

High Resolution

Transmission Electron Microscopy HR TEM/ HREM

Jerzy Morgiel

j.morgiel@imim.pl

IMIM PAN – KRAKÓW – 2019

Contrast in TEM

"Amplitude contrast"

resolution ~ 2 nm /limited by diffraction at objective aperture/

"Phase contrast" HREM resolution ~ 0.2 nm /limited by "lenses" /

"idea" of PHASE CONTRAST

- electron plane wave interact with crystal in a way: "some electrons passing regions of positive potential, i.e. atomic nuclei are accelerated, λ is reduced and the phase is advanced by an amount proportional to the potential at the scattering site /in reference to "passing" i.e. nondiffracted beam/
- for a thin crystal i.e. <10 nm (weak phase object WPO) :

 = amplitude changes caused by inelastic scattering are small
 = phase changes caused by elastic /dyf/ scattering are small (electrons are diffracted only once!)
 one can regard crystal as a weak phase object
 and apply kinematical theory of electron diffraction (otherwise multiple scattering =>dynamical theory)

J.L.Hutchinson, School on EM, Berlin 2000

1949 - Scherzer: relation between phase shift χ and {Δf/defocus + C_s/obj. ast.. + $\theta(1/d)$ /diff. angle }

$$\chi = \frac{\pi}{2\lambda} (C_{\rm S} \theta^4 - 2\Delta f \theta^2) \qquad \text{dla jednego } \theta (1/d)!$$

sin χ is close to unity over large range of $1/d_{hkl}$ at "Scherzer focus" $\Delta f_{Scherzer} = -C_S^{1/2}S\lambda$

Conditions for HREM imaging and Selected Area Diffraction

Conditions for obtaininf electron diffraction/ Ewaldasphere

Usual d- spacings (10 Å -1 Å) >>> λ

Radius of Ewald sphere ($R_E = 1/\lambda$)>>> g spacings

- spacing of fringes/ spots equals to spacing of diffracting planes
- fringes/ spots may show no relation with position of planes/ atomic columns !!!

HREM : Lattice imaging

HREM : Structure imaging

OL Aperture

Imaging with Multiple Beams (HREM)

Increasing number of beams increases resolution!

Imaging with only 1 beam Diffraction contrast (BF,DF) Defect Analysis

HREM : Structure imaging

7 beams HREM (lattice) image

HREM : The imaging step

HREM - Part I.

"Classical" approach = "thin object" + "Scherzer defokus" (⇒ "direct (?) corelation of image with the structure")

HREM - "achievements"

CdTe: [110] zone axis Scherzer defocus

/Stacking fault + edge dislocation; note bending of SF caused dislocation strain field/

Scherzer underfocus /obj. lens weakened from Gasian "focus"; atoms "black" • • •

Scherzer overfocus /obj. lens excited over Gasian "focus"; atoms "white" • • •

Au/ amorphous Ge (CTF + Optical Diffraction Pattern, + HREM Image

HREM - "light" & "heavy" atoms

NbO_x

radiation damage

Hutchinson at. al., JEOL News, 37E(2002)2

Removal of noise

2-fold astigmatism corrected

Astigmatism correction

J von Rose corrector: series of two hexapole and two transfer lenses

Hutchinson, JEOL News 37E(2002)2

3-fold astigmatism corrected

obniżony "phase kontrast"

silny "phase kontrast"

cont.

"3- fold astimatism increases diameter of diffraction discs producing spurious contrast up to several nm"

Hutchinson 2002

Granica Σ3 folia Au "zlokalizowany" kontrast na uskoku (po usunięciu astygmatyzmu trójosiowego)

Fig. 10 Contrast delocalization as a function of defocus for the corrected and the uncorrected state. Common parameters: semiconvergence angle = 0.2 mrad, acceleration voltage = 200 kV, and $q_{\text{max}} = 0.14$ nm.

Fig. 4 High-resolution images of an epitaxial $Si(111)/CoSi_2$ interface demonstrating the influence of the spherical aberration on contrast delocalization. Images (a) and (b) were taken with a C_s of 1.2 mm at -67 nm and at -257 nm, respectively. Image (c) was recorded in the aberration-corrected state at a defocus of -12 nm and a C_s value of 50 μ m.

HREM: limitation of "classical" approach; boundaries Si / CoSi2: type CaF (difference between d₁₁₁ and d₂₀₀ ~1.2%)

200 kV, defocus f = -90 nm, thickness = 6 nm approximation "thin object" O.K. for Si – not O.K. for CoSi₂ *Coene at. al. Phillips Electron Optics Bulletin*, 132(1992)15

HREM (Ultra HREM) - part II Image reconstruction - "through focus image series" "on axis-" or "on - line holography"

way beyond "Scherzer defocus" up to "information limit"

Coene at al. Electron Optics Bulletin, 132 (1992) 15

Ba₂NaNb₅O₁₅

20Å

Thickness

HREM - "of-axis" holography

Gabor \Rightarrow Möllenstedt and Düker in 1955

no voltage on biprismpositive voltage on biprismwaves from object and referencenot overerlapoverlap (forming hologram)

Möllenstedt Biprism

HREM - "of-axis" holography (c.d.)

FT(a exp[-i ϕ_0]) $\otimes \delta(q_c-q)$

- 3D thin fon thickness maps
- 2D electric & magnetic potential maps

HREM - "of-axis" holography (cont.)

Applications: observations of quantum doth, quantum wells

Phase-Modulation at pn-Junctions

Phase-Shift at pn-Junction

$$\varphi = \sigma \cdot (V_0 t + \Delta V_{pn} (t - 2 t_0))$$

Interaction constant $(0.00729 V^{-1} nm^{-1} \text{ for } 200 \text{ kV})$ Mean inner potential $(\approx 12 V \text{ for Si})$ Specimen thicknessPotential variation at pn-junction $(\approx 0.7 ... 1.2 V)$ Thickness of dead layers

Only valid for kinematic conditions!

W.D. Rau et al., PRL 1999

TEM-Image of FIB-Lamella

Sample: SEMATECH #16, 250 nm Gate Length Thickness of Lamella: 200 nm

n-MOSFET-Hologram

50 nm

)

Sample: SEMATECH #16, 250 nm Gate Length, Gate 1 Microscope: Philips CM200FEG ST/Lorentz, $U_A = 200 \text{ kV}$ Biprism Voltage: $U_F = 160 \text{ V}$, Field of View: w = 860 nmFringe Spacing: s = 3.8 nm, Fringe Contrast in Reference-Hologram: $\mu = 0.05$

n-MOSFET

Sample: SEMATECH #16, 250 nm Gate Length, Gate 1

Approximation for Depletion Region Potential: $\Delta V_{pn} \approx 0.5 \text{ V}$

p-MOSFET

Sample: SEMATECH #16, 250 nm Gate Length, Gate 2

Approximation for Depletion Region Potential: $\Delta V_{pn} \approx -0.7 \text{ V}$

Comparison

Sample: SEMATECH #16, 250 nm Gate Length

"HREM" ⇒ HAADF-STEM

"HREM" ⇒ HAADF-STEM

Structure – Image relationship

 Only for very thin crystals (kinematic scattering) and under proper recording conditions (Scherzer defocus) HREM image contrasts may be DIRECTLY interpreted in terms of position of atomic columns

- Otherwise, HREM image contrast interpretation must be done by MATCHING experimental and CALCULATED/ SIMULATED images
- Although a direct retrieval of the structure from HREM experimental images is usually impossible, though these images always contain rich crystallographic information

HREM image interpretation

• Useful tools :

Detail level

- Electron Microscopy Simulation Software
- Structure Modeling tools (complex supercells)
- Image Processing (Fourier Analysis)

Time requirements