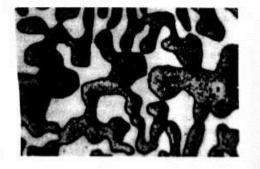

Composite definition

Composite is a man made material, consisting of two or more non soluble mutualy phases, which are made from one of 3 basic engineering materials; phases contribute to unique composite properties characteristic to constituent materials


Parameters for Reinforcements

- Concentration (volume/weight fractions)
- Size/Shape (long or short)
- Distribution
- Orientation

Concentration and orientation are to major parameters.

I. Weight Fraction (wt%) and Volume Fraction (vol%)

Multi-Phase (2 to k phases) Materials

If the density of each phase is given

wt% ≠ vol%

with

$$V_{1} = \frac{W_{1}/\rho_{1}}{W_{1}/\rho_{1} + W_{2}/\rho_{2} + \dots + W_{k}/\rho_{k}}$$

$$W_{1} = \frac{V_{1}\rho_{1}}{V_{1}\rho_{1}}$$

$$W_{1} = \frac{V_{1} \rho_{1}}{V_{1} \rho_{1} + V_{2} \rho_{2} + \dots + V_{k} \rho_{k}}$$

Example 2. The carbon/epoxy composite with 75 wt% of carbon.

 $W_c = 75\%$, $W_e=1 - 0.75 = 25\%$ $\rho_c = 1.76 \text{ g/cm}^3$, $\rho_e = 1.3 \text{ g/cm}^3$

- $V_{c} = (W_{c}/\rho_{c})/(W_{c}/\rho_{c} + W_{e}/\rho_{e})$ = (0.75/1.76)/(0.75/1.76 + 0.25/1.3) = 69 %
- II. Theoretical Density of Two-Phase Materials

 $\rho = \frac{\rho_1 \rho_2}{W_1 \rho_2 + W_2 \rho_1}$

2

e.g. in Example 2, $\rho = (\rho_c \rho_e) / (W_c \rho_e + W_e \rho_c)$ $= (1.76 \times 1.3) / (0.75 \times 1.3 + 0.25 \times 1.76)$ $= 1.62 \text{ g/cm}^3$

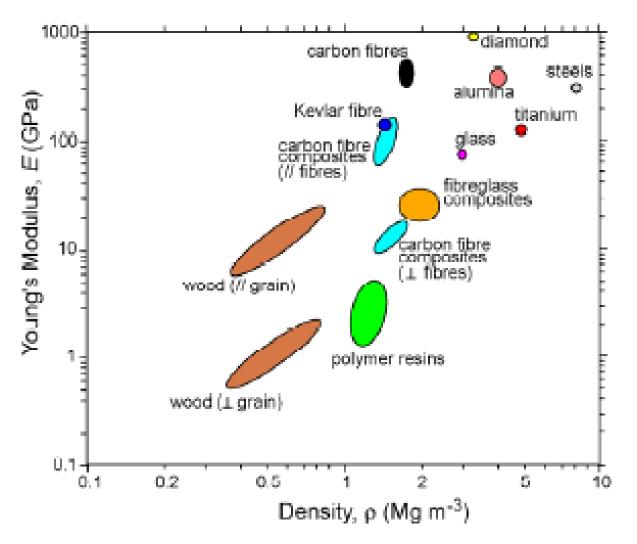
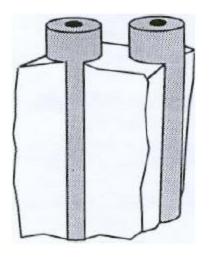
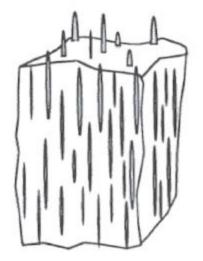
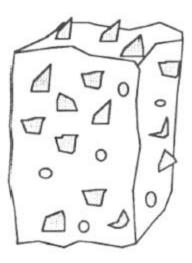
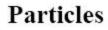




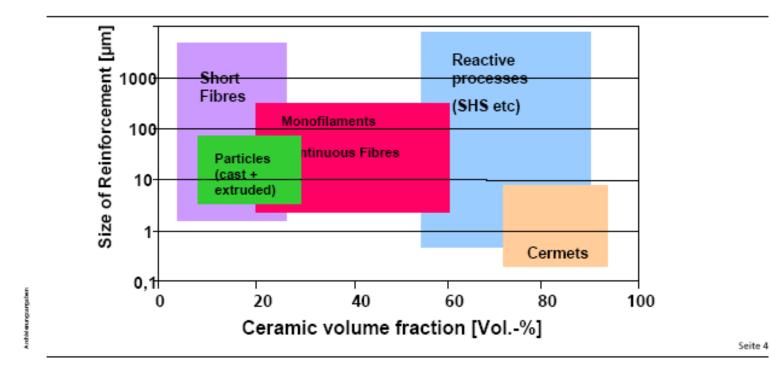
Fig.1.1 Data for some engineering materials, in the form of a map of Young's modulus against density.

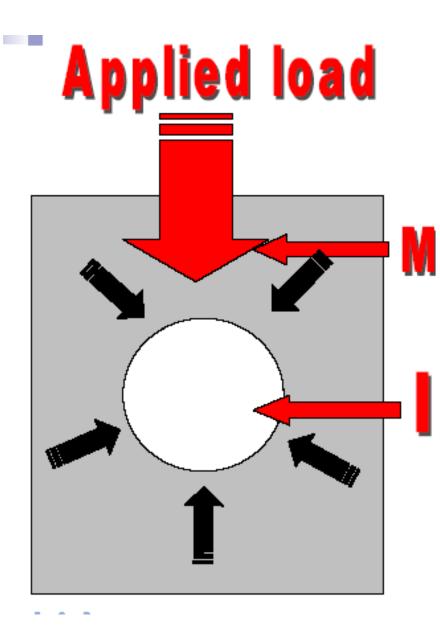


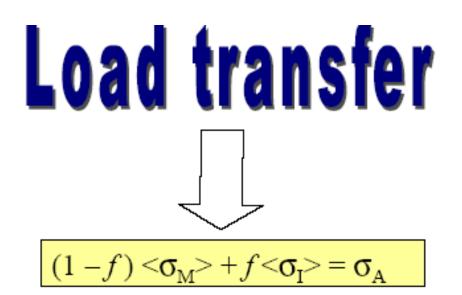

Fibers

Reinforcement shape

Whiskers

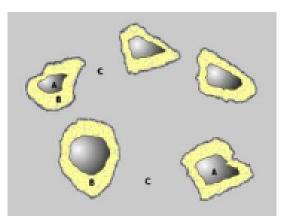






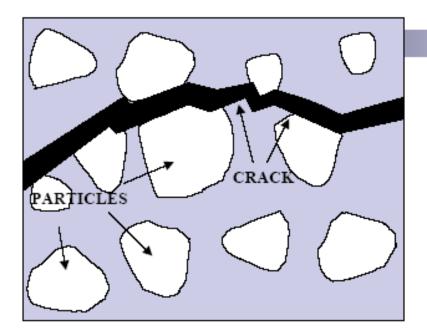
O----- O---- O---- (1)

Metal-Ceramic-Composites

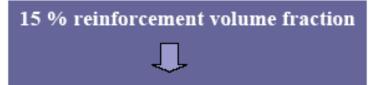


- Volume fraction (f); Reinforcement shape;
- Reinforcement orientation;
- Elastic properties of both

phases.


Introduction: Strengthening

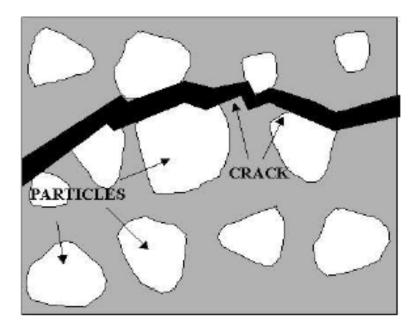
What are the strengthening mechanisms in MMC ? Strengthening mechanism 1: Strain hardening


Source: MMC-Assess

- Reinforcement has lower thermal expansion coefficient than matrix
- ⇒ Upon cooling from manufacturing temperature misfit strains build up around particles
- ⇒ Strengthening relies on strain hardened zone (B) with high dislocation density around particles
- Strengthening is affected strongly by matrix properties
- Strength decreases with increasing temperature

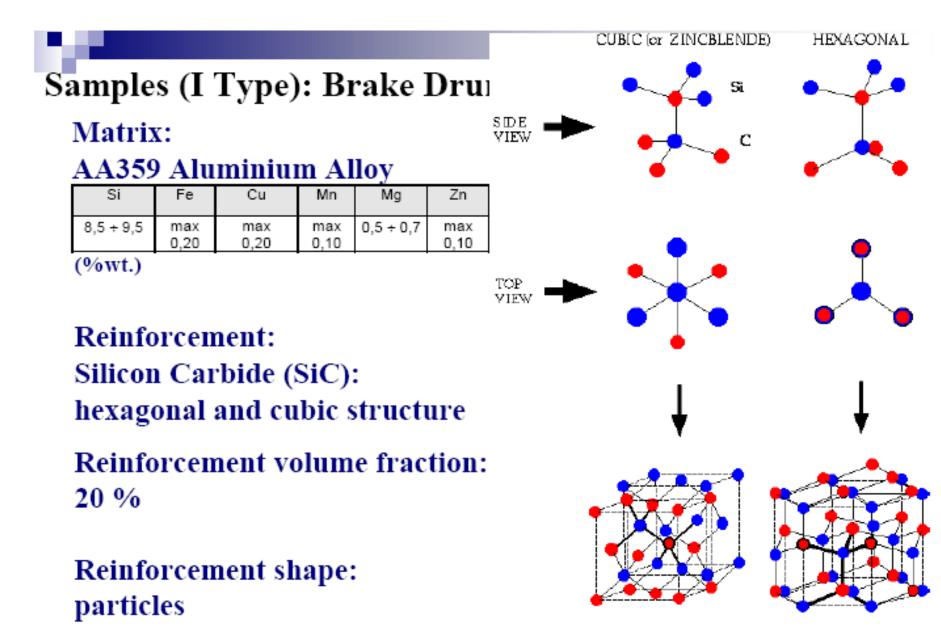
Low fracture toughness for "high" reinforcement volume fractions

MMC problem



25 % reinforcement volume fraction

The introduction of reinforcement in a Metal Matrix causes microstresses which may prove to be very **detrimental for the life of the component**.


For example annealing thermal treatments introduce thermal mismatch stresses, generated during cooling and due to the difference in the thermal expansion coefficient of the two phases.

What are the strengthening mechanisms in MMC ?

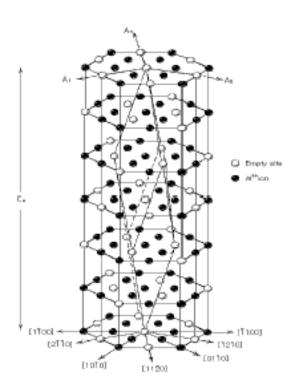
Strengthening mechanism 2: Load transfer

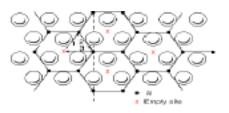
- Reinforcement is stiffer than matrix
- \Rightarrow If the composite is strained load is transfered from the matrix to the stiffer fibre
- ⇒ Stress in matrix is smaller than the composite stress
- ⇒ Stress in fibres is increased
- ⇒ Composite fails when reinforcement strength is exceeded (e.g. alumina fibres 2 GPa)
- particularly effective for strong reinforcement with high aspect ratio
- predominant in continuous fibre composites
- Strength is controlled by reinforcement properties
- Strength is maintained at moderate temperatures (<400°C)

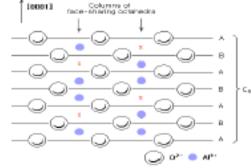
Samples (II Type): Wheel hub

Matrix: AA6061 Aluminium Alloy

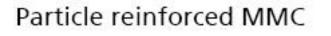
Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	AI
0,40 ÷ 0,80	max	0,15 ÷ 0,40	max	0,8 ÷ 1,2	0.04 ÷ 0,35	max	max	base
	0,70		0,15			0,25	0,15	


(% wt.)


Reinforcement: Aluminium Oxide (Al₂O₃)


Rhombohedral structure

Reinforcement volume fraction: 22 %


Reinforcement shape: particles

Introduction: Classical MMC

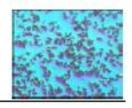
Athieurgaroken

Classical Example: Duralcan

- 10-20% Al₂O₃ particles in AA6061 Al alloy
- Produced by stir casting and extrusion

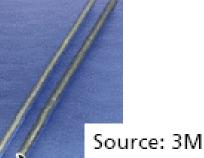
Properties (15% Al₂O₃)

- Ultimate strength 360 MPa
- Ultimate strength (371°C) 69 MPa
- Elongation at fracture 6%
- Young's modulus 89 GPa
- Fracture Toughness 22MPa√m
- Improved Wear Resistance


Applications:

- Brake Discs (Lotus, VW Lupo 3L)
- Driveshafts etc.

Seite 5


Fraunhofer Institut Werkstoffmechanik

Introduction: Classical MMC

Example: Al alloy reinforced with continuous fibres

- 45-60% Al₂O₃ (Nextel 610) fibres in Al
- Produced by metal infiltration

Properties (in fibre direction, 45% Al₂O₃)

- Ultimate strength 1200 MPa
- Ultimate strength (285°C) 1140 MPa
- Elongation at fracture 0,7%
- Young's modulus 165 GPa
- Low off-axis strength

Applications:

- Composite conductor cables
- Automotive pushrods etc.

SIVI

Seite 7

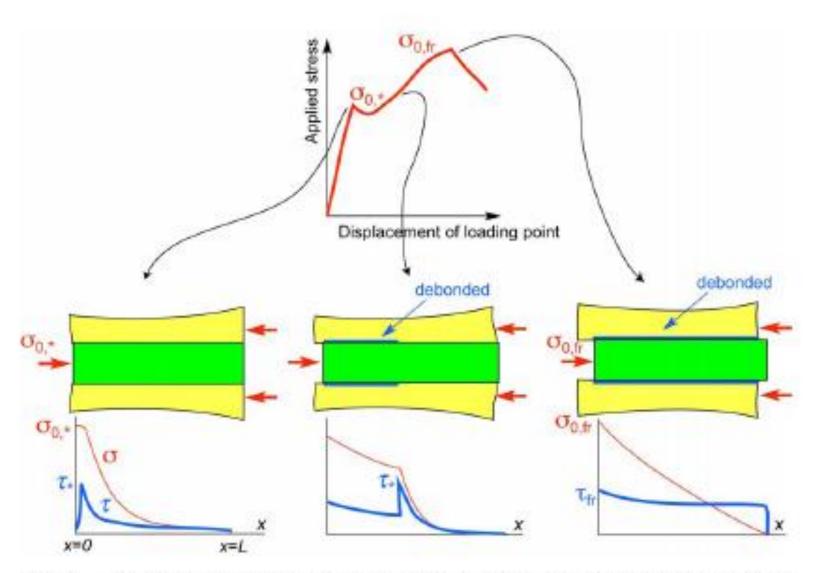


Fig.7.3 Schematic stress distributions and load-displacement plot during the single fibre pushout test. One difference from the pull-out test is that the Poisson effect causes the fibre to expand (rather than contract), which augments (rather than offsets) the radial compressive stress across the interface due to differential thermal contraction.

Energy of Interfacial Debonding in Fibre Composites

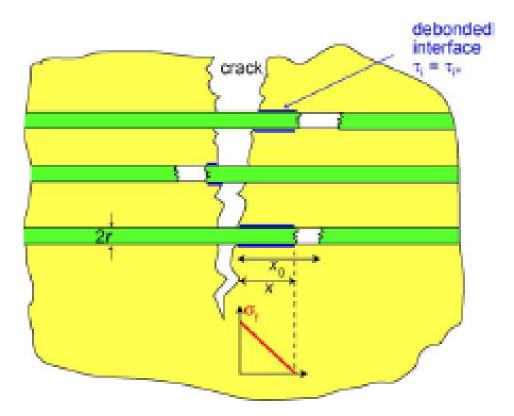
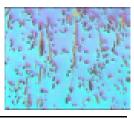


Fig.9.1 Schematic representation of the advance of a crack in a direction normal to the fibre axis, showing interfacial debonding and fibre pull-out processes.


Reinforcement Properties (Table 17.4)

Material	Specific Gravity	Tensile Strength [GPa (10 [°] psi)]	Specific Strength (GPu)	Madulus of Elasticity [GPa (10° psi)]	Specific Modulus (GPa)
		Whiskers			
Graphite	2.2	20 (3)	9.1	700 (100)	318
Silicon nitride	3.2	5-7 (0.75-1.0)	1.56-2.2	350-380 (50-55)	109-118
Aluminum oxide	4.0	10-20 (1-3)	2.5-5.0	700-1500 (100-220)	175-375
Silicon carbide	3.2	20 (3)	6.25	480 (70)	150
		Filters			8
Aluminum oxide	3.95	1.38	0.35	379 (55)	96
Aramid (Kevlar 49)	1.44	3.6-4.1 (0.525-0.600)	2.5-2.85	131 (19)	91
Carbon*	1.78-2.15	1.5-4.8 (0.22-0.70)	0.70-2.70	228-724 (32-100)	106-407
E-Glass	2.58	3.45 (0.5)	1.34	72.5 (10.5)	28.1
Boron	2.57	3.6 (0.52)	1.40	400 (60)	156
Silicon carbide	3.0	3.9 (0.57)	1.30	400 (60)	133
UHMWPE (Spectra 900)	0.97	2.6 (0.38)	2.68	117 (17)	121
		Metallic Wires			
High-strength steel	7.9	2.39 (0.35)	0.30	210 (30)	26.6
Molybdenum	10.2	2.2 (0.32)	0.22	324 (47)	31.8
Tungsten	19.3	2.89 (0.42)	0.15	407 (59)	21.1

Table 17.4 Characteristics of Several Fiber-Reinforcement Materials

"The term "carbon" instead of "graphite" is used to denote these fibers, since they are composed of crystalline graphite regions, and also of noncrystalline material and areas of crystal misalignment.

Introduction: Classical MMC

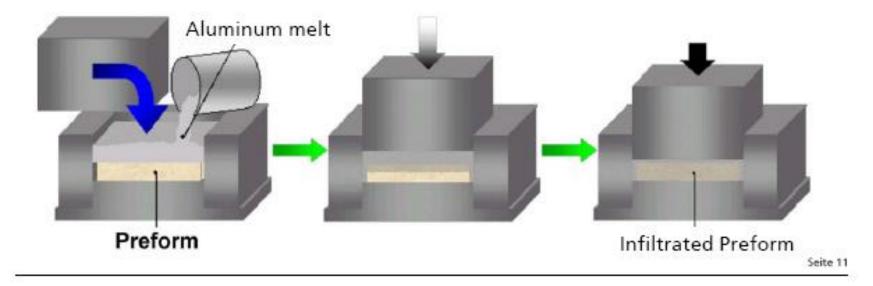
Short Fibre Reinforced MMC

Source:Kolbenschmidt

Example: piston alloy reinforced with short fibres

- 11-27% Al₂O₃ short fibres (Saffil) in AlSi12CuMgNi
- Produced by squeeze casting

Properties (20% Al₂O₃)


- Ultimate strength 330 MPa (vs 220 MPa pure matrix alloy
- Elongation at fracture 0,35% (vs 1% pure matrix alloy)
- Young's modulus 98 GPa (vs 78 GPa pure matrix alloy)
- 3 times life time increase during thermal cycling at 350°C

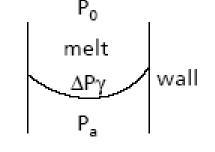
Applications:

Local reinforcement of pistons

Preform-MMC -Definition

Potential Solution: Preform MMC produced by infiltration of a metal melt (typically Al alloys) into a low cost porous ceramic preform (e.g. Al₂O₃, SiC, Si, TiO₂)

How does the infiltration process work ?


=>

Pressure p at the liquid-gas interface is required to move infiltration front Pressure acting on the liquid-gas boundary P is governed by the difference between the external and pressure inside the preform (P_0 - P_a) and the capillary pressure $\Delta P\gamma$:

$$P = P_0 - P_a - \Delta P_p$$

where

$$P_{\gamma} = -\frac{A_{\nu}\gamma_m \cos\theta}{(1 - V_f)}$$

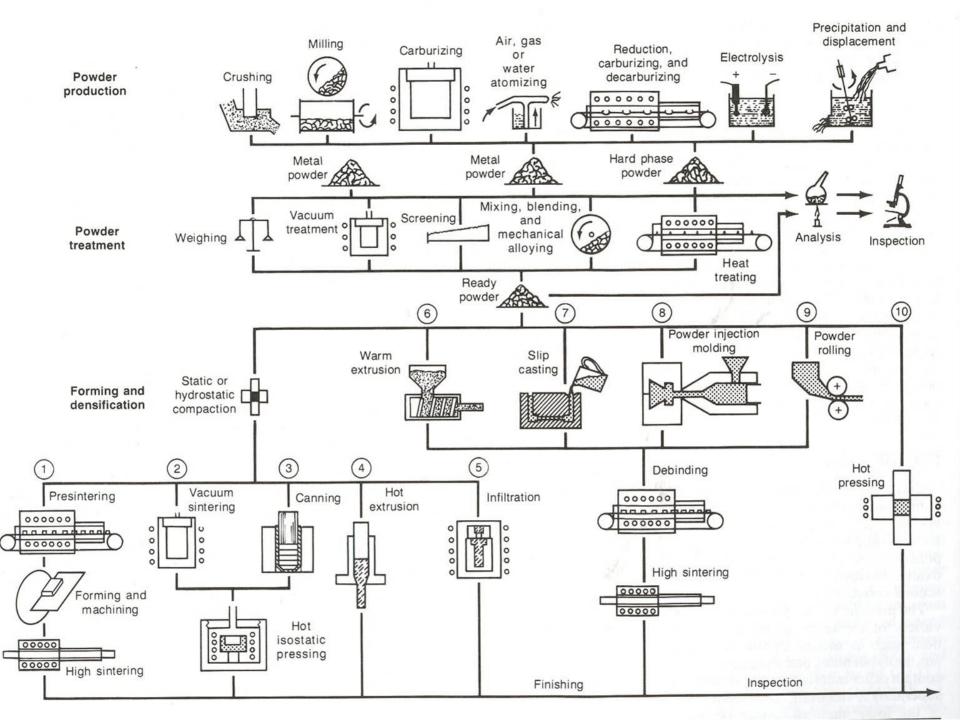
Seite 17

θ is the wetting angle, γ_m is the surface energy of the melt, A_v is the interfacial density (in m²/m³) and V_f relative density of the preform 3. Fracture Toughness of Metal Ceramic Composites - Typical Values and Trends

3.2 Typical Values and Trends

Kie values of typical ceramics (MPa \sqrt{m}): 2-6 (up to 20 for WC); metals and alloys: 20-200.

Ceramic with metal reinforcement: increase toughness. Metal with ceramic reinforcement: increase stiffness, (strength), abrasion resistance, lower CTE.


"Metallic character": metal reinforced with particles or short fibres; metal reinforced with long fibres, stressed normal to the fibre axis. "Ceramic character": ceramic reinforced with particles or fibres; interpenetrating composite.

Specific cases: metal reinforced with long fibres, stressed parallel to the fibre axis, layered composite.

Year	Composition	Trademark	Manufacturer
1930–1931	. WC-Co	G1	Krupp-Widia
1930	. TiC-Mo ₂ C-(Ni, Mo, Cr)	Titanit S	Metallwerk Plansee
1930	. TaC-Ni	Ramet	Fansteel Corporation
933			Siemens AG
	. TiC-VC-(Fe, Ni, Co)		Metallwerk Plansee
949–1955	. TiC-(NbC)-(Ni, Co, Cr, Mo, Al)	WZ	Metallwerk Plansee
	TiC-(Nb, Ta, Ti)C-(Ni, Mo, Co)	Kentanium	Kennametal
952–1954	. TiC-(steel, Mo)	Ferro-TiC	Sintercast (Chromalloy)
960	. TiC-(Ni, Mo)	14 MIC-12	Ford Motor Company
970	. Ti(C, N)-(Ni, Mo)	Experimental alloys	Technical University Vienna
974	. (Ti, Mo) (C, N)-(Ni, Mo)	Spinodal Alloy	Teledyne Firth Sterling
975	. TiC-TiN-WC-Mo2C-VC-(Ni, Co)	KC-3	Kyocera
977–1980	. TiC-Mo ₂ C-(Ni, Mo, Al)		Ford Motor Company, Mitsubishi
980–1983	. (Ti, Mo, W) (C, N)-(Ni, Mo, Al)	0.000	Mitsubishi
988	. (Ti, Ta, Nb, V, Mo, W) (C, N)-(Ni, Co)-Ti ₂ AlN	TTI, TTI 15	Krupp-Widia
ource: Ref A and Ka	promotel Inc.		

Table 1 History of cermet product development and marketing

Source: Ref 4 and Kennametal, Inc.

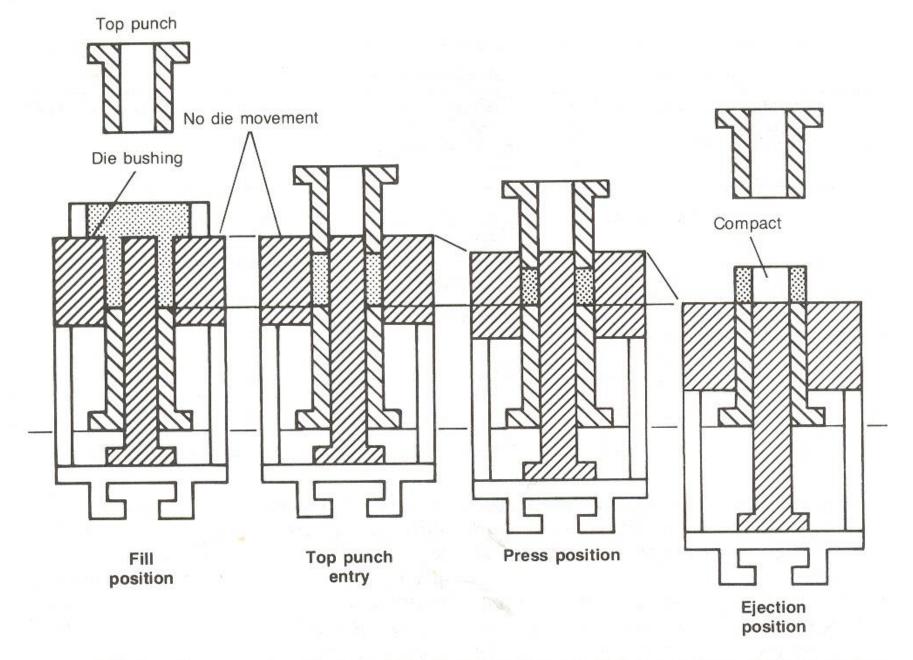


Fig. 3 Withdrawal press cycle with controlled die motion (top and bottom pressure). Courtesy of Dors America

984 / Special-Purpose Materials

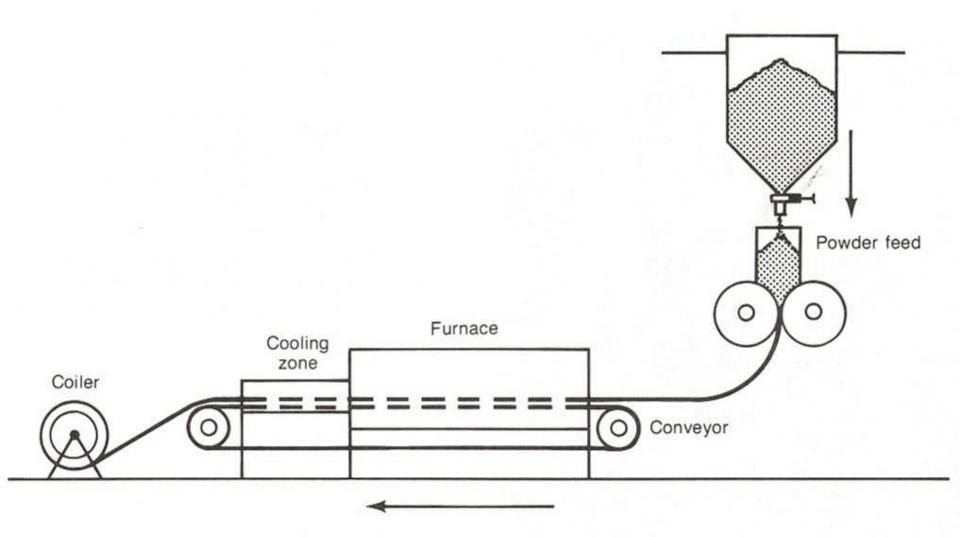
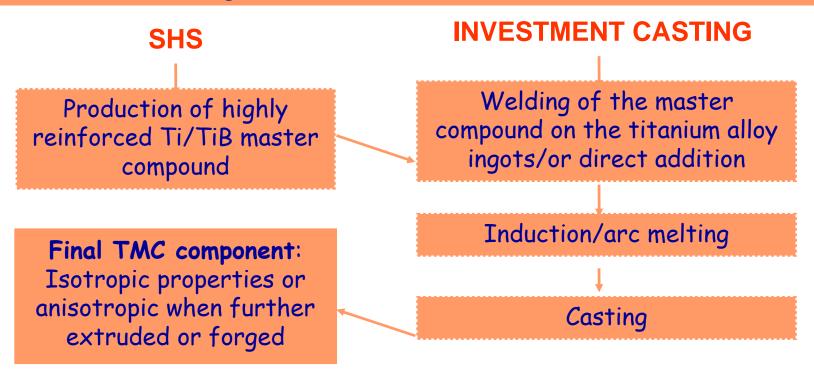



Fig. 8 Powder rolling process with strip reeled into individual rolls after first sintering treatment. Source: Ref

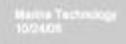
How to produce "In situ" reinforced Titanium Matrix Composites (2)

Process developed at INASMET (N° PCT/ES03/00596)

- 1. Production of Ti/TiB master compound (SHS).
- 2. Dilution of this master compound in a casting process to obtain TMCs (Investment casting).

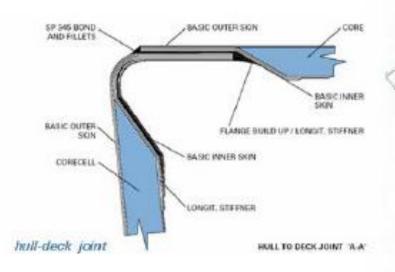
Composite Processing

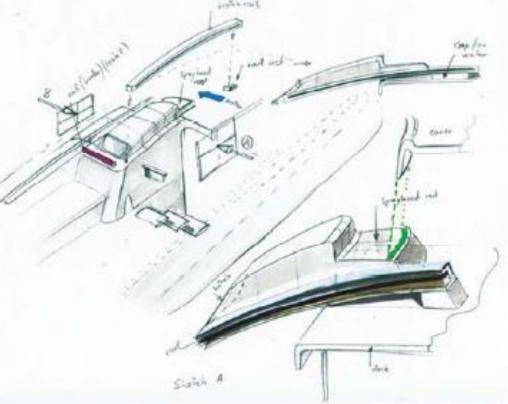
- We assist advanced composite manufacturing through every life-stage:
 - ...through tooling...


Composite Processing

- We assist advanced composite manufacturing through every life-stage:
 - ...through build...

SWAN 601 CASE STUDY - DECK




Composite Processing

We assist advanced composite manufacturing through every life-stage:

From initial sketches...

