
"Titanium alloys: structure, properties and industrial application" A.V. Dobromyslov

Institute of Metal Physics, Ural Division of Russian Academy of Sciences, Ekaterinburg, Russia

Contents of metals in terrestrial cortex

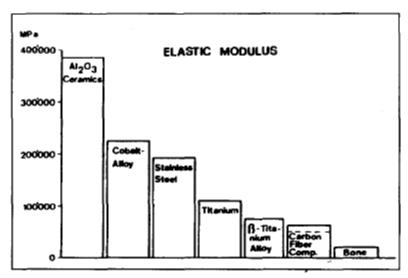
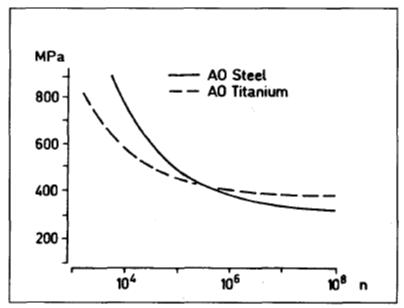
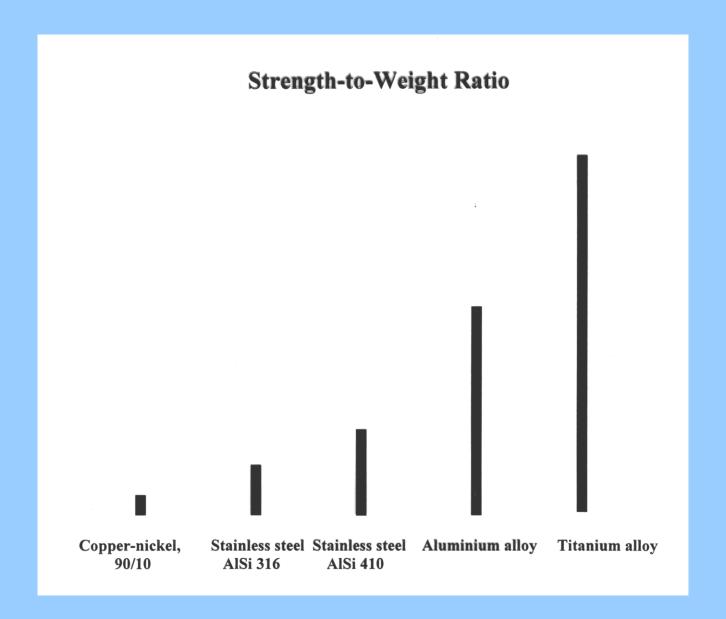
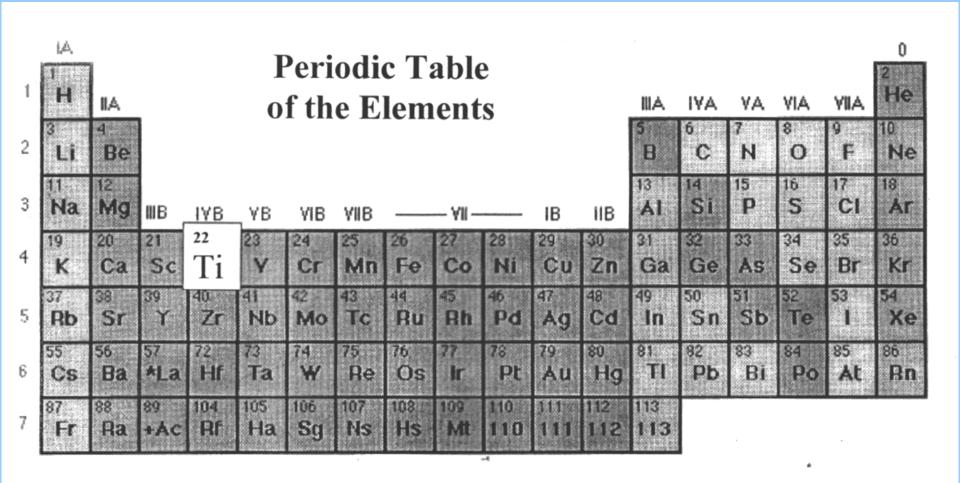
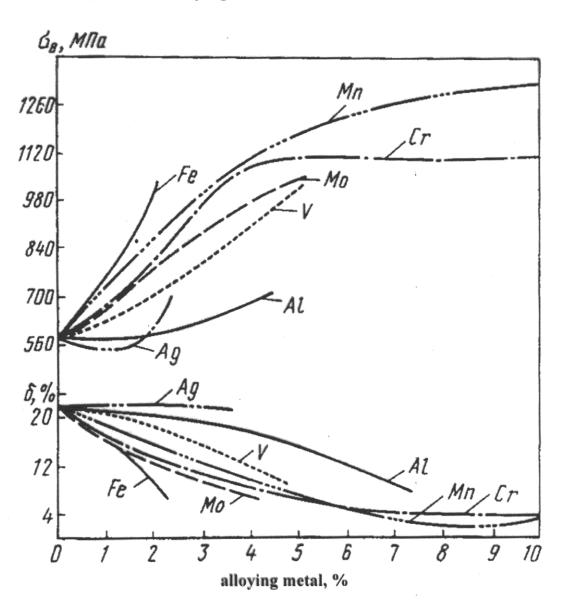
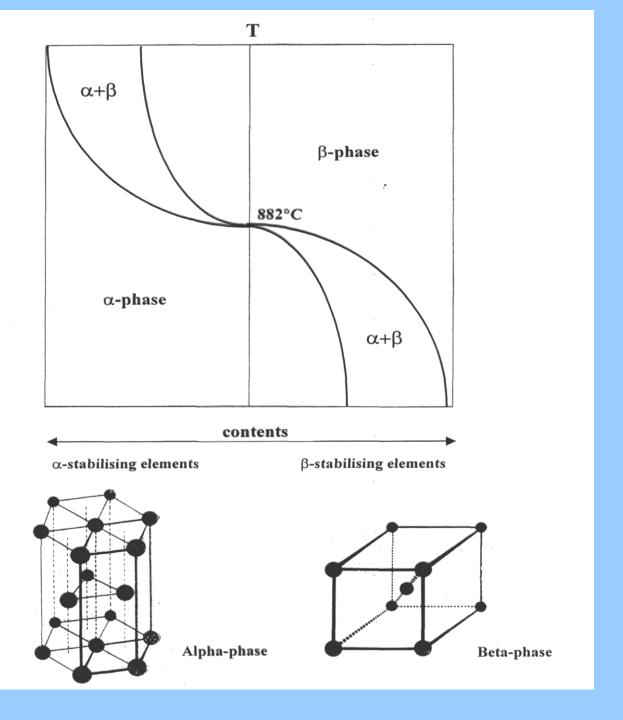
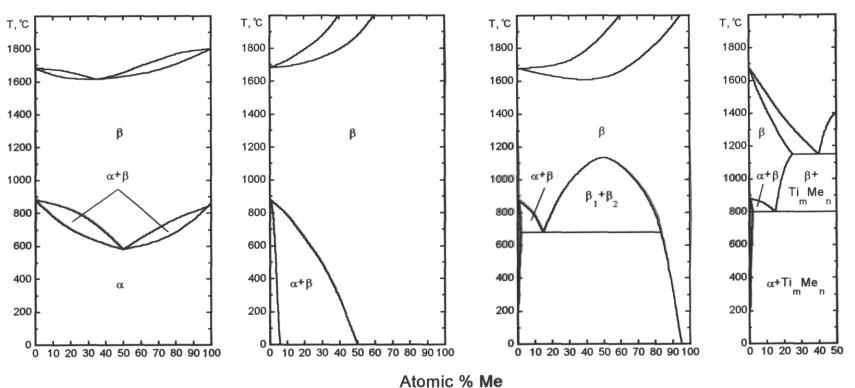
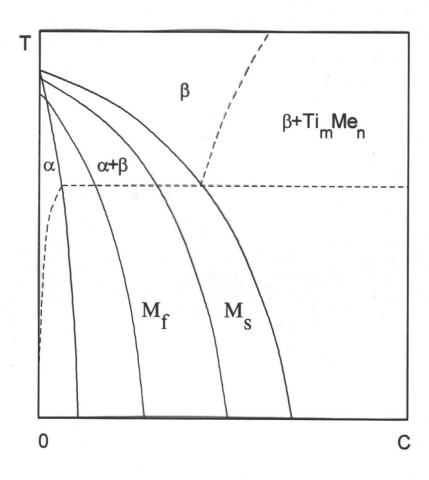


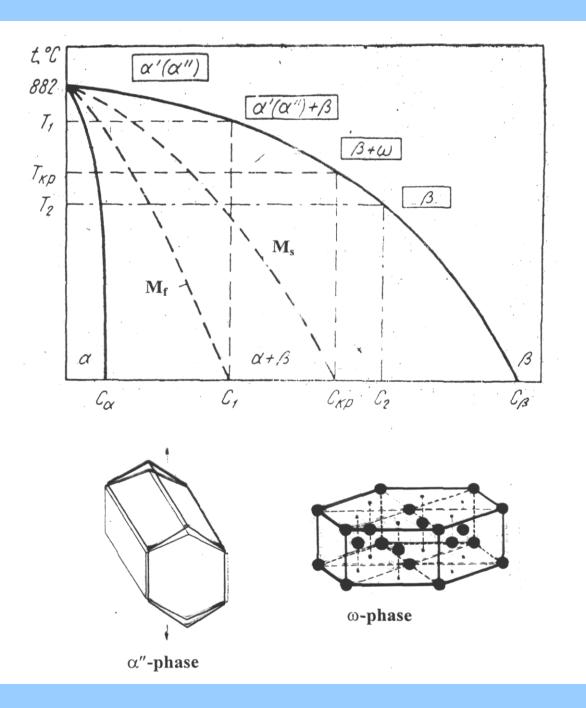
Fig. 2: Comparison of the elastic moduli of different implant materials.

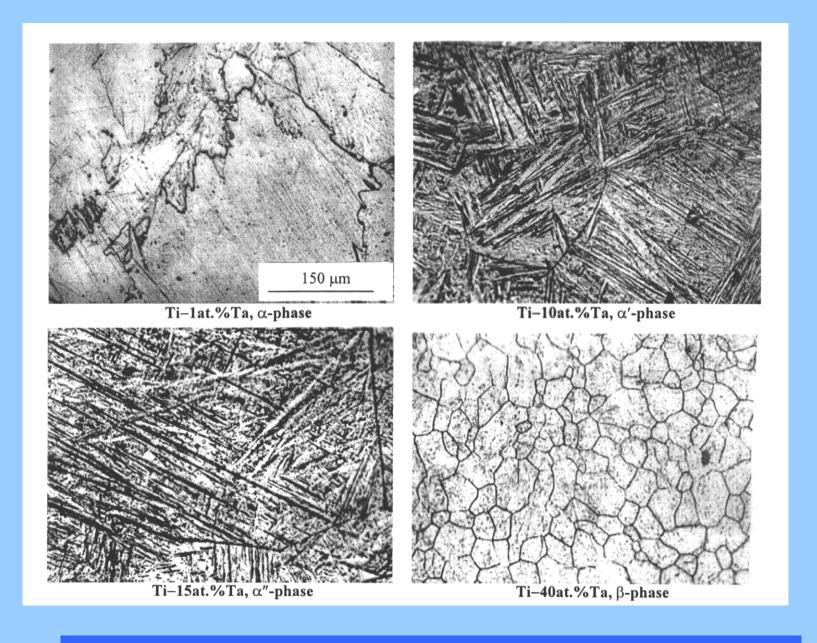

Fig. 3: Diagram showing applied stress versus number of cycles to failure with Wöhler curves of fully reversed bending fatigue-tests for implant c.p. titanium and stainless steel.


Effect of alloying metals on strength of titanium

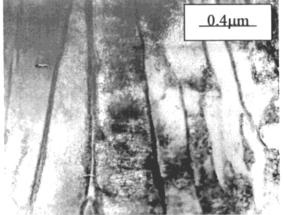



Influence of Alloying additions on the polymprphic transformation of titanium

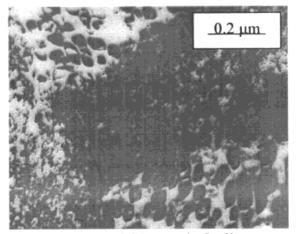
The main types of the phase diagrams of the binary titanium systems



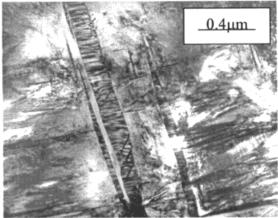
METASTABLE PHASE DIAGRAM FOR BINARY TITANIUM ALLOYS


Types of phases forming after quenching from the β phase

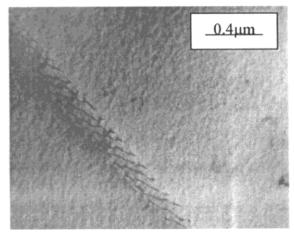
Microstructure of Ti-Ta alloys after quenching from the β phase


Microstructure of industrial titanium alloys after quenching from beta-phase

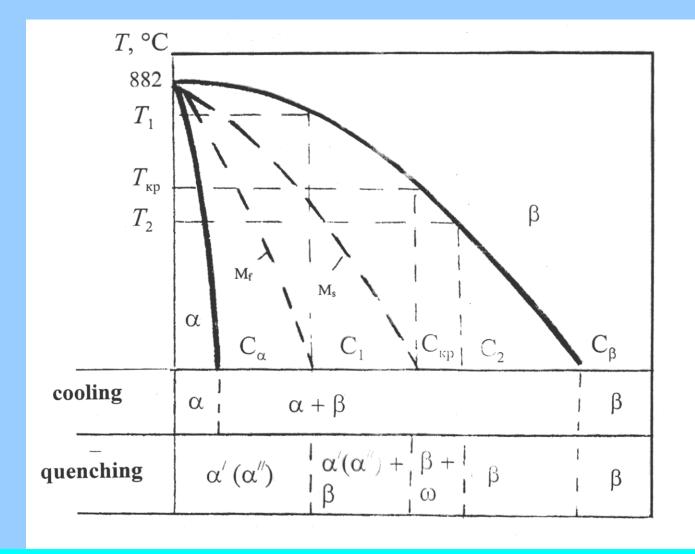
quenching 1000°C


VT5, psevdo α - alloy

quenching 1000°C+460°C, 1 h

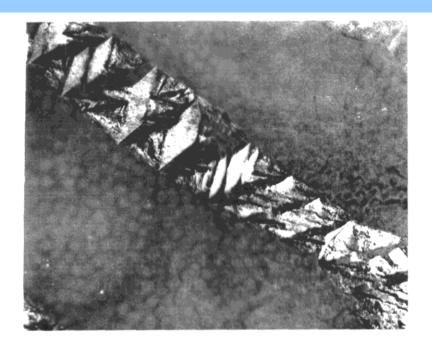

Ti-14 mas.%V, psevdo β-alloy

quenching 1100°C



VT9, $\alpha+\beta$ alloy

quenching 1000°C


Ti-6 mas.%Cr, β-alloy

α-alloys non heat treatable, well weldable, medium strength and good toughness, high temperature creep strength and oxidation resistence (contain about 5-6%Al, Sn, Zr and Si for silicite precipitation

 α + β alloys heat treatable, most weldable, good hot forming ability including superplastic forming, creep resistence not as good as α alloys TypicalTi6Al4V Contain also Mo and Sn

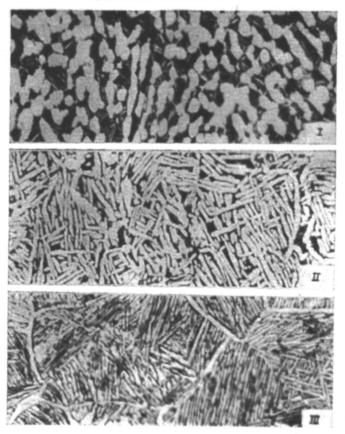
 β -alloys heat treatable, most of them weldable, high strength up to intermediate temperature level, excellent cold formability. Contain Mo, Ta, Nb and V used as matrix for fiber composites

VT9, 950°C, 15', x 40000

Microstructures of VT9 titanium alloy after quenching from the $\alpha + \beta$ region

To the left microstructure of VT9 alloy annealed 20' at 750°C and quenched 40000x

THE TITANIUM GLOBAL MARKET

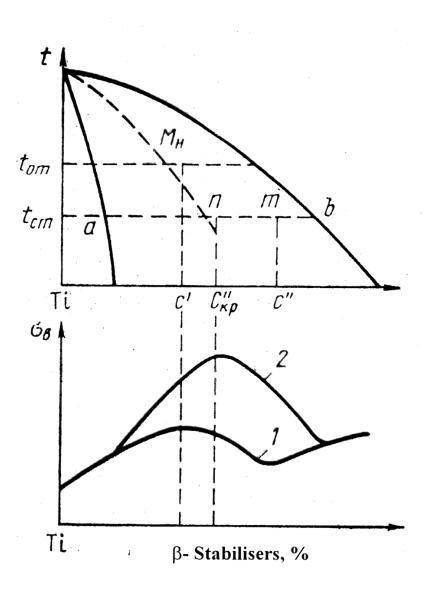

Metal	Global market (1000 metric tons)			\$/ton
Steel		730.000		400
Aluminium		20.000		1.500
Stainless steel	Telling to the second s	13.000		2.000
Titanium		50		18.000 à 25.000

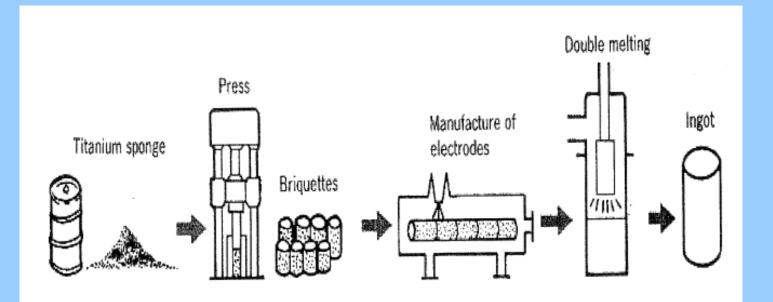
TITANIUM MARKET SEGMENTS	CONSUMPTION
CIVIL AEROSPACE	14000-19000 t
MILITARY AEROSPACE	3000-4000 t
ENERGY/CHEMICAL INDUSTRIES	20000-25000 t
SPORT & LEISURE	3000 t
ARCHITECTURE	500 t
MEDICAL	800 t
OTHER (including spectacle frames)	1000 t
TOTAL	42300-53300 t

Nomenclature of industrial titanium alloys

	Ru	ssia alloys	Ar	nerican alloys
Alloy type	Common	Composition	Common	Composition
	name		name	
	VT1-00	Unalloyed Ti	Grade 1	Commercially pure Ti
	VT1-0	Unalloyed Ti	Grade 2	Commercially pure Ti
alpha alloy	VT5	5A1		5Al-2,5Sn
1	VT5-1	5Al-2,5Sn		5Al-5Zr-5Sn
	4200	0,2Pd		8Al-1Mo-1V
near α-alloy	VT4	5Al-1,5Mn		Ti-8Al-1Mo-1V
near a unoy	VT20	6Al-2Zr-1Mo-1V		Ti-6Al-2Nb-1Ta-
				0.8Mo
4				3A1-2,5V
	VT6C	5A1-4V		6Al-2Sn-2Zr-2Mo-
				2Cr
	VT6	6Al-4,5V		6Al-4V
	VT3-1	6Al-2,5Mo-2Cr-		
		0,3Si-0,5Fe		6Al-2Sn-4Zr-2Mo
	VT9	6Al-3,5Mo-2Zr-		6Al-2Sn-4Zr-6Mo
$\alpha+\beta$ - alloy		0,3Fe-0,3Si		6Al-6V-2Sn
	VT14	4,5Al-3Mo-1V		6Al-7Nb
	VT16	2,5Al-5Mo-5V		7Al-4Mo
	VT22	5Al-5Mo-5V-1Fe-		8Mn
		1Cr	1	
	VT23	4,5Al-2Mo-4,5V-		948 H (1)
		0,6Fe-1Cr		
	VT15	3Al-7Mo-11Cr		3Al-8V-6Cr-4Mo-
near β-alloy				4Zr
	TC6	3Al-5Mo-6V-11Cr		10V-2Fe-3Al
		8		11,5Mo-6Zr-4,5Sn
0				13V-11Cr-3Al
β - alloy	4201	33,0Mo		Ti-3Al-13V-11Cr
				Ti-3Al-10V-2Fe

Main types of structure of titanium alloys after different conditions of deformation


I – deformation in $\alpha+\beta$ region (on 30-50°C below β -transus); II– beginning of deformation in β -region, completion of deformation in $\alpha+\beta$ region; III-deformation in β -region


Classification by Strength

The preceding classification of titanium alloys according to metallographic structures has been included because a knowledge of the terminology is useful. A classification system more relevant to the designer, however, is one based on tensile. The classification system is given in table, which does not provide a complete list of titanium alloys but includes the more common ones in use in each of the strength ranges.

Table. Classification of titanium alloys by strength.				
Category	Min Strength	Composition		
	(MPa)			
Low Strength	500	ASTM grades 1,2,3,7 and 11		
Moderate Strength	500-900	ASTM grades 4,5, and 9		
		Ti-2.5%Cu		
		Ti-8%Al-1%Mo-0.1%V		
Medium Strength	900-1000	Ti-6%Al-2%Sn-4%Zr-2%Mo		
		Ti-5.5%Al-3.5%Sn-3%Zr-1%Nb-0.3%Mo-0.3%Si		
High Strength	1000-1200	Ti-3%Al-8%V-6%Cr-4%Zr-4%Mo		
		Ti-4%Al-4%Mo-2%Sn-0.5%Si		
		Ti-6%Al-6%V-2.5%Sn		
		Ti-5%Al-2%Sn-4%Mo-2%Zr-4%Cr		
		Ti-6%Al-5%Zr-0.5%Mo-0.2%Si		
		Ti-6%Al-2%Sn-4%Zr-6%Mo		
		Ti-5.8%Al-4%Sn-3.5%Zr-0.7%Nb-0.5%Mo-0.3%Si		
Very High Strength	1200	Ti-10%V-2%Fe-3%Al		
		Ti-4%Al-4%Mo-4%Sn-0.5%Si		

Effect of ageing on strengths of titanium-base alloys

Ingot dimensions:

Ingot

diameter: 1.275 mm

Ingot

length: 3.760 mm

Ingot

weight: 30.716 kg

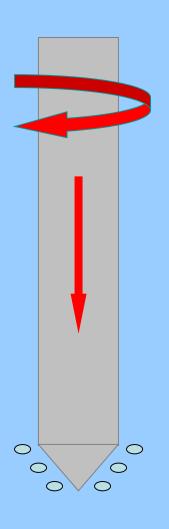
Material Ti and

Grades:

Alloys

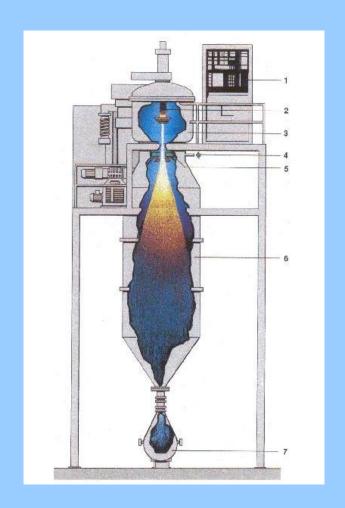
VAR Furnace with lock valve

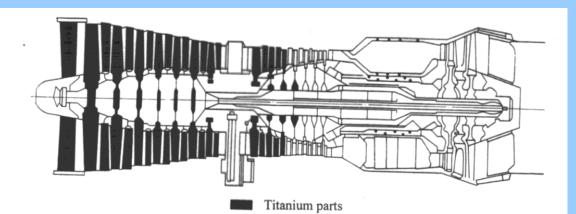
Sponge Electrode

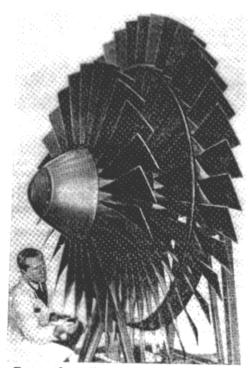


VAR Skull Melter

- 1 Fast retraction system
- 2 Power cables
- 3 Electrode Feeder Ram
- 4 Power supplies
- **5** Consumable Electrode
- 6 Skull Crucible
- 7 Tundish Shield
- 8 Mold arrangement
- 9 Centrifugal Casting System
- 10 Chamber Lid Carriage




Electrode Inert-Gas Atomization Plant


Prozessparameter

- Frequenz
- Strom / Spannung / Leistung
- Rotationsgeschwindigkeit
- Absenkgeschwindigkeit
- Elektrodenabstand zur Spule

Engine for "Concord"

Rotor of ventilator for engine TF-39

Fig. 1. Front view of the all titanium SR-71 Blackbird.

Table 1 Candidate advanced titanium alloys for high speed aircraft structures

Alloy type	Alloy	Density (g cm ⁻³)	Chemistry	Rationale
α/β	Ti-6-4	4.43	Ti-6Al-4V	Industry standard-baseline
	Ti-6242S	4.54	Ti-6Al-2Sn-4Zr -2Mo-0.08Si	Creep strength, tough, high temperature
	Timetal 550	4.60	Ti-4Al-4Mo -2Sn-0.5Sn	Good SPF, toughness
	Ti-62S	4.43	Ti-6Al-1.7Fe -0.1Si	High Modulus, sheet, plate-forgings
	Ti-62222	4.54	Ti-6Al-2Sn-2Zr -2Cr-2Mo-(Si)	Good SPF, strength, toughness
	Corona X	4.42	Ti-5.0Al-5.5Mo -2Cr-1Ni-0.1O ₃	Good strength, toughness
	Beta-CEZ	4.68	Ti-5Al-2Sn -4Mo-2Zr-2Cr -1Fe	High strength, toughness-forgings
	SP700	4.54	Ti-4.5Al-2Fe -2Mo-3V	Low temperature SPF, very tough
	Ti-10-2-3	4.65	Ti-10V-2Fe -3Al	High strength, toughness-forgings
Metastable β	Timetal 21 S	4.93	Ti-15Mo-2.7Nb -3Al-0.2Si	Heat treatable to a wide range of properties, readily produced in strip, cold rollable, potentially low cost
	LCB	4.79	Ti-4.5Fe-6.8Mo -1.6Al	produced in outp, cold reliable, perchang for cost
	Beta-C	4.82	Ti-3Al-8V-6Cr -4Mo-4Zr	