion	15.1 ± 1.0 16.9	18.8 ± 0.9 19.8	1.15 ± 0.02 1.14	0.70 ± 0.03 0.75	14.1 ± 0.9 15.3
Wide-bandgap B	A _{0.09} (FA _{0.83} Cs _{0.17}) _{0.91} Pb	$(I_{0.6}Br_{0.4})_3 (x = 0.09)$			
Average Champion	15.5 ± 1.1 17.2	18.9 ± 0.7 19.8	1.17 ± 0.02 1.18	0.70 ± 0.04 0.73	15.8 ± 0.8 17.3
Low-bandgap BA	_{0.05} (FA _{0.83} Cs _{0.17}) _{0.91} Pb(I	_{0.8} Br _{0.2}) ₃			
Average	18.1 ± 1.5	22.1 ± 0.7	1.09 ± 0.04	0.75 ± 0.05	17.5 ± 1.3
Champion	20.6	22.7	1.14	0.80	19.5

Average device characteristics with standard deviation were obtained on the basis of 32 cells for each set. The champion cell data are taken from the J-V curves shown in Fig. 4.

Aging - AM1.5 xenon lamp with a power of 76 mW/cm² in the air (approx. 45 RH%) without UV filter, in V_{oc} conditions, tested for different time intervals by a separate AM1.5 simulator with a power of 100mWcm⁻². Light pulse aging with Suntest XLS +. The structure of the cell glass/FTO/SnO2/ C60 /perovskit/spiro-OMeTAD (with Li-TFSI and tBP) / Au.

Energy & Environmental Science

Selective growth of layered perovskite for stable and efficient photovoltaics.

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Kyung Taek Cho,^a Giulia Grancini,^a Yonghui Lee,^a Emad Oveisi,^b Jaehoon Ryu,^c Osbel Almora,^d Manuel Tschumi,^a Pascal Alexander Schouwink,^e Gabseok Seo,^f Sung Heo,^g Jucheol Park,^h Jyongsik Jang,^c Sanghyun Paek,^a* Germà Garcia-Belmonte,^d Mohammad Khaja Nazeeruddin^a*

^{b.} Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

^{c.} School of Chemical and Biological Engineering, Seoul National University, 599 Gwanangno, Gwanakgu, Seoul 151-742, Korea.

^{d.} Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló, Spain.

- ^{e.} Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, Valais Wallis, CH-1951 Sion, Switzerland.
- ^{f.} Department of Energy Science, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Korea.
- ^{g.} Samsung Advanced Institute of Technology, 130, Samsung-ro, Yeongtong-gu, Suwon, 16678, Korea
- ^h Business Support Department, Gumi Electrons & Information Technology Research Institute, Gumi, 39171, Korea

¹ Group for Molecular Engineering of Functional Materials, École Polytechnique Fédérale de Lausanne, Valais Wallis, CH-1951 Sion, Switzerland.

PEA₂PbI₄ - Cs_{0,1}FA_{0,74}MA_{0,13}PbI_{2,48}Br_{0,39}

Cho and al. Energy & Environmental Science, w druku

В

CFMPIB - Cs_{0.1}FA_{0.74}MA_{0.13}PbI _{2.48}Br_{0.39} L-CFM/P (CFMPIB i PEA₂PbI₄)

Cs0.1FA0.74MA0.13PbI 2.48Br0.39(CFMPIB)

L-CFM/P (perowskit CFMPIB i PEA₂PbI₄).

Journal of Semiconductors

January 2017

Recent progress in stability of perovskite solar cells*

Xiaojun Qin^{1,2}, Zhiguo Zhao^{1,2}, Yidan Wang^{1,2}, Junbo Wu^{1,2}, Qi Jiang³, and Jingbi You^{3,4,†}

¹China Huaneng Group, Beijing 100031, China

²China Huaneng Clean Energy Research Institute, Beijing 102209, China

³Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

⁴College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China

PMMA- Poly(methyl 2-methylpropenoate) P3HT- Poly(3-hexylthiophene) PTAA –poly(triarylamine) SWNT - carbon nanotube, single-walled

ARTICLES https://doi.org/10.1038/s41560-017-0067-y

Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability

Jeffrey A. Christians¹, Philip Schulz¹, Jonathan S. Tinkham², Tracy H. Schloemer², Steven P. Harvey¹, Bertrand J. Tremolet de Villers¹, Alan Sellinger^{1,2}, Joseph J. Berry¹ and Joseph M. Luther¹

¹National Renewable Energy Laboratory, Golden, CO, USA. ²Department of Chemistry, Colorado School of Mines, Golden, CO, USA.

NATURE ENERGY | VOL 3 | JANUARY 2018 | 68-74 |

NREL Scientists Demonstrate Remarkable Stability in Perovskite Solar Cells January 30, 2018

https://www.nrel.gov/news/press/2018/nrel_scientists_demonstrate_remarkable_stability_in_pe rovskite.html

New HTL and electrodes

NATURE ENERGY | VOL 3 | JANUARY 2018 | 68-74 |

Stability during operation of the TiO2 / FAMACs / EH44 / Au (a) and ETL / FAMACs / EH44 / Mox / Al cells (ETL = TiO₂ (4 cells) or SnO₂ - 15 cells) (b) in air under certain conditions of humidity and temperature .

Colloidal nanocrystals of lead-free double-perovskite (elpasolite) semiconductors: synthesis and anion exchange to access new materials

Sidney E. Creutz, Evan N. Crites, Michael C. De Siena, Daniel R. Gamelin*

Department of Chemistry, University of Washington, Seattle, WA 98195-1700, United States

 $Cs_2AgBiBr_6$ – doubling of the unit cell size and replacement of Pb² by M⁺ i M³⁺ cations

Cs₂AgInCl₆, MA₂AgSbI₆, MA₂TIBiBr₆, MA₂KBiCl₆,

Cite This: ACS Energy Lett. 2018, 3, 297-304

Earth-Abundant Nontoxic Titanium(IV)-based Vacancy-Ordered Double Perovskite Halides with Tunable 1.0 to 1.8 eV Bandgaps for Photovoltaic Applications

Ming-Gang Ju,^{†,§}[©] Min Chen,^{‡,§} Yuanyuan Zhou,^{*,‡} Hector F. Garces,[‡] Jun Dai,[†] Liang Ma,[†][©] Nitin P. Padture,^{*,‡}[©] and Xiao Cheng Zeng^{*,†}[©]

[†]Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States [‡]School of Engineering, Brown University, Providence, Rhode Island 02912, United States

Journal of Materials Chemistry A

Published on 05 September 2017

Highly stable, phase pure $Cs_2AgBiBr_6$ double perovskite thin films for optoelectronic applications

Enrico Greul,^a Michiel L. Petrus,^a Andreas Binek^a, Pablo Docampo^b and Thomas Bein^a*

^{a.} Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU) Butenandtstr. 5-13, 81377 Munich, Germany. *E-mail: tbein@cup.uni-muenchen.de

^{b.} School of Electrical and Electronic Engineering, Newcastle University, Merz Court, Newcastle upon Tyne, NE1 7RU, UK

Fig. 6 (a) Stabilized power output and current density measured under ambient conditions without encapsulation. (b) Photovoltaic performance as a function of time under continuous illumination under ambient conditions. All devices were manufactured according the procedure described in Fig. 1 with a 285 °C annealing step.

SOLAR CELLS

Science 358, 768-771 (2017) 10 November 2017

Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%

Neha Arora,¹* M. Ibrahim Dar,¹*[†] Alexander Hinderhofer,² Norman Pellet,¹ Frank Schreiber,² Shaik Mohammed Zakeeruddin,¹ Michael Grätzel¹[†]

The ways of icreasing stability

CuSCN copper(I) thiocyanate

Commercialization

More than a 12 firms are involved in commercializing perovskite solar cells:

- Energy Materials Corp.(US),
- Frontier Energy Solution (South Korea),
- Microquanta Semiconductor (China),
- Oxford PV (UK),
- Saule Technologies (Poland),
- Sekisui/Panasonic/Toshiba (Japan),
- Solaronix SA (Switzerland),
- Solliance (Netherlands), Swift Solar (US),
- Tandem PV (US),
- WonderSolar (China).

Commercialization

🚸 OXFORD PV

Oxford PV's industrial site in Brandenburg an der Havel, Germany, where the complete 250 MW production line will commence perovskite-on-silicon tandem solar cell production at the end of 2020.

Oxford PV tandem perovskite on the silicon pass the IEC 61646 test stability: 200 thermal cycles (-40° C to +85° C) with <5 % drop, full sun light soaking 1000 hours (85%RH/85° C) with <4% drop, damp heat 1000 hours <4% drop)

The future of perovskite photovoltaic is bright. Perovskite solar cell technology is close to commercialization.

In the last few years there has been huge progress in the efficiency and in improving the stability of perovskite cells.

The perovskit /Si tandem cells has the greatest prospects for large-scale electricity production in near future.

Thank you for your attention