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BASIC IDEAS OF STATISTICAL THERMODYNAMICS

Objects: systems composed of many particles

Natural application:

macroscopic bodies composed of  N  1023 atoms/molecules

Basic notions:

Microscopic state of a macroscopic body: a state given by particular

states of all atoms/molecules

Macroscopic state of a macroscopic body: a state directly observed

(shape, hardness, roughness, colour etc.) 

Basic parameters and functions:

Internal energy: sum of all types of energies of atoms/molecules 

building a macroscopic body. Internal energy is highly degenerated 

with respect to microscopic states of the body.

 Temperature: parameter, whose value is equal in bodies being 

in thermal equilibrium



Interpretation of temperature:

a quantity T proportional to an average kinetic energy of one

atom/molecule - a measure of chaotic motion of atoms/molecules

Factors controlling the generation of a concrete macroscopic state 

of a macroscopic body:

(I) Tendency for attaining possibly lowest value of internal energy E,

(II) Probability for reaching such energy – number p of microscopic states

corresponding to this energy. p increases with increasing energy

Importance of the factor (II) increases with increasing temperature

CONSEQUENCE:

The observed equilibrium macroscopic state is a compromise between 

both factors. 

Quantitatively it corresponds to a minimum value of a function

F = E – T  kB  ln(p), kB = const.      free energy



More rigorous approach:

Entropy:    S = kB  ln(p)  - defined for an equilibrium state !!!!

Relation between S and T:

1













E

S
T

SYSTEM

Surrounding

(very large)

STANDARD ASSUMPTIONS:

The system is much smaller than 

the surrounding

 The whole supersystem

(system + surrounding) is isolated

- hence its energy E0 is constant and 

all microscopic states are equiprobable

 The system is in thermal equilibrium

with the surrounding - hence its 

temperature equals T0

Question:
What is the probability P(Q) that the system is in a microscopic state Q

with the internal energy E(Q) ?

NOTE ! The question makes sense, because the system is not isolated !!



p – number of possible microstates of the supersystem, for which 

the system is in the microstate Q

P(Q)  p

Entropy S0 of the surrounding:
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It is prooved that:  ZTkF B ln



Thermodynamics of solid solutions

Solid solution:

A solid multicomponent phase existing for a finite range of the 
compoment concentrations.

Configurational free energy of a solid solution: part of the free energy which depends

exclusively on the configuration of atoms over the crystalline lattice
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THEORETICAL JUSTIFICATION FOR THE SEPARATION OF 

NON-CONFIGURATIONAL TERMS OF THE FREE ENERGY:



IDEAL SOLUTION

,0 sTfu  Wks B ln

W – number of distinct configurations of A and B atoms over the

crystalline lattice of the solid solution
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REGULAR SOLUTION

0u 0uuu sol 

internal energy of a solution internal energy of not-mixed

elements

THERMODYNAMICS:

ZTkF B ln
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   confEEstateE otherconf 

configurational energy energy of other degrees 

of freedom related to particular

configuration

COMMENT:

Such grouping of energies

is reasonable due to different

time scales (mentioned earlier)

Consequence:
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The partition function Z may thus be written down as:
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confotherconf EconfFE 

“average” configurational energy accounting

for averaging over non-configurational degrees

of freedom assigned to a particular configuration 

Modelling of the (average) configurational energy

First approximation: pair-interactions of nearest-neighbouring (nn) atoms

– the Ising model: 

  
ji

ijijconf VNE
,

,where Nij is a number of i-j nn pairs, 

Vij is the i-j nn pair interaction energy



TWO-COMPONENT (BINARY) A-B SYSTEM
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bcc-type lattice 

with two sublattices

consisting of N(1) and N(2)

lattice sites, respectively 

Description of the atomic configuration of the system:

N – total number of atoms (both A- and B-type),

C – concentration of B-type atoms C = NB/N

Z – co-ordination number: number of nn lattice sites surrounding

a lattice site;   in bcc structure Z = 8
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occupying 1- and 2-type sublattice sites

Fundamental relationships:
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CONCLUSION:  1

AN AANand are independent variables !!



ATOMIC (CHEMICAL) ORDER

Long-range order (LRO):

Differentiation „” of probalilities of 

particular sublattice sites being occupied 

by particular atoms.

Diffraction: superstructure peaks

Related variables: 

Short-range order (SRO):

Tendency for A-(B-) atoms to be 

preferencially surrounded by B- or A-atoms

(correlation functions).

Diffraction: diffuse scattering, background 

modulation between Bragg peaks

Related variables:  P(NAA) = 2NAA/ (ZxN)

SRO parameter:  = P(NAA)-(1-c)2
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NOTE:  and  are totally independent !



CONFIGURATIONAL ENERGY OF MIXING EM
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CONCLUSION: the configurational energy of mixing depends 

exclusively on NAA – as a configurational variable and 

on W – as an energetic variable



GENERALIZATION:

n-component systems,

structures with m sublattices

pair-interactions in

r co-ordination zones

many-body interactions
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Within pair-interaction approximation:

Beyond pair-interaction approximation:

numbers of clusters 

with particular 

atomic configurations
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CONFIGURATIONAL FREE ENERGY OF MIXING
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Within the nn pair-interaction approximation:
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showing similar values of NAA

constant factor

Basic thermodynamical approximation:
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The partition function is approximated

by its maximum term



Hence:

     
MINAABAAm NgTkNEF ln

Conclusion: the equilibrium value of the parameter NAA at temperature T

minimises the free energy functional F

BASIC DIFFICULTY AND THE PRINCIPAL PROBLEM OF 

CONFIGURATIONAL THERMODYNAMICS:

It is impossible to exactly evaluate the number g(NAA). (The exact solution (by 

Onsager) exists only for a 2-dimensional lattice)

The same problem appears when working with many-body potentials – no 

exact evaluation of g({Nijk…}).

Formulation of appropriate approximation methods for the evaluation of g

is one of the main tasks of the configurational thermodynamics.

  
MIN

confAAm STNEF 

Where the functional of the configurational entropy of mixing:

  
AABconf NgkS ln



CONCEPT OF CLUSTER VARIATION (CVM)
R. Kikuchi, Phys.Rev. 81, 988, (1951).

Complete description of an atomic configuration of a crystal: information on the occupation of EACH

lattice site – unfeasible ! – but necessary for accurate determination of the free energy

General assumption of the CVM: The atomic configuration of a crystal is given in terms of cluster 

variables {ijk… }: the probabilities that finite clusters of the lattice sites appear in particular configurations 

(feasible to be given explicitly). 

pi Nii ijk
ijkl

In an effective analysis clusters up to an arbitrarily chosen biggest one are considered.  The bigger is the

largest cluster, the more accurate is the description. Asymptotically, the exact description is achieved if

the entire crystal is taken as the biggest cluster.

The effective procedure consists of the minimisation the F functional with respect to {ijk… }: 

         
MIN

ijkAABijkAAm NgTkNEF .... ln  

Methods are developed for finding g({ijk… })

in nn pair 

approximation





“0th” (Bragg-Williams) approximation:
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B.J. Bragg, E.J. Williams, Proc.Roy.Soc., A151, 540, (1935); A152, 231, (1935)

The biggest cluster: a single lattice site

Cluster variables: pA1, pA2, pB1, pB2  

Basic approximation:

The approximation consists of the negligence pf pair-correlations and relates NAA to  -

which, as was shown, is not true !

The approximation yields:



The approximation yields:
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Stirling formula yields:
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1 2 decreasing function of 

W>0: increasing function of 

W<0: decreasing function of 

CONCLUSION:

If W > 0, F = F(=0) – no atomic ordering at any temperature

If W < 0, F = F(=1) at T=0 K – atomic ordering within a finite range 

of temperatures.



What happens when W < 0 ?

F



T7 T6

T5

T4

T3T2T1

T1>T2>T3>T4>T5>T6>T7

At T  T3 Fmin = Fmin(=0)

At T  T4 Fmin = Fmin(>0)

Only one single minimum 

of F appears !

Consequently:
TC evaluated from the equations:
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Continuous “order-disorder” phase transition

at T = TC

B2 superstructure:



T T2: Fmin = Fmin(=0)

T<T2: F
(1)

min (=0), F(2)
min(>0);

F(2)
min(>0) > F(1)

min (=0)

T=Tt: F
(2)

min(>0) = F(1)
min (=0)

T < Tt: F
(2)

min(>0) < F(1)
min (=0)

T  TC: Fmin = Fmin(>0)

F          
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Discontinuous “order-disorder”

phase transition at T = Tt

Ordered (>0) and disordered

(=0) phases coexist as long as

F shows two minima

L12

superstructure:

tw
o

 m
in

im
a

 o
f 

F
(

)



What happens when W > 0 ?
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Interpretation: two-phase equilibrium: lever rule

Entire system: A-B:

N=N(1)+N(2)

NA=NA
(1)+NA

(2)

NB=NB
(1)+NB

(2)

NB=C0N

Phase 2:

NA
(2), NB

(2)

N(2)= NA
(2)+ NB

(2)

NB
(2)=c(2)N(2)

f2 – free energy

per one 

molecule

Phase 1:

NA
(1), NB

(1)

N(1)= NA
(1)+ NB

(1)

NB
(1)=c(1)N(1)

f1 – free energy

per one 

molecule
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DECOMPOSITION OF A BINARY SOLUTION A-B INTO TWO PHASES:

c0 – concentration of B-atoms in the homogeneous solution 

(before the decomposition

c1, c2 – concentrations of B-atoms in the two phases, 

into which the solution decomposes
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Decomposition into c1’ and c2’

INCREASES F, but the continuation

to c1 and c2 finally DECREASES the 

free energy of the system



SPONTANEOUS AND ACTIVATED DECOMPOSITION

T = T2
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MISCIBILITY GAP AND SPINODAL
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THEORY OF SPINODAL DECOMPOSITION

Free energy of an inhomogeneous system 

CONTINUOUS MEDIUM approach:
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c – average concentration

free energy per

one atom

free energy per one atom 

for a homogeneous system



Cubic crystal:

inversion: xj  - xi: 0 iL

2


rotation: xixj:
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For systems which are homogeneous at any temperature there must hold:
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Diffusion in inhomogeneous system:

General equation for diffusion flux density:
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variational derivative
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linearisation:
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linear differential equation



Assumption:
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 ,, Fourier transform

q wave amplitude
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The resulting equation for U:
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