Mikroanaliza rentgenowska

Materiały: EDAX, Oxford Instruments, JEOL

WDS (WDXS) Wavelength Dispersive Spectrometry Energy Dispersive Spectrometry (EDS) Spektrometria dyspersji energii promieniowania rentgenowskiego Polichromatyczne promieniowanie rentgenowskie pada <u>bezpośrednio</u> na detektor → generowane w detektorze impulsy elektryczne są segregowane w wielokanałowym analizatorze impulsów (MCA _multichannel analyser)

Zasada działania EDS Proporcjonalność między wielkością impulsu elektrycznego a energią zaabsorbowanego fotonu

Półprzewodnikowy detektor krzemowy

- całkowicie zapełnione pasmo walencyjne
- puste pasmo przewodnictwa (o energii wyższej niż pasmo walencyjne) oddzielone od pasma walencyjnego przerwą energetyczną E_{Gap} (np. dla Si = 1.14 eV)

Foton o określonej energii wywołuje przejście elektronu z pasma walencyjnego do pasma przewodnictwa. Jednocześnie w paśmie walencyjnym pozostaje "dziura", która zachowuje sie jak swobodr

Jednocześnie w paśmie walencyjnym pozostaje "dziura", która zachowuje się jak swobodny ładunek dodatni.

Energia ε potrzebna do utworzenia jednej pary: elektron – "dziura": dla Si: $\varepsilon = 3.8 \text{ eV}$; dla Ge: $\varepsilon = 3.0 \text{ eV}$

> Średnia liczba par elektron - "dziura": $\mathbf{n} = \mathbf{E}/\mathbf{\epsilon}$ E – energia kwantu prom. rtg.

ε – energia utworzenia pary elektron – "dziura"

Jeżeli detektor Si zaabsorbuje 1 foton o energii **5,9 keV** \rightarrow liczba nośników = około 1550 par elektron/,,dziura" = ładunek 3x10⁻¹⁶ C jest to bardzo mały ładunek!!!

Może dojść do zjawiska **rekombinacji** nośników, ale zapobiega temu: **przyłożenie pola elektrycznego do detektora: 100-200 V/mm**, co wymusza przepływ ładunków (elektronów do +V, "dziur" do –V),

Wprowadzenie Li do Si/Ge

detektory: Si(Li), Ge(Li) Li – mały promień jonowy (0.16 nm), łatwo dyfunduje w Si Energia jonizacji litu jest minimalna – **0.033 eV** → **bardzo wydajny donor!!!** Elektrony Li zapełniają "dziury" w paśmie walencyjnym Si lub Ge blokując proces rekombinacji.

Detekcja promieniowania rentgenowskiego – detektor EDS

Bardzo mały ładunek → niezbędne są układy elektroniczne o wysokich wzmocnieniach i niskich szumach: pierwszy etap przetwarzania impulsów elektrycznych to FET – tranzystor polowy (przedwzmacniacz bezpośrednio przylegający do detektora → maksymalny stosunek sygnału do szumów)

Detektor Si(Li) + FET są chłodzone ciekłym azotem 77.2 K (-195,8 °C):

- zmniejszenie szumów
- zapobiega dyfuzji litu w detektorze (ucieczka Li ze strefy aktywnej)

Analizator wielokanałowy MCA (MultiChannel Analyzer)

24 kanały, w rzeczywistości: 1024, 2048, 4096 kanałów

Jak powstaje widmo? Histogram

Liczba kwantów

Siatka z Si lub Ni, okienko z polimeru

kolimator

Okienko SUTW (super ultra thin window) chroni detektor przed wpływem czynników zewnętrznych (zmiana atmosfery w komorze próbki) kondensacja pary na detektorze – tworzy się warstwa lodu absorbująca niskoenergetyczne promieniowanie rtg. – systemy grzewcze usuwają lód Dewar z ciekłym azotem

Kryształ Si(Li) + FET

Detektor z sekwencyjną dyfuzją pakietów elektronowych (SDD)

Nowa konstrukcja krzemowego detektora promieniowania X o znacznie wyższej wydajności w porównaniu z klasycznymi detektorami Si(Li). Są to detektory określane w literaturze anglojęzycznej terminem *Silicon Drift Detectors* (SDD). Dosłowne tłumaczenie tego terminu nie wyjaśnia istoty zjawiska, które polega na (kontrolowanej w czasie) dyfuzji pakietów elektronowych do kolektora ładunku.

Robocza nazwa detektora : detektor z sekwencyjną dyfuzją elektronów.

Detektor z sekwencyjną dyfuzją pakietów elektronowych (SDD)

Wydajność takiego detektora wynosi nawet 10⁶ impulsów na sekundę, tzn. jest o dwa lub trzy rzędy wielkości wyższa od wydajności detektorów Si(Li), a zdolność rozdzielcza (~130 eV) już osiągnęła wartość typową dla detektorów Si(Li). Niezwykle istotną cechą tych detektorów jest system chłodzenia, w którym wyeliminowano kłopotliwe chłodzenie ciekłym azotem i zastąpiono je chłodzeniem za pomocą elementu Peltiera, co pozwala na miniaturyzację spektrometru.

Rodzaje mikroanaliz:

- punktowa
- liniowa (*,,line-scan*")
- powierzchniowa (,,mapping")

Analiza punktowa jakościowa

Artefakty – "piki sumaryczne"

Efekt "<u>pulse pile-up</u>" - dwa kwanty prom. X rejestrowane są w detektorze jednocześnie jako jeden kwant o podwójnej energii. Efekt ten pojawia się przy wysokiej liczbie zliczeń nie tylko dla czystych pierwiastków, ale również dla układów złożonych

Spektrum Al (duża liczba zliczeń) Pik sumaryczny przy energii 2 x większej niż energia Al Kα Pik sumaryczny Al Ka = 2 x 1.487 keV = 2.974 keV

Spektrum Cr (duża liczba zliczeń) Pik sumaryczny przy energii 2 x większej niż energia Cr Kα Pik sumaryczny Cr Ka = 2 x 5.411 keV = 10.822 keV

Artefakty – "piki ucieczki"

Wzbudzenie linii Si K α w nieaktywnej warstwie detektora Si Si K $\alpha = 1.74$ keV

Końcowa energia kwantu Si = energia początkowa E_0 - energia Si K α piki ucieczki powodują problemy z analizą jakościową np.: pik ucieczki Fe = taka sama energia jak dla piku La L α pik ucieczki Cr = taka sama energia jak dla piku Ca K α

Pik ucieczki dla Cr K α = 5.411 – 1.740 = 3.671 keV (Ca K α 3.6 keV, nie ma wapnia!)

Artefakty – podsumowanie

widmo ciągłe, piki ucieczki, piki sumaryczne, krawędź absorpcji

Podwyższenie temperatury pracy detektora

Przy podwyższeniu temperatury detektora:

- poszerzenie piku szumów w niskoenergetycznej części widma
- poszerzenie wszystkich pików i ich przesunięcie względem skali energetycznej
- pojawianie się niezidentyfikowanych pików (jak ten na lewo od linii Cu Lq)

Analiza jakościowa wzdłuż linii przesuwu wiązki elektronowej ("linescan")

Analiza jakościowa powierzchniowa ("mapping")

Rozkład powierzchniowy pierwiastków C, Al, Si, Ti i V w kompozycie TiAlV/SiC

Analiza jakościowa i ilościowa w mikroobszarach

Eutektyka w stopie TiZrAgCuNi

Wagowo Ti tyle samo co Ni – ale z analizy jakościowej wynika, że tytanu jest więcej niż niklu – a więc co jest prawdą???

WDS (WDXS) Wavelength Dispersive Spectrometry

WDS

Wavelength Dispersive Spectrometry

Zadaniem spektrometru WDS jest wydzielenie z polichromatycznej wiązki promieniowania rentgenowskiego pojedynczej linii spektralnej oraz jej detekcja

WDS CCS Wave Dispersive Spectrometer Curved Crystal Spectrometer Mikroanalizator rentgenowski CCS

Curved Crystal Spectrometer WDS - wavelength dispersive spectrometer

a) 5 spektrometrów: "take-off" Angle 62⁰

b) Pojedynczy spektrometr: "take-off" Angle 45⁰

Inclined spectrometer

Vertical spectrometer

Inclined spectrometer

Konfiguracja bardzo czuła na zmiany ostrości (ze zmianą wysokości Z zmienia się kąt θ); można dołączyć do kolumny kilka spektrometrów (max 5)

Zmiana wysokości Z nie wpływa na zmianę kąta θ (a tylko na zmianę natężenia prom. X) Większa tolerancja na zmiany topografii, ale do kolumny można dołączyć tylko 1-2 spektrometry

Spektrometr rentgenowskie WDS :

- Źródło promieniowania X
- Kryształ monochromatora
- Detektor

Te 3 elementy leżą na tzw. okręgu Rowlanda

Monokryształ i detektor przesuwają się po stałym okręgu ogniskowania o promieniu R (R=140 mm). Detektor przesuwa się dwukrotnie szybciej niż monokryształ i dlatego jest ustawiony zawsze pod kątem 2θ w stosunku do wiązki padającej.

Natomiast monokryształ jest ustawiony pod kątem θ w stosunku do wiązki padającej.

William Laurence Bragg

William Henry Bragg

Na monokryształ pada wiązka promieniowania rentgenowskiego o długości fali λ pod kątem θ

Różnica dróg promieni rozproszonych na płaszczyznach P_1 i P_2 wynosi: $2dsin\theta$

Gdy różnica dróg jest równa **całkowitej wielokrotności długości fali** λ , to fale rozproszone na płaszczyznach P₁, P₂, P₃ itd. są całkowicie zgodne w fazie i **ulegają wzmocnieniu** tworząc wiązkę ugiętą.

Zjawisko wzmocnienia ugiętego promieniowania rentgenowskiego może zajść tylko wtedy, gdy kąt θ spełnia prawo Bragga (nagroda Nobla z fizyki – rok 1915):

$n \ \lambda = 2dsin \ \theta$

 λ – długość fali, d – odległość między płaszczyznami, θ – kąt padania, n – rząd refleksu (ile razy długość fali mieści się w różnicy dróg ABC)

Na monokryształ pada promieniowanie rentgenowskie o różnych długościach fali Zgodnie z prawem Bragga ulega ono ugięciu pod różnymi kątami θ Dzięki takiej selekcji monokryształ spełnia rolę monochromatora polichromatycznego promieniowania na promieniowanie o ściśle określonej długości fali

Różne monokryształy stosowane są dla różnych długości fal prom. rtg.

LiF crystal $L_{min} = 60.5 \text{mm}, L_{max} = 254 \text{mm}, \text{Radius } R = 140 \text{mm}$ $(\lambda = 12.3981/E \text{ [keV]})$ $\lambda_{min} = \frac{d}{R}L_{min} = \frac{4.027/2}{140} \times 60.5 = 0.870 \text{Å} \sim 14.3 \text{ keV}$ $\lambda_{max} = \frac{d}{R}L_{max} = 0.014 \times 254 = 3.65 \text{\AA} \sim 3.4 \text{ keV}$

Crystal	2d Spacing Á	Element Coverage (K Lines) (L Lines)	eV Range
MoB ₄ C	197	Be, B, C	100 - 360
MoB ₄ C	120	С	220 - 320
CrSc	80	C, N	200 - 420
	80	Ti L (optimized)	400 - 500
WSi	60	O - N Ti - Ga	420 - 1100
TAP	25.75	Na - Si Ga - Rb	1100 - 1700
PET	8.74	Si - S Rb - Mo	1700 - 2400
LiF(200)	4.027	K - Ge	3300 - 10.8KeV
LiF(220)	2.847	V - Y	4700 - 15.3KeV

Flat Crystal (Parallel Beam Spectrometer or PBS) Równoległa wiązka polichromatycznego promieniowania rentgenowskiego skierowana jest na płaską powierzchnię monokryształu

Jak otrzymać równoległą wiązkę promieniowania rentgenowskiego?

Kolimatory
Zwierciadła
Optyka polikapilarna
X-Ray Mirrors (High Collection Optics)

Optyka polikapilarna

500 000 kapilar

High Collection Optics (HCO) versus Polycapillary optics

The concentric mirrors has higher reflection efficiency than the polycapillary optic for lower energies, whereas the polycapillary optic is a more effective optic for higher energies

Optymalizacja optyki polikapilarnej Cu Ka

PBS ustawiony dla C

Diffractors used in TEXS

Crystal	2D Spacing, A	Element Range	ev Range
Cr-Sc*	80	C,N	185-420
W-Si*	60	O-Mg	420-1100
*	30	Mg-Al	1100-1700
PET	8.74	Si-K	1700-3600
LiF	4.02	Ca-Ge	3600-10000

PBS ustawiony dla Al Ka i Cu La

Diffractors used in TEXS

Crystal	2D Spacing, A	Element Range	ev Range
Cr-Sc*	80	C,N	185-420
W-Si*	60	O-Mg	420-1100
*	30	Mg-Al	1100-1700
PET	8.74	Si-K	1700-3600
LiF	4.02	Ca-Ge	3600-10000

*: multilayers

If B is desired, the 80 diffractor can be replaced with 100

Gazowy licznik proporcjonalny

Drut wolframowy na potencjale dodatnim (od 1 do 3 kV)

A: Zjawisko fotoelektryczne:

- foton o energii E_0 jonizuje atom Ar_1 : $Ar_1^+ + e^-$ (fotoelektron)
- powrót do stanu równowagi poprzez emisję kolejnego fotoelektronu
- fotoelektrony traca energię w czasie kolejnych jonizacji do momentu, gdy cała energia fotonu E_o zostanie zaabsorbowana przez gaz

B: Wzmocnienie kaskadowe

secondar

electrons

detector

wire (+)

electron

avalanches

Gazowy licznik proporcjonalny

$$q = ne = 287x1.6x10^{-19}C = 4.6x10^{-17}C$$

- n liczba nośników, e ładunek elektronu 1.6x10⁻¹⁹C
- q ładunek sumaryczny

E

3

 $\mathbf{n} = -$

- E energia kwantu promieniowania (np. Cu Kα 8.04 keV)
- ε efektywny potencjał jonizacyjny: energia potrzebna do zjonizowania atomu Ar → Ar⁺ e⁻; ca 28 eV

$$V = \frac{q}{C} = \frac{4.8 \times 10^{-17}}{1 \times 10^{-12}} = 48 \,\mu V$$

V – impuls napięciowy; przenikalność elektryczna argonu to 1pF

Gaz wypełniający licznik - 90% argonu +10% metanu Np. promieniowanie Mn K α 5.895 keV generuje ca 223 nośników (bardzo mały ładunek), Cu K α 8.038 keV generuje ca 287 nośniki (bardzo mały ładunek) Ale dzięki <u>wzmocnieniu kaskadowemu</u> ładunek rejestrowany przez licznik jest wielokrotnie większy od ładunku wygenerowanego bezpośrednio przez promieniowanie X (tzw. Gas amplification factor A = $10^4 = 0.48V$!)

Przykładowe widma promieniowania rentgenowskiego zarejestrowane przez spektrometr WDXS

Monokryształ LiF 2d = 4.027 Å

EDS versus WDS

EDS WDS Nakładanie się linii: Pb M α (2.342 keV) and S K α (2.307 keV), różnica = 35 eV (!)

Zdolność rozdzielcza spektrometru WDS od 5 do 20 eV (znacznie lepsza od spektrometru EDS !!!) Piki nakładające się w EDS są łatwo rozróżnialne w WDS

EDS versus WDS

Piki Si Ka i W Ma

Piki N Ka i Ti La

Lepsza zdolność rozdzielcza w WDS \rightarrow lepszy stosunek "peak-to-background" Granica wykrywalności w WDS jest znacznie wyższa: EDS – 500 do 2000 ppm WDS – od 10 do 100 ppm

EDS versus WDS HgS - cynober

(WDS spectrum in overlay) 180 190 2.00 2.10 2.20 2.30 2.40 2.50 2.60 keV

BaTiSi₃O₉ - benitoit

Peak-to-background ratio

Natężenie charakterystycznego promieniowania rentgenowskiego:

$$\mathbf{I}_{ch} = \mathbf{i}_{p} \mathbf{a} \left(\frac{\mathbf{E}_{o} - \mathbf{E}_{c}}{\mathbf{E}_{c}} \right)^{n} = \mathbf{i}_{p} \mathbf{a} (\mathbf{U} - 1)^{n} \quad (1) \quad \begin{array}{c} \mathbf{i}_{p} - prad \text{ wiazki} \\ a, n - stałe \\ U - overvoltage \end{array}$$

Natężenie ciągłego promieniowania rentgenowskiego:

$$I_{\text{continuum}} \approx i_p \overline{Z} \frac{E_o - E_v}{E_v}$$
 (2)

 i_p – prąd wiązki elektronowej Z – średnia liczba atomowa E_o – energia elektronów wiązki E_v – energia fotonu = E_c

Dzieląc równanie (1) przez (2) otrzymujemy:

Peak-to-background ratio

$$\frac{\mathbf{P}}{\mathbf{B}} = \frac{\mathbf{I}_{ch}}{\mathbf{I}_{continuum}} = \frac{1}{\mathbf{Z}} \left(\frac{\mathbf{E}_{o} - \mathbf{E}_{c}}{\mathbf{E}_{c}}\right)^{n-1}$$

i_p – prąd wiązki a, n – stałe U – overvoltage

Jak różnica E_0 - E_c rośnie \rightarrow P/B rośnie !!!

Im lepszy stosunek P/B – tym lepsza wykrywalność.

Ale uwaga! – nie można za bardzo zwiększać różnicy E_0 - E_c .

Poprzez wzrost energii wiązki penetrujemy głębiej w materiał i rośnie absorpcja!!!

Reguła: stosujemy $U = 2 \sim 3$

$$\mathbf{U} = \frac{\mathbf{E}_{o}}{\mathbf{E}_{c}}$$

	EDS	WDS
Zdolność rozdzielcza	126 eV dla 5.9 keV Mn Kα 115 eV dla HPGe	5 eV
zależy od	energii kryształu	
Wydajność	100%	<30%
Detektor z okienkiem Be: Detektor z okienkiem SUTW:	$\begin{array}{c} \mathbf{Z} \geq 11 \\ \mathbf{Z} \geq 5 \end{array}$	Z ≥4
Ogniskowanie	-	konieczne
Bryłowy kąt odbioru	duży	mały
Prąd wiązki elektronów	mały (10 ⁻¹⁰ A)	duży (10 ⁻⁶ A)
Szybkość analizy	duża (sec, min)	mała (min, h)
Analiza ilościowa	wzorce	wzorce
Bieżąca obsługa	ciekły L ₂ gaz Ar + metan Chłodzenie efektem Peltiera	
Czynniki zakłócające analizę:	piki ucieczki, przeładowanie detektora nakładanie się pików "sum peaks" absorpcja na okienku	brak
Cena	niska	wysoka

Szerokość połówkowa piku FWHM (Full Width at Half Maximum) Szerokość piku w połowie wysokości Teoretycznie 2 eV (dla Mn Kα 2.3 eV)

Dla WDS dyfrakcja powinna zachodzić przy ściśle określonym kącie θ , jednak z powodu niedoskonałości monokryształów oraz szumów aparaturowych \rightarrow poszerzenie linii: $\theta_A - \Delta \theta$; $\theta_A + \Delta \theta$. Linia Mn Ka: **5** eV

Dla EDS poszerzenie piku: $E_A - \Delta E$; $E_A + \Delta E$ spowodowane szumami elektrycznymi i błędami statystycznymi Linia Mn Ka: 126 - 132 eV

Mikroanaliza ilościowa – zaprojektowanie eksperymentu

- 1. Wykonać analizę jakościową w nieznanej próbce
- 2. Odjąć tło (widmo ciągłe), zanalizować artefakty
- 3. Zebrać prom. rtg. z wzorców pierwiastków występujących w próbce
- 4. Porównać natężenia prom. rtg. pierwiastków w próbce i wzorcu
- 5. Wprowadzić odpowiednie poprawki do wyników analizy ilościowej

Odejmowanie tła (*brehmsstrahlung*) automatycznie i ręcznie

Wzorce

0.04

As

Analiza ilościowa

Analiza ilościowa polega na proporcjonalności między <u>liczbą atomów</u> "*i*" (stężenie danego pierwiastka " C_i ") a <u>liczbą zarejestrowanych kwantów</u> promieniowania rentgenowskiego " I_i " (o określonej długości fali/energii)

$$I_i = stała \ x \ C_i$$

Stała zależy od składu badanej próbki - tzw. "efekt matrycy"

Musimy zachować identyczne warunki eksperymentu:

- Identyczna energia elektronów
- Identyczna jasność "brightness" β Cold FEG złe rozwiązanie!
- Identyczny typ detektora (WDS albo EDS)
- Identyczny kąt odbioru (TOA Take Off Angle)

Rzeczywisty skład chemiczny można obliczyć za pomocą czterech metod:

1. Przybliżenie przez "k-ratio"

2. Krzywe kalibracyjne

3. Stosowanie procedur korekcyjnych (metoda ZAF lub Phi-Rho-Zet)

4. Analiza parametrów fundamentalnych (analiza bezwzorcowa)

1. K- ratio

$$k_i = \frac{I_i}{I_{(i)}} = \frac{Promieniowanie \ X \ pierwiastka \ w \ próbce}{Promieniowanie \ X \ pierwiastka \ we \ wzorcu}$$

Dla pierwiastka w nieznanej próbce: $I_i = stała \ x \ C_i$

Dla pierwiastka we wzorcu: $I_{(i)} = stała \times 1$ (stężenie w procentach wagowych)

Stąd:

$$C_i \approx \frac{I_i}{I_{(i)}} = k_i$$

To jest tylko przybliżenie!!!

Analiza stali narzędziowej

	rzeczywisty skład % wag.	obliczony skład k _i x 100	różnica %
С	0.82	0.17	-80
Cr	4.18	5.18	24
V	1.88	2.08	11
Mn	0.26	0.253	-3
Fe	81.8	80.8	-1

Wartość k_i dla Fe jest zbliżona do składu rzeczywistego, ponieważ skład chemiczny stali narzędziowej równi się niewiele od czystego żelaza. Wartość k_i dla C jest obarczona bardzo dużym błędem, ponieważ matryca z czystego węgla różni się znacząco od stali z niewielką zawartością węgla.

> Potrzebne są korekcje uwzględniające te różnice

2. Krzywe kalibracyjne

Krzywa kalibracyjna dla C w stali z Ni

Krzywe kalibracyjne – zależność pomiędzy

liczbą kwantów a zawartością danego

pierwiastka.

Wymagają dużej liczby wzorców o precyzyjnie określonym składzie (co jest trudne!!). Do skonstruowania takiej krzywej muszą być zachowane identyczne warunki pomiarowe (take-off angle, accelerating voltage, beam current).

Ta metoda nie pozwala na analizę składu chemicznego w próbce o całkowicie nieznanym składzie chemicznym

Fe-Ni: podwyższenie intensywności Fe Kα - wtórna fluorescencja przez Ni Kα Fe-Cr: obniżenie całkowitej intensywności sygnału - absorpcja prom. Cr Kα Fe-Mn: obecność Mn nie wpływa na zmianę natężenia Fe Kα

3. Korekcja ZAF

Natężenie prom. rtg. i zawartość pierwiastka są proporcjonalne. Występuje również zależność między natężeniem prom. rtg. i zawartością pierwiastka "*i*" w nieznanej próbce (oznaczonej "*u*") a natężeniem prom. rtg. i zawartością pierwiastka "*i*" we wzorcu (oznaczonym "*s*").

Zawartość pierwiastka $C_i^{(u)}$ w nieznanej próbce:

$$C_i^{(u)} pprox C_i^{(s)} \frac{I_i^{(u)}}{I_i^{(s)}}$$

Metoda ZAF służy do korekcji rejestrowanego natężenia prom. rtg. w związku z różnicami w składzie chemicznym wzorca i analizowanej próbki:

$$C_{i}^{(u)} pprox C_{i}^{(s)} \frac{I_{i}^{(u)}F^{(u)}}{I_{i}^{(s)}F^{(s)}}$$

Korekcja ZAF

Współczynnik F uwzględnia korekcję na liczbę atomową (Z), korekcję na absorpcję (A) oraz korekcję na fluorescencję (F):

$$\boldsymbol{F} = \boldsymbol{F}_{\boldsymbol{Z}} \boldsymbol{F}_{\boldsymbol{A}} \boldsymbol{F}_{\boldsymbol{F}}$$

co stanowi podstawę nazwy: korekcja ZAF.

$$\mathbf{C}_{i}^{(u)} = \mathbf{C}_{i}^{(s)} \frac{\mathbf{I}_{i}^{(u)}(\mathbf{F}_{Z})_{i}^{(u)}(\mathbf{F}_{A})_{i}^{(u)}(\mathbf{F}_{F})_{i}^{(u)}}{\mathbf{I}_{i}^{(s)}(\mathbf{F}_{Z})_{i}^{(s)}(\mathbf{F}_{A})_{i}^{(s)}(\mathbf{F}_{F})_{i}^{(s)}}$$

$$C_i^{(u)} = C_i^{(s)} \frac{I_i^{(u)}}{I_i^{(s)}} Z_i A_i F_i$$

Korekcja ZAF

- Z_i korekcja na różnice liczb atomowych; uwzględnia różnice w wstecznym rozpraszaniu elektronów oraz zmiany w stratach energii elektronów ("stopping power");
 generowane natężenia prom. rtg. w nieznanej próbce i wzorcu nie są takie same ze względu na:
 - a) różnice w objętościach wzbudzenia
 - b) zmienną liczbę elektronów biorących udział w wzbudzeniu
- A_i korekcja na absorpcję promieniowania rentgenowskiego; uwzględnia różnice w absorpcji, jakiej ulega promieniowanie w próbce
- $\mathbf{F_i}$ korekcja na fluorescencję; uwzględnia wtórną fluorescencję prom. rtg. o niższej energii przez prom. rtg. o wyższej energii

Uwaga: korekcje Z, A i F są <u>STOSUNKAMI (!) efektów w nieznanej próbce i wzorcu</u>. Im bardziej zbliżone są do siebie wzorzec i analizowana próbka tym korekcja jest bliższa jedności i bardziej dokładne jest oszacowanie zawartości danego pierwiastka.

 $C_i^{(u)} = k_i Z_i A_i F_i$

Absorpcja promieniowania rentgenowskiego

Promieniowanie rentgenowskie opuszcza próbkę pod kątem zwanym TOA (Take-off angle)

Prawo Beera

μ – współczynnik osłabienia masowego
[cm²/g] (stablicowany)
ρ – gęstość [g/cm³]
l – droga prom. rtg.
z – grubość warstwy
I – natężenie prom. rtg. po przejściu
przez warstwę – zarejestrowane
I₀ – natężenie prom. rtg. wygenerowane

μ_M – współczynnik osłabienia masowego dla próbki o złożonym składzie w_i – udział wagowy składnika *i* Osłabienie promieniowania Ni Kα (7.472 keV) przez 2 μm grubości próbki składającej się z 30 %wag. Ni i 70% wag. Fe o gęstości 7.8 g/cm³

$$\begin{split} \mu_{\rm Fe} &= 380 \ {\rm cm^2/g} \\ \mu_{\rm Ni} &= 59 \ {\rm cm^2/g} \\ \mu_{\rm M} &= 0.7 x 380 + 0.3 . x 59 = 284 \ {\rm cm^2/g} \end{split}$$

$$\frac{I}{I_0} = exp(-284x7.8x2x10^{-4}) = e^{-0.443} = 0.642$$

Take-off angle:51.5° $\frac{I}{I_0} = e^{-0.443/\sin(51.5)} = 0.586$
Take-off angle:15° $\frac{I}{I_0} = e^{-0.443/\sin(15)} = 0.181$

WDS - wave dispersive spectrometer

a) 5 spektrometrów "Take-Off" Angle 62⁰

b) Pojedynczy spektrometr "Take-Off" Angle 45⁰

Inclined spectrometer

Wpływ topografii powierzchni na wyniki mikroanalizy rentgenowskiej

NIGDY nie należy rejestrować linescanu i mappingu z powierzchni o zróżnicowanej topografii TYLKO ZGŁADY METALOGRAFICZNE !
Korekcja ZAF

Element	K-ratio	Z	Α	\mathbf{F}	WT%
Cr K	0.1927	1.005	1.014	0.831	16.32
Mn K	0.0099	1.021	1.004	0.991	1.01
Fe K	0.7167	1.001	1.045	0.988	74.07
Ni K	0.0735	0.982	1.192	1.000	8.60

zawartość Cr jest za wysoka: całkowita korekcja ZAF

$1.005 \ge 1.014 \ge 0.831 = 0.8468$

skorygowana zawartość Cr: 0.1927 x 0.8468 x 100% = 16.32%

Korekcja ZAF

kV : 25.00 Tilt : 0.00 Take-off : 35.00 Tc : 40 Detector Type : SUTW Resolution : 144.00 Lsec : 100

EDAX ZAF Quantification (Standardless) Element Normalized

Element	Wt %	K-Ratio	Z	Α	F
SiK CrK MnK FeK NiK Total	0.54 18.67 0.89 71.60 8.31 100.00	0.0020 0.2157 0.0087 0.6878 0.0710	1.1074 0.9949 0.9784 0.9985 1.0175	0.3348 0.9842 0.9940 0.9512 0.8398	1.0018 1.1798 1.0089 1.0114 1.0000

Korekcja ZAF dla stali zawierającej Si, 25 kV

kV : 15.00	Tilt : 0.00	Take-off : 35.0	0 Tc:40
Detector Ty	pe:SUTW Res	olution : 144.00	Lsec : 100

EDAX ZAF Quantification (Standardless) Element Normalized

Element	Wt %	K-Ratio	Z	Α	F
SiK CrK MnK FeK NiK Total	0.59 18.57 1.12 71.09 8.62 100.00	0.0039 0.2099 0.0111 0.7031 0.0823	1.1440 0.9979 0.9796 0.9978 1.0126	0.5716 0.9940 0.9978 0.9826 0.9432	1.0009 1.1394 1.0065 1.0087 1.0000

Korekcja ZAF dla stali zawierającej Si, 15 kV

Wyniki są prawie identyczne, procedura korekcyjna jest niezależna od energii wiązki

Uwaga na niskie wartości korekcji A dla Si! (najlżejszy pierwiastek) Prawie połowa natężenia promieniowania Si Kα jest absorbowania przez inne (cięższe) pierwiastki

Uwaga na wysokie wartości korekcji F dla Cr! Część natężenia prom. rtg. Cr jest wzbudzona przez wyżej energetycznie promieniowanie Ni K α, Fe K α i Mn K α

Korekcja ZAF

Przykłady, kiedy korekcja ZAF nie jest stosowana: cienkie warstwy cienkie warstwy na podłożu cząstki w matrycy próbki biologiczne cząstki w cienkiej folii

Korekcja Phi-Rho-Z

Krzywa Phi-Rho-Z – rozkład jonizacji (Phi) z głębokością masową (Rho-Z).

Metody Phi-Rho-Z i ZAF dostarczają <u>bardzo zbliżonych wyników</u> (z kilku procentowym błędem względnym), dla następujących przypadków: - analiza linii Kα dla Z>12 (od Mg wzwyż)

- dla energii E_o do 15 do 30 keV

Korekcja Phi-Rho-Z jest bardziej dokładna dla analizy:

- lekkich pierwiastków (O, N, C, B)
- niskich energii widma (< 1keV) (linie Lα)
- dla energii E_o 10 keV i poniżej

Korekcja ZAF dla B₄C

Korekcja Phi-Rho-Z dla B₄C

kV : 10.00 Tilt : 0.00 Take-off Detector Type : SUTW, Sapphire Resolu

EDAX ZAF Quantification (Standardless) Element Normalized

Element	Wt %	At %	K-Ratio
ВK	83.25	84.66	0.7635
CK	16.75	15.34	0.0208
Total	100.00	100.00	

kV : 10.00 Tilt : 0.00 Take-off Detector Type : SUTW, Sapphire Resolu

EDAX PhiRhoZ Quantification (Standardl Element Normalized

Element	Wt %	At %	K-Ratio
ВК	76.06	77.92	0.6683
СК	23.94	22.08	0.0230
Total	100.00	100.00	

80 at % B i 20 at %

4. Analiza parametrów fundamentalnych (analiza bezwzorcowa)

$$\mathbf{I}_{\text{Calculated}}^{(s)} = \mathbf{n} \frac{\Omega}{4\Pi} \varepsilon_{d} \operatorname{opf}(\chi) \frac{N_{o}}{A} R \int_{E_{o}}^{E_{c}} \frac{Q(E)}{dE/d(\rho s)} dE$$

n – the number of electrons entering the sample !!!

 $\Omega/4\Pi$ – the solid angle

 ϵ_d – the detector efficiency

 ω – the X-ray fluorescence yield

p – relative probability of transition involved

 $f(\chi)$ – absorption correction

R – backscatter correction $(1-\eta)$

N_o – Avogadro number

A – atomic number

Q-cross-section

 E_c – critical ionization energy

 E_o – energy of electron beam

The integral represents the cross-section of the ionisation involved

Mokra analiza chemiczna Mg = 2.28 wt%
Analiza bezwzorcowa: Mg = 2.00 wt%
Pełna analiza z wzorcami: Mg = 2.28 wt%
Najlepszą dokładność pomiarową uzyskuje dla analizy z wzorcami

%wag.	błąd względny w %
100 - 20	2 %
20 - 5	4 %
5 - 1	10 % do 20 %
1 - 0.2	50 % (do 100%)
Przykład: Pb = 21.13 %	+/- 2% z 21.13%
1.13 +/- 0.42 wt %, wyn	niki pomiędzy <u>20.7 wt% i 21.5 wt%</u>

not int *awen u*

Improve detection limits by:

- Longer measurement (dwell) times
- Higher beam currents

Note that the detection limit is a strong function of the sample matrix. Especially for the light elements (E < 1 keV), due to strong absorption.

