A R CHTIVES O F M ETALTLUTRGY A N D M ATETURTIATLS
Volume 55 2010 Issue 1
M. BROZEK*

PROBABILITY OF PARTICLE-BUBBLE COLLISION IN PNEUMO-MECHANICAL FLOTATION CELL

PRAWDOPODOBIENSTWO ZDERZENIA ZIARNA Z PECHERZYKIEM W PNEUMO-MECHANICZNEJ KOMORZE

FLOTACYJNEJ

The particle — air bubble collision is one of three elementary processes which determine the rate of bubble mineralization
in flotation. It is the result of bubble — particle hydrodynamic interactions and depends mainly on the ratio of the particle size
to the bubble size. The efficiency of the process is measured by the probability of particle-bubble collision.

In the practice of upgrading in the cell with mechanical agitation of the pulp both the diameter of a particle and of
air bubbles has a certain distribution. Assuming that the diameter of particle d,, and the diameter of bubble d), are random
variables, the probability of collision is the function of the quotient of independent random variables D, and D,. Applying
the theorems of probability calculus concerning the function of random variables, a general formula of probability density
function of the quotient of two random variables D,/D;, was presented. The family of gamma distributions is the most often
applied and giving the best agreement with the experiment for the distribution of the D, random variable. In this paper it was
assumed that it is Rayleigh’s distribution which characterizes well the distribution of particle size in the narrow size fraction.
Simirlarly, for the distribution of the D, random variable, the three-parameter log-normal distribution is applied, apart from the
distribution applied in granulometry. These are, however phenomenological approaches. In this paper the distribution obtained
as a result of heuristic considerations has been used for the air bubble distribution.

The air getting into the flotation cell is subject to dispersion in the turbulent vortexes of the liquid. Assuming that the
newly formed surface of bubbles possesses energies corresponding to Boltzmann’s distribution, the author obtained Rayleigh’s
distribution for the air-bubble diameter. The parameter of this distribution depends upon the surface tension of the flotation
solution, gas flow-rate and power transmitted into the flotation cell. Calculating the most probable value of the quotient of D,/D,,
random variable, the expression for the probability of bubble-particle collision in the cell with mechanical pulp agitation was
obtained. This probability depends on surface tension of the solution, gas flow-rate, gas hold-up, turbulent energy dissipation,
volume concentration of the solid state in the cell and the average particle size.

Zderzenie ziarna z pecherzykiem jest jednym z trzech proceséw elementarnych od ktérych zalezy tempo mineralizacji
pecherzyka we flotacji. Jest ono wynikiem oddzialywan hydrodynamicznych pecherzyk — ziarno i zalezy w gltéwnej mierze od
stosunku wielko$ci ziarna do wielkoSci pecherzyka. Efektywno$¢ procesu mierzy si¢ prawdopodobiefistwem zderzenia ziarna
z pecherzykiem.

W praktyce wzbogacania w komorach z mechaniczng agitacja metéw zaréwno Srednica ziarna jak i Srednica pgcherzykéw
maja pewne rozktady wielkosci. Zakladajac, ze Srednica ziarna d,, i Srednica pecherzyka dj, sa zmiennymi losowymi wéwczas
prawdopodobieristwo zderzenia jest funkcja ilorazu niezaleznych zmiennych losowych D, i D,. Korzystajac z twierdzeri ra-
chunku prawdopodobienstwa, odnoszacych si¢ do funkcji zmiennych losowych, przedstawiono ogélny wzér na funkcje gestosci
rozkladu ilorazu dwéch zmiennych losowych D,/D,,. Dla rozktadu zmiennej losowej D, najczeSciej uzywanymi i dajacymi
najlepsza zgodnos$¢ z do§wiadczeniem jest rodzina rozktadéw gamma. W tym artykule zatozono, ze jest to rozklad Rayleigha
dobrze charakteryzujacy rozklad wielkoSci ziarna w waskiej klasie ziarnowej. Podobnie dla rozktadu zmiennej losowej D,
oprécz rozktadéw stosowanych w granulometrii stosuje si¢ tréjparametrowy rozklad log-normalny. Sg to jednak podejscia
fenomenologiczne. W tej pracy dla rozkladu wielkosci pecherzykéw zastosowano rozklad uzyskany na gruncie rozwazan
heurystycznych.

Powietrze doplywajace do komory flotacyjnej ulega zdyspergowaniu w turbulentnych wirach cieczy. Opierajac si¢ na
zalozeniu, ze nowo tworzona powierzchnia pegcherzykéw ma energie, ktérych rozktad odpowiada rozktadowi Boltzmanna,
uzyskano rozkltad Rayleigha dla wielkoSci pecherzykéw. Parametr tego rozktadu jest zalezny od napigcia powierzchniowego
roztworu flotacyjnego, wydatku powietrza oraz mocy przekazywanej do ukladu flotacyjnego. Wyliczajac najbardziej prawdo-
podobng warto$¢ ilorazu zmiennej losowej D,/D;, uzyskano wyrazenie na prawdopodobieristwo zderzenia pecherzyk-ziarno
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w komorze flotacyjnej z mechaniczng agitacja metéw. Prawdopodobieristwo to jest zalezne od napigcia powierzchniowego
roztworu, wydatku powietrza, napowietrzenia m¢téw, turbulentnej dyssypacji energii, koncentracji objetoSciowej fazy stalej w
komorze flotacyjnej oraz Sredniej wielkoSci ziaren nadawy.

1. Introduction

Bubble mineralization is the result of three elemen-
tary events (microprocesses): particle-bubble collisions,
adhesion of particles to bubble surfaces and detachment
of particles from bubbles. They are the result of bub-
ble — particle interactions. The efficiency of respective
microprocesses is measured by the probability of their
occurrence. The particle-bubble collision is the result
of hydrodynamic interactions. Its probability depends,
among others, upon the size of particles and bubbles,
particle density, physicochemical properties of the medi-
um, character of bubble motion. Adhesion, after the pri-
or collision, is conditioned by the surface interactions,
resulting from the particle hydrophobic properties. The
probability of the occurrence here is mainly controlled
by a proper agent regime. As a result of adhesion, the
particle-bubble aggregate is formed which passes to the
froth layer under the condition that it is stable aggregate.
Stability of the aggregate depends on the detachment
probability of particle from a bubble. The microprocess
of particle detachment refers mainly to large and high
density particles and relatively low hydrophobic proper-
ties. The probability of this event, apart from the above
factors, depends upon the intensity of turbulence of the
medium, characterized quantitatively by the turbulent en-
ergy dissipation.

In the kinetics equation of the first order, obtained
on the grounds of the stochastic model, two indepen-
dent constants occur: permanent adhesion rate constant
A, and detachment rate constant y,. Ultimate recovery
R, and the first order rate constant k are connected with
the constants of permanent adhesion and detachment by
the relations [1]:

/10
Re = (1a)
/l() +l'l()
k=2, +u, (1b)

The value of ultimate recovery is proportional to the
negative value of thermodynamic potential [2]. There-
fore, for the sake of a complete characteristics of the
course of flotation process, it should be considered as a
kinetic and thermodynamic phenomenon.

These independent constant of the cyclic flotation
model 4, and y,, have statistical interpretation and are ex-
pressed by the probabilities of particle-bubble collision
P, particle adhesion to the bubble P, and detachment
of the particle from the bubble P,.

2. Probabilities of particle collision, adhesion and
detachment

The probability of collision is defined as a relation of
the number of floatable particles colliding with a bubble
in a unit of time %“ to the number of floatable particles
(n, — I, ) contained in a unit of volume of the flotation
cell in a given moment ¢ [3]:

1 Al

Pc_n(,—laAt @
where: n, — initial number of floatable particles con-
tained in the flotation cell, Al. — number of particles
colliding with bubbles in the time At, [, — number of
particles attached to bubbles to the time ¢, (n, — ;) —
number of floatable particles, remaining in the cell, not
coagulated with the bubble to the time 7.

Probability of adhesion P, is the relation of the
total number of the particles %, which were attached
to the bubbles flowing through a unit of surface of the
cross-section of the flotation cell in a unit of time, to the
number of particles colliding with the bubbles in a unit

of time [4]:
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where: S;, — bubble surface area flux, Al, — number of
particles attached to the bubbles in the time At.

The probability of detachment P, of a particle from

a bubble is the ratio of the number of particles detached

from the bubble in the unit of time %’ to the total num-
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ber of particles which were attached to the bubbles %
in the unit of time:
Aly
A Al
p,=A 4 4
4= N T AL 4
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where: Al; — number of particles detached from bubbles
in the time At.

The probability of permanent adhesion P; is the ra-
tio of the number of particles attached durably to the
bubble in the unit of time i—lg to the total number of

particles attached to the bubble in the unit of time % :

Al.x‘
p oo A _ Al
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where: 6/; — number of particles attached durably to the
bubbles in the time Atr. Since Al, = Al, — Aly, then,
respectively,

)
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=1-Py (6)
This is therefore, the probability of non-detachment of a
particle from bubbles under the effect of external forces.
The above mentioned probabilities are functions of ran-
dom variables, such as particle diameter, bubble diame-
ter, induction time, contact angle, etc., which influence
the distribution of flotation rate constant.

This paper presents the distribution of the quotient of
random variables of the particle size D, and bubble size
Dy, affecting the value of probability of particle-bubble
collision, and the author calculated the most probable
value of collision probability in the flotation cell with
mechanical pulp agitation. It was preceded by a review
of the collision probability models.

3. Model of collision probability

A collision in the process of flotation denotes a par-
ticle approach to the bubble surface in such a distance
when surface interaction are activated [5].

particle trajectory

collision

Fig. 1. Particle streamline flow around a bubble: r, — particle radius,
rp, — bubble radius, r, — collision radius, r, — adhesion radius, 8 —
adhesion angle, @ — collision angle (Schulze [40])

The mechanism of particle-bubble collision depends
upon the character of liquid motion against the bubble
[6]. At the streamline flow of liquid around the bubble,
the collision results from the particle motion along the
appropriate current line of the liquid, close enough to
the central line crossing the bubble centre (Fig.1). The
collision occurs when the distance of the current line
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is smaller than r., where r. is the so-called radius of
collision.

To calculate the probability of interceptional collision the
author applied the geometrical definition of probability
[7] which, for this case is expressed by the formulae:

7 r? r 2
P = ;‘=(—”) (7a)
mr, rp
or
- 2
P, = - . 7b
¢ (rb+rp) ( )

In the above definition of probability of interception-
al collision it was assumed that the particles are distribut-
ed uniformly in the liquid volume. To calculate radius
of collision, Navier — Stokes’ equation should be solved
from which the function of liquid current (potential of
liquid current) is obtained. This is the equation of the
current line upon which the particle moves. The main
factor affecting the probability of interceptional collision
is constituted by the character of liquid motion around
the bubble since the function of liquid current, describ-
ing this motion, changes according to the bubble size, or
more precisely, to Reynolds number for the bubble [8].
At the same time, it is assumed that a particle moves
with the terminal falling velocity (down-wards) whereas
a bubble moves with the terminal rising velocity. For
very little (Stokes™ flow) and very large (potential flow)
Reynolds numbers the equation is solved analytically for
a bubble. On the other hand, for the intermediate values
of Reynolds number, encountered most often in flotation
systems, the equation is solved numerically, or some au-
thors apply empirical functions of liquid current.. When
the function of liquid current is given, the equation for rc
is derived, and the probability of interceptional collision
is calculated from equation (7a) or (7b).

Sutherland was the first who presented the formula
for the probability of interceptional collision [9]. Con-
sidering the potential motion of liquid stream around the
bubble, while neglecting the force of gravity and inertia
acting upon the particle, he obtained a formula for the
radius of collision: .

3d,d,

re=\ 5 (8)

The probability of interceptional collision, according to
formula (7a) is:

P, = 3d” 9)
c — db

where: d,, — particle diameter, d;, — bubble diameter.
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Formula (9) is valid for very large bubbles, not ap-
plied practically in flotation upgrading, and for high ve-
locities around the bubble, i.e. for Rep, >> 1 [5].

Next, Gaudin studied streamline liquid motion
around very little bubbles (Re, < 1) and, neglecting the
force of inertia for the probability of interceptional col-
lision, he obtained the formula [10]:

po= 3% 2
‘2 (db)

Yoon verified Gaudin’s model and found out that it
could be proved only for very little bubbles, below 100
pm [11,12].

Flint and Howarth studied the dynamics of motion
of particles and bubbles and observed that those mo-

tions could be characterized by two dimensionless fac-
tors [13]:

(10)

_ (pp _pl)df; g
- 18u up

_ ppdpub
9/1 db

where: u;, — terminal rising velocity of the bubble, p, —
particle density, p; — liquid density, g — acceleration due
to gravity, u — coefficient of dynamic viscosity of liquid.
For little particles, when the force of inertia is ne-
glected, probability of interceptional collision equals:

2
G d,

c = =
1+G 24 18
dp + (pp_Pc)gub

) (1D

at the same time probability of collision is expressed by
formula (11) both for Stokes’ flow and potential flow.
Since rising velocity u;, decrease when the bubble size
decreases, therefore, as it results from equation (11), for
little particles probability of collision is higher for little
bubbles.

Anfruns and Kitchener proposed the hydrodynamic
model of probability of interceptional collision, taking
into consideration only the forces of gravity and viscosi-
ty and neglecting the force of particle inertia and drag of
liquid. For the conditions of Stokes’ motion, they solved
analytically the equation of particle motion against the

3 3Re
Pi=2l1+ 16 7

2 1 + 0,249Re,™

These expressions only forecast the values P, for the
wide range of particle and bubble size because they have
never been empirically verified.

Jiang and Holtham took into consideration the rela-
tive motion of the particle and bubble of the sizes from
the d, = 6 — 120um and d, = 50 — 860um ranges [8].

d 2
)( ”) for 200 < Rep, < 300

bubble, obtaining the equation of motion path, and, ac-
cording to it, they calculated probability of collision
[14]:

d—) o
P, = (1 d;’/) by, 2We (12)

where: W — value of the function of liquid current of
boundary path for the collision angle a = 90° and the
distance from the bubble centre r = (d,, + d})/2.

Weber and Paddock, for the intermediate values of
Reynolds number for bubbles, presented the probability
of collision as a sum of two components [15]:

P. =P+ P (13)

where: P., — the probability of gravitational collision
resulting from the finite falling velocity of the particle
in the gravitational field which causes the deviation of
the particle path from the line of liquid current, whereas
P.; is the probability of interceptional collision.

Both probabilities depend upon Reynolds number
for the bubble. Weber and Paddock obtained expressions
for both probabilities while solving numerically Navier
— Stokes’ equation. Probability P, is presented by the
following formula [15]:

d,\* u,
P = (1 + d_Z) u—’b sin’ @, (14)
where: ¢. — maximum angle of collision above which
there is no particle-bubble collision.

To calculate probability P.; Weber and Paddock ap-
ply the Stokes-like function of liquid current and, de-
pending upon the value of Reynolds number for bubbles,
they obtain the follow-ing expressions [15]:

2 d,
Pi=|1+—""c|[£] forRe,<200 (15)
1+ (l) = J\dp

Re b

and

4 (16)

From the equations of particle motion in relation to the
bubble and taking into account the force of gravity, buoy-
ancy, drag of particle motion and boundary layer, they
obtained a general expression for the probability of col-
lision [8]:
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At the same time, the values of coefficients a. and
n depend upon the bubble size but do not depend on the
particle size.
Dobby and Finch expressed the probability of col-
lision by Reynolds number Re;, and Stokes number Sy
[16]:

d.\"
Pc:ac(_p) s

0,16
P. = [1,627Re)%050% (@) Pc,| (18
u

4

» ()
where: Pc, — constant, S; = é%(i) Re, Re, =

uppcdp

Stgkes number is the ratio of the force of inertia to the

force of drag of bubble motion. Formula (18) is valid
0,16

for Repsp ™ (%) > 0,614, ie. for 20 < Re, < 300,

»
Sk < 0,8 and Z—i <25

Yoon and Luttrell [17] applied the same approach
as Sutherland [9]. Neglecting the forces of inertia they
assumed at the same time that the particle path is identi-
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cal as the line of liquid current. They considered various
conditions of liquid motion at the bubble surface, taking
into consideration the functions of liquid current, appro-
priate to the conditions of motion. In this respect, their
model is a generalization of Sutherland’s model. For
Stokes’ flow, i.e. very small Reynolds numbers (Re;, <<
1), they obtained the formula identical to the formu-
la given by Gaudin [10]. Consequently, for very large
Reynolds numbers, i.e. the potential flow, they obtained
the formula identical to Sutherland’s model. For interme-
diate Reynolds number, i.e. those which exist in majority
of flotation cells, they assumed the empirical function of
current, obtained from the analysis of a large number of
current lines of the liquid flowing around the bubble.
Applying the definition of probability, expressed by the
formula (7b), they obtained the following equation for
the probability of interceptional collision [17]:

2
(24 ()

2150 N\ay (1%

Fig.2 presents the dependence of collision proba-
bility upon the bubble size for d, = 11,4 um drawn
according to dependence (19).
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Fig. 2. Dependence of collision probability upon the bubble size (Yoon [18])



298

As it results from formula (19), the probability of col-
lision changes as d;z for small bubbles (Re, << 1). It
depends on d}, in lesser and lesser degree. For very large
bubbles Pc changes as [18,19].

Schulze [S5] proposed the model in which, analogi-
cally as in Weber’s and Paddock’s model [15], the prob-
ability of collision is the sum of three components, i.e.
the probability of interceptional collision P.;, the prob-
ability resulting from the finite settling velocity of the
particle in the gravitational field P., and the probability
considering the particle inertia, resulting from the finite
dimensions of the particle P.;,, while [5]:

20,
Po= ot 20)
(1+ %) wRe;
@

1 d 2 b
(1 + Z_f;) d[, Sk + e

In the above equations P, is the function of liquid cur-
rent for the boundary path (boundary angle of collision
above which no particle-bubble collision occurs), while
e and b are the coeflicients dependent on Re;. The force
of inertia, analogically as the force of gravity, causes
a deviation of the particle from the liquid current line,
resulting in the bubble-particle collision [20]. For the
probability P., Schulze applied the formula given by
Weber and Paddock (formula 14). Respectively, the total
probability of collision is:

Po=Pu+ P+ |l - —L— (22)

By means of considering the force of inertia,
Schulze’s model can be considered to be the most com-
plete [21].

All the above formulas are based on the analysis of
bubble motion, rising in the liquid with terminal veloc-
ity and particle motion settling with terminal velocity
along the appropriate current line. Such a situation ex-
ist in flotation columns. At the liquid turbulent motion,
which occurs in flotation cells with intensive agitation,
the mechanism of collision is different [6]. According
to Gaudin [10], this is the motion of liquid deprived
of viscosity together with the particle performing inert
rotational movements. The rising bubble is the spheri-
cal obstacle for the liquid vortex. The particle — bubble
collidion occurs at the contact with this obstacle.

The following formula for the number of
particle-bubble collisions in the volume unit of suspen-
sion and the unit of time, for low turbulent energy dis-
sipation, is given by Saffman and Turner [22]:

8 d)+db 3 E %
Zpb: _N/)Nb( ! ) (;) (23)

15 2

where: N, and N, — number of particles and bubbles in
the volume unit, respectively, v — coefficient of liquid
kinetic viscosity, € = P/M — turbulent energy dissipa-
tion, P — power of agitation (power introduced into the
flotation cell), M — mass of suspension in the flotation
cell.

Dependence (23) has been derived for small parti-
cles and bubbles closed in the liquid vortex in the section
of flotation cell with low energy dissipation.

Schubert and Bischofberger modified Abrahamson’s
model [24] for the process of coagulation and derived
the following formula for the number of bubble-particle
collisions [23]:

dy +dy\* !

L ) (@+@) @4
where: u,, and u;, — respectively the velocities of particle
and bubble against the liquid, equal to:

Pi— pc)§
Pe

while p; is the particie density (p,) or bubble density
(op) and i = p or b.

Pyke and coworkers [25] and Duan and coworkers
[26] proposed the formula for the number of collision
for flotation cells with mechanical agitation of the pulp:

Z,,b = 5, ON,,N}; (

)
u;

0.463d
= : ( (25)

1
V3

7,57, A {0,333 (p1— py)} (0,01
e ) e
/s de ( n ) 3 Pi up
o
where: V — volume of the flotation cell, A — area of
the transverse section of the cell, J, — superficial gas
velocity.
In expression (26) it is assumed that the diameter of
bubbles is much larger than the diameter of particles.
According to Koch and Schwarz [27], in order to
consider the tendency of small particles to the streamline
motion around the bubble, the number of particle-bubble
collisions should be multiplied by the probability of in-
terceptional collision to obtain the complete participation
of all particles of both above mentioned mechanisms in
the process of collision. Finch and Dobby revealed that
for the collision mechanism, resulting from the stream-
line motion, the number of bubble-particle collision is
[28]:

37,
Zpp = 0,258, = =%

0 Q27)



Consequently, the total and permanent adhesion rate con-
stant is expressed by universal formulae:

k = ZpbP(,‘Pa (28)
Ao = ZpchPa(l - Pd) (29)
Ho = pchPw (30)

while Z,;, is determined depending upon the mechanism
of collision, i.e. upon the type of flotation machine.

As it can be seen from the presented models, that
the probability of collision can be performed as a general
formula, analogical to formula (17).

4. Probability of collision as the function of quotient
of two random variable D, and D,

In all above mentioned formulas probability of col-
lision is the function of quotient of particle diameter d),
to bubble diameter d,. In the industrial flotation systems
the feed has a certain distribution of particle size. In
pneumo-mechanical flotation cells in which air is dis-
persed by turbulence of the medium, generated by the
rotor motion, the produced bubbles posses also a certain
distribution of diameter. Therefore it can be said that
both the particle diameter and the bubble diameter are
random variables of determined distributions.

Let the random variable of particle size D, have the
probability density function f,(d,), whereas the random
variable of bubble size D, have the probability density
function f;(dp). When we assume the independence of

oty = e
PP T(bja) P
where: @, b and A, — distribution parameters.
Special cases of this distribution are:
a) gamma distribution when @ = 1

/lb
fp(dp) = ﬁll;)d;};_l exXp (_/lpdp) (35a)

b) Weibull’s distribution, known in mineral process-
ing as the R-R-B distribution, when b = @

fo(dy) = bA,ds ™" exp(-A,d}) (35b)
c¢) Rayleigh’s distribution when b = a =2
fldy) = 22,d, exp (-2,d3) (35¢)

In the laboratory practice, the investigations are of-
ten carried out on a narrow size fraction of a given ma-

Ly exp (—/l,,d;’) for d, >0,ab>0,1>0
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random variables D, and D, the random variable U,
being the quotient of variables D, and Dy, i.e.

=2
=D,
has the probability density function fj(«), determined by
the following formula [29]:

€1y

[ee]

f](u) = fdhfh(db)fp(udb)édb.

0

(32)

In relation to this, the probability of collision, according
to formula (17), can be expressed by the random variable
U:

P.=aU" (33)

As it can be seen from the above presented models coeffi-
cient a. is dependent on the hydrodynamic conditions in
the flotation cell and assumed model of particle-bubble
collision [22,23,25,26,27,28].

4.1. Distributions of random variables D, and D,

Several types of distributions of random variables
are used to characterize the distribution of particle size
in a sample. The gamma family of distribution is the
most often applied and achieving the best compatibility
with empirical distributions. These distributions can be
expressed by one common formula in the form of the
so-called generalized gamma distribution [29]. The ran-
dom variable D, has a generalized gamma distribution
if its probability density function is determined by the
following formula [29]:

(34)

terial. The precise size analysis, performed by means of
the laser diffractometry, indicates that the distribution of
particle size in a narrow size fraction can be approxi-
mated with equal accuracy by Weibull’s or Rayleigh’s
distribution [30].

In order to characterize the distribution of bub-
ble size, such functions are applied which are ana-
logical to those in the distributions of the dispersed
phase in dispersive liquid-liquid and gas-liquid systems
in which liquid is the dispersed phase [31, 32, 33, 34, 35,
36]. These are distributions known from granulometry.
Apart from gamma and Weibull’s distributions, which
are two-parameter, the authors applied a three-parameter
log-normal distribution of the form [36]:
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b db max

avy
dy) = —
Su(dp) 5d,

where:

o)
1

Vy= — | exp(—u?)du 37

= f p(-) (37)

represents the total volume of bubble in the range (0,d5],

and

u=In Wy
db max — db ‘

The parameters of distribution (36) are: dpyuux —
maximum bubble size, o, — dimensionless parameter
connected with standard deviation, a, — dimensionless
empirical parameter.

When the model dependence (36) is fitting to the
empirical dependence, distribution parameters are ob-
tained and, accordingly, average value of Sauter’s diam-
eter of the bubble [36]:

(38)

db max

— 39)
1 +a, exp (#)
b

dpzr =

All the above approaches to approximation of the distri-
bution of bubble size are the phenomenological charac-
ter. The distribution obtained in heuristic considerations,
is based upon an assumption that air flowing into the
flotation cell is subject to dispersion in turbulent vortex-
es of the liquid and the newly formed bubble surfaces
have energies whose correspond to Boltzmann’s distri-
bution. If the surface energy of bubbles is w = ndioz
then the probability density function of bubble diameter
is expressed by Rayleigh’s distribution [37]:

Soldy) = 2ydy exp (~Ayd}) (40)
while a distribution parameter is equal to:
21,3 13 1
(3602Vipig) " +nP Vd;
Ap = 41)

6,77V,0 Vd;

where: o — surface tension of flotation solution [N/ml],
V, — gas flow-rate [m3/s], p; — liquid density [kg/m?],
g — acceleration due to gravity [m/s?], P — power of
rotor motor [W], n — efficiency of the motor mechanical
system, d; — internal diameter of capillary bringing the
air to the cell [m].

The product nP = P, denotes the net power trans-
mitted to the flotation system. The following quotient

nP
M

&=

(42)

- ﬁdb(dbmax -

apdy ) l
dbmax - db
in which M is the mass of flotation suspension presents
the turbulent dissipation of energy to the flotation sys-
tem.
The mass of flotation suspension (of three-phase
system) is expressed by the following formula:

) exp [ - a',f (ln (36)

M = [psc + pesg + (1 = ¢ — £5) p1V (43)

where: p; — density of solid phase, p, — den sity of gas
phase, p; — density of liquid phase, ¢ — volume concen-
tration of solid phase, &, — gas holdup.

If is taken into consideration that p, << p, and p; then

M = [ps + (1 —C- 8g)pl]V = [(os —p) c + (] - 8g)pl]V-

(44)
After considering expression (44), turbulent energy dis-
sipation to the flotation system is equal:

nP
[(os = po)e + (1= &) 11V

Power transmitted into the flotation system is connected
with the rotational speed of the rotor N, and its diameter
D by means of the following equation [38]:

(45)

&=

P, = N,N*D’p, (46)

where: N, — power number assuming the constant value
for a given type of the flotation cell, regardless its size.
This a criterion number.

By means of equations (45) and (46) it is possible
to relate the parameter of Rayleigh’s distribution with
energy dissipation &, gas holdup in the flotation cell g,,
solid phase concentration ¢ or rotational speed N and
rotor diameter D.

5. Distribution of U random variable and
probability of collision

According to the consideration of the previous chap-
ter, the distribution of random variable D, is expressed
by Rayleigh’s distribution (equation 40). For the nar-
row size fraction of the feed the distribution of random
D, can be also characterized by Rayleigh’s distribution.
Respectively, for this case, according to formula (32),
the probability density function of random variable U is
expressed by the following formula:

vspace-2mm

fi(w) = 4,A,u f dyexp |- (4 + A,u°)d;|6d,  (47)
0



In the table of integers the following integer is given
[39]:

r " m!
f £ exp (—pE) de = e B0 @®
0
For the case of the integer of formula (47) m =1, 8 =
(Ap + /ll,uz). Taking into account formula (48) the prob-

ability density function of variable U is:
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Hw) = ————
- (4 + Ap2)’

(49)

Function fi(u) fulfills the standardizing condition for the

density function:
f Siwdu =1 (50)
0

o
o

o
~

e
N
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,0 0,2 04 0,6 0,8 1,0

Fig. 3. Probability density function of random variable U

Fig.3 represents the probability density function
fi(u) for A, = 0,295 and A, = 2,95. The point, in which
function fi(u) reaches its maximum, is the most probable
value of quotient d,/d;, = u. Comparing the derivative
of function f(,) to zero, the value u,, is calculated:

Upr = (51)

a. (360'2V§plg)%

2
+ é[(pv —-p)c+ (] - gg)pl]V\s/CTi

Consequently, the most probable value of collision prob-
ability in the flotation cell is expressed by the formula:

1 2
(3602V3pig)" +nP Vd;
6,77V,0 vd;

(52)
Substituting nP of equation (45), the following depen-
dence is obtained:

2
P.=a, d_f’ = &ﬁ _ e
dp 34, 34,

c =

34,

6,77V0 Vd;

(53)
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Fig. 4. Dependence of collision probability on energy dissipation for four particle size and three bubble size 1.0, 1.05 and 1.1 mm (Koch

and Schwarz [27])

Substituting for nP of formula (46) into equation (52),

d 2
Pc: c £
a(db)

As it results from formulae (53) and (54), the probability
of collision increases with the increase of turbulent ener-
gy dissipation, volume concentration of the solid phase
and rotational speed of rotor while it falls with the in-
crease of gas flow-rate, gas holdup and surface tension
of the flotation solution. Fig.4 presents the dependence
of probability of collision upon the turbulent energy dis-
sipation for four particle diameters and three bubble di-
ameters [27]. The probability rises with the increase of
energy dissipation, according to equation (53).

32, 34,

6. Final remarks

The probability of collision is one of the three main
elementary processes conditioning mineralization of air
bubbles in flotation. If the diameters of particle and
bubble are strictly determined, then, according to the
known formulae, this probability is proportional to the
quotient of particle diameter to bubble diameter. In the
case when both the particle and bubble diameters have
certain distributions, as it happens in the flotation of

1 2
_acdp  ac (360-2‘/2/7157)3 + N(,N3D5p, vd;

we obtain the dependence of probability of collision on
the number of rotational speed and rotor diameter:

54
6,77V0 Vd; G

geometrical heterogeneous material in the flotation cell
with mechanical pulp agitation, then the calculation of
collision probability encounters obstacles due to the in-
determinacy of particle and bubble diameters. It seems to
be plausible to calculate the most probable value. It can
be done applying the generally known theorems of prob-
ability calculus, concerning the distributions of function
of random variable. The most probable value depends
on the parameters of distributions of particle and bubble
diameters. At the flotation of the material whose particle
size distribution was the result of grinding, the real effect
upon the most probable value of collision probability ex-
ist by means of the distribution of bubble diameter. If
the probability density function of bubble diameter is
obtained by means of the heuristic approach, as it hap-
pens in this paper, we obtain the analytical expression of
dependence of probability of collision on physicochem-
ical properties of the flotation solution, aeration rate of
the pulp, the concentration of the solid phase in the pulp
and turbulent dissipation of energy in the flotation cell.
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