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MODELING OF THE THERMODYNAMIC PROPERTIES OF LIQUID Fe-Ni AND Fe-Co ALLOYS FROM THE SURFACE TENSION
DATA

MODELOWANIE WŁAŚCIWOŚCI TERMODYNAMICZNYCH CIEKŁYCH STOPÓW Fe-Ni I Fe-Co W OPARCIU O DANE
NAPIĘCIA POWIERZCHNIOWEGO

Recently proposed method of modeling of thermodynamic properties of liquid binary alloys from their surface tension
data is described. The method utilizes Melford and Hoar equation, relating surface tension with excess Gibbs free energy,
combined with new description of the monatomic surface layer and β parameter. The method is tested on Fe-Ni and Fe-Co
alloys and the obtained results show very good agreement with experimental thermodynamic data of other authors. The model
allows also to calculate the surface tension from thermodynamic data, and it gives better agreement with experimental results
than those modeled with the use of Butler equation and traditionally defined monatomic surface layer and β = 0.83.
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W pracy opisana jest niedawno zaproponowana metoda modelowania właściwości termodynamicznych ciekłych stopów
dwuskładnikowych z ich danych napięcia powierzchniowego. Metoda wykorzystuje równanie Melforda i Hoara, wiążące na-
pięcia powierzchniowe z nadmiarową energią swobodną Gibbsa, w połączeniu z nowym opisem monoatomowej warstwy
powierzchniowej i parametru β. Metoda została przetestowana na stopach Fe-Ni i Fe-Co, a uzyskane wyniki pokazują bardzo
dobrą zgodność z eksperymentalnymi danymi termodynamicznymi innych autorów. Model ten pozwala również na obliczanie
napięcia powierzchniowego z danych termodynamicznych i daje lepszą zgodność z wynikami eksperymentalnymi niż modelo-
wanie przy użyciu równania Butlera i tradycyjnie definiowanej monoatomowej warstwy powierzchniowej oraz β = 0.83.

1. Introduction

Several experimental methods were successfully ap-
plied to thermodynamic properties determination of liq-
uid alloys. They all differ in principles, have their own
limitations and consequently may give different, even
contradictory results. What they have in common is that
they are difficult, generally time-consuming and/or ex-
pensive. The obtained thermodynamic data can be later
used to evaluate physical properties of liquid alloys such
as viscosity or surface tension. For a binary alloy the
surface tension is predicted by the Butler equation (1),
derived in 1932 [1] under assumption that the monatom-
ic surface layer, considered as a separate phase, is in
equilibrium with the bulk phase.
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In 1957 Hoar and Melford [2] derived another equa-
tion (2) basing on the formation energy change of the
surface on two different ways:
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The symbols in equations (1) and (2) denote:
σ,σ1, σ2 – the surface tension of the alloy and its com-
ponents; S0

1 , S
0
2 , S1, S2 – the molar surface area and par-

tial molar surface area in the monatomic surface layer
of both components, Gex

S(1),G
ex
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ex
B(2) – partial ex-

cess Gibbs free energy of both components in the surface
phase and bulk phase, XS

1 , X
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2 , X
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1 , X

B
2 – mole fractions

of both components in surface phase and bulk phase, R
– gas constant, T – temperature.
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In case, when S0
i = Si, equation (2) takes the form

originally proposed by Butler (Eq. 1) and the surface
tension of the alloy can be calculated if the surface layer
area S0

i and relation between Gex
S(i) and Gex

B(i) is known.
According to the proposition of Hoar and Melford [2]
the monatomic surface layer area is commonly calculat-
ed from the following relation:

Si = LV 2/3
i N1/3 (3)

The excess Gibbs free energy of components in the
monatomic surface layer is calculated as follows:

Gex
S(i) = βGex

B(i) (4)

Symbols in Eq. 3 and 4 mean: Vi denotes the molar
volume of the component “i”, N is the Avogadro number,
L = 1.091 is the geometric factor for close-packed atoms
(Fig. 1) of the surface monolayer and β is a factor char-
acterizing the difference in the coordination number of
atoms in both phases and its value proposed by Tanaka
[3] is 0.83.

The method utilizing Butler equation with tradition-
ally defined surface layer and parameter β (Eqs 1, 3 and
4) will be, in following paragraphs and figures, referred
to as BTR.

The BTR method allows one to calculate the sur-
face tension from excess Gibbs free energy of the com-
ponents, but it was shown earlier in [4] on the basis of
binary alloys of silver with bismuth, indium, and tin, and
alloys of tin with antimony, bismuth, and lead that the
agreement between the calculated surface tension and
the experimental data is sometimes very poor.

In the same work [4] it was suggested, that in the
case of great discrepancies between excess Gibbs free
energy values, calculated from the thermodynamic pa-
rameters available in the literature, the good agreement
between the experimental surface tension and the calcu-
lated can be a good criterion of their reliability. In order
to improve this agreement a new model of the surface
layer and new definition of β were proposed [4]. This
model was verified by comparing the results of calcu-
lation with experimental data and values obtained from
BTR model for six above mentioned binary alloys. In
the following work [5] it was shown that it is possible to
carry out the calculation in the opposite direction i.e. to
calculate the thermodynamic properties of liquid binary
alloys from the surface tension data.

The surface tension is the physical property sensitive
to the impurities in metals and the atmosphere in which
the experiment is conducted. Hence, its measurements
should be performed using metals of high purity and in
the noble gas atmosphere with a very low concentra-
tion of gas contaminations which could react with the

metals. Otherwise, such results should not be treated as
characteristic of the metal and rather for the binary or
multi-component system because in the case of signifi-
cant difference between the surface tension of metal and
contamination (reaction product), its much lower value
causes considerable decrease of the surface tension.

Generally, the measurements of the thermodynamic
properties are thought to be less sensitive to the contam-
inations, although, in the case of electrochemical meth-
ods, the influence can be significant.

It should be emphasized that the calculation of the
excess free energy based on the surface tension depends
on the assumed surface monolayer structure and the β
parameter. However, the integral excess free energy of
bulk phase calculated from the surface tension should re-
veal similar deviations from the ideality and it should be
comparable with these obtained from the experimental
investigations or calculated from the optimized parame-
ters for the liquid phase. Otherwise, it means that the
equations for β and the surface monolayer area used in
calculations were wrong or the experimental investiga-
tions of the surface tension were incorrectly conducted
(contaminated protective atmosphere or metals, wrong
procedure of measurements).

The aim of this work is to show applicability of
the model proposed in [4, 5] for the determination of
the surface tension from thermodynamic data as well
as thermodynamic properties of liquid Fe-Ni and Fe-Co
binary alloys from surface tension data.

2. The new approach to surface tension calculation

It was shown earlier in [4] that for the same set of
thermodynamic data there are two parameters in equa-
tion (1) i.e. β and S0

i that can affect the result of the sur-
face tension calculation. Preliminary tests showed that it
is the surface layer area S0

i that has stronger influence
on calculated surface tension.

Fig. 1. Top view of the surface monolayer of close-packed atoms
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In order to obtain the results close to the exper-
imental data, the new model of the surface layer [4]
was proposed. In comparison to the surface monolayer
structure presented in Fig. 1 and assumed in Eq. (3),
another locations of atoms were postulated (Fig. 2a, 2b)
due to the influence of the interaction of atoms of the
gas and bulk phase with atoms of the monatomic layer
and the very high pressure (compressive stress) in the
monolayer (according to the Laplace definition of the
surface tension σδh, where: h is the thickness and δ is
the compressive stress in the monolayer). Additionally,
the following assumptions were made:

1. Due to the absence of atoms above the surface layer
and asymmetrical arrangement of forces, the force
directed towards the bulk phase acts on electrons of
atoms in the surface layer.

2. This force shifts the valence electrons towards the
bulk phase causing the polarization of atoms in the
surface layer and the change of the inter-atomic dis-
tance with respect to that in the bulk phase (see Fig. 1
and 2b).

3. The inter-atomic distance is equal to that given in
Eq. (3) ((Vi/N)1/3) only at certain characteristic tem-
perature TC , at which the value of the vapor pressure
of metal is equal to 0.001atm. The temperature TC
is different for different metals.

4. The inter-atomic distance is lower than that in Eq. (3)
because the influence of pressure predominates at
temperatures lower than TC , while at higher temper-
atures it is the interaction of atoms of the gas and
bulk phase with the atoms of the monolayer which
prevails.

Thus it was assumed that the atoms in the monatom-
ic surface layer can be shifted (Fig. 2a), polarized
(Fig. 2b) and the inter-atomic distance and the monatom-
ic surface layer area is decreased (or increased when
T > TC) in comparison with that calculated using
Eq. (3).

It can be seen from Eq. (3) under assumption that the
doubled atomic radius is the inter-atomic distance, that
the relation between the surface areas and inter-atomic
distances is as follows:

SS =
(RS)2

(RB)2
SB = (kr)2 SB (5)

where: RS and RB are the half average inter-atomic dis-
tances (i.e. atomic radii) of the metal ((Vi(S,B)/N)1/3/2) in
the surface and bulk phase, SS and SB are the monatomic
molar surface areas of the metal in the surface and the
bulk phase (Eq. 3), kr is temperature dependant correc-
tion parameter. It was assumed, basing on the analyses of
calculated and experimental values of the surface tension

of binary alloys that parameter kr is a linear function of
temperature. It can be determined [4] provided that at
room temperature its value is equal to proportion of the
average atomic radius and the effective ionic radius of
the element for coordination number 6. It is also equal
to 1 at such temperature TC at which the vapor pressure
of the metal is 0.001 atm. In the vicinity of TC a fast in-
crease of the partial pressure of metals is observed. The
valence of the ion is assumed to be equal to the number
of electrons in the last electronic sub-shell (s, p). The
calculated equations describing temperature dependence
of kr for Co, Fe, Ni are shown in Table 1.

Fig. 2. The possible displacement of the atom because of the inter-
action with atoms of the bulk phase and atoms of gas phase (Fig. 2a,
2b) and because of the asymmetrical electrostatic interaction (lack of
atoms above the monolayer) and the high pressure in the monatomic
layer

TABLE 1
Temperature dependences of kr parameters for Co, Fe and Ni

Metal kr = a + bT

Co kr(Co) = 0.47491 + 0.00022403T

Fe kr(Fe) = 0.42035 + 0.00025373T

Ni kr(Ni) = 0.51146 + 0.00021313T

It was shown by Tanaka [3] that the value of β slight-
ly differs from one metal to the other, and so this fact
should be considered in calculation. When β is consid-
ered to be a function of concentration, it is necessary
to use another mathematical description of excess Gibbs
free energy in the surface phase, because instead of being
multiplied by constant value of β it is multiplied, in the
simplest case, by linear function of composition varying
from β1 to β2. Obviously for metals which slightly differ
in β and the surface tension the difference in calculated
alloy surface tension will be small, however for the other
the difference becomes significant. Temperature indepen-
dence of β is another simplification and it was suggested
[4], that β should be linear function of temperature. The
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β parameter for each metal is defined by two points: a)
at critical temperature (where σi = 0) β is equal to zero,
b) at melting temperature β is defined by the relation (6).

Siσi = (1 − β)
(
G0

g −G0
l

)
(6)

Where: G0
g − G0

l is the change of standard free energy
of the transformation of 1 mole of liquid metal atoms
into mono-atomic gas at its melting point. It should be
mentioned that Tanaka [3] used the heat of vaporization
in place of G0

g − G0
l . Table 2 shows the equations of

parameter β for cobalt, iron and nickel.

TABLE 2
Temperature dependencies of β parameters for Co, Fe and Ni

Metal β = a + bT

Co βCo = 0.964 -0.000147T

Fe βFe = 0.928 − 0.000145T

Ni βNi = 1.000 − 0.000149T

As a result of the above, the following relation for
the molar surface layer area was proposed [4] for binary
alloys:

Sm = 1.091
[
(kr1)2

(
1 − XS

2

)
+ (kr2)2 XS

2

]
·

·
[
V1

(
1 − XS

2

)
+ V2XS

2

]2/3
N1/3

(7)

Where: V1 and V2 are the molar volume and kr1 and kr2
are the correction parameters for both metals, XS

2 is the
concentration of the second metal in the surface layer.

Using this equation the partial molar surface areas
of different metals were calculated.

In [4] it was shown in the case of Ag-In alloys, that
the dependence of β both on temperature and concentra-
tion has influence on calculated surface tension, there-
fore the following equation was proposed for the excess
Gibbs free energy calculation of the surface phase:

Gex
S =

[
β1

(
1 − XS

2

)
+ β2XS

2

]
Gex

B (8)

3. Calculation of the thermodynamic properties

Calculation of the excess Gibbs free energy of liquid
binary alloys at constant temperature is possible with
the use of either Hoar and Melford [2] or Butler [1]
equation system and the double stage optimization pro-
cedure. First, applying fixed values of thermodynamic
parameters the surface concentration XS

1 is calculated,
next the optimization of the goal function as a sum of
squared differences between calculated and experimental
surface tension is performed. The method described in

paragraphs 2 and 3, utilizing Hoar and Melford equation
(eq. 2) with newly defined surface layer (eq. 7) and para-
meter β (eq. 8) will be, in the rest of this paper, referred
to as HMNP.

The experimental surface tension data described
with Eq. 9, are the input data.

σ = σ1XB
1 + σ2XB

2 +

n∑

i=1

ZiX i
2
, Z1 = −

n∑

i=2

Zi (9)

A procedure of calculation of the excess Gibbs free
energy from the surface tension is performed as follows:
1. Working out the relation (9) describing the depen-

dence of the surface tension on X2 and T basing on
the experimental data. Parameters Zi are placed in
input file

2. Reading from the input file the data necessary in
calculations: surface tensions, densities, parameters
W i,β,kr etc. (after starting the procedure)

3. Simulation of the thermodynamic parameters of Gex
B

(Pi , i=1,n)
4. Calculation of the surface tension for many concen-

trations using the equation (9)
5. Modeling the surface tension using BTR (Eqs 1, 3,

4) or HMNP (Eqs 2, 7, 8) relation
6. Determination of the goal function D =

∑
(σex −

σcal)2

7. Checking whether D reached the minimum value:
a) If D , Dmin the sequence of calculations is re-

peated from point 3
b) If D = Dmin the calculations at fixed temperature

are stopped and Gex
B is calculated in the entire

range of concentrations XB
i and written in output

file
Stages from 2 to 7 are performed by the software,

specially developed to solve the presented problem using
BTR and HMNP model. In our program the excess Gibbs
free energy is described by the following equation:

Gex =

n∑

i=1

PiX i
2

=

n∑

i=2

Pi(X i
2
− X2), P1 = −

n∑

i=2

Pi (10)

Parameters Pi can be easily converted into Li pa-
rameters of Redlich-Kister [6] equation and vice versa.
The partial excess Gibbs free energy values of compo-
nents were calculated using Eq. 8 and known relations
between partial molar functions and one mole function
of the binary alloy.

4. Results and discussion

Two iron based metallic systems, namely Fe-Ni and
Fe-Co, were chosen to test the applicability of the model
[4, 5] to alloys of high melting temperatures. Because
of their high melting temperature a lot more difficulties
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arise in experimental determination of their surface ten-
sion and thermodynamic properties, compared to lower
melting alloys tested in [4, 5]. In this paper surface ten-
sion data obtained using two methods that is oscillating
drop method and sessile drop method are used for excess
Gibbs free energy calculation.

4.1. Iron-nickel system

The surface tension of Fe-Ni alloys have been de-
termined by many researchers [7-12]. The oscillating
droplet method was used by [7, 8] and the others applied
sessile drop method. Fig. 3 shows compositional depen-
dence of the surface tension of Fe-Ni alloys at 1823 K
from different authors. Great differences between their
results may be observed. From all of these data only the
results of Lee and coworkers [7] and Brillo and Egry [8]
show slightly positive deviation from additive behavior,
which is thermodynamically most probable due to neg-
ative values of the excess Gibbs free energy of liquid
Fe-Ni alloys [14, 15, 21]. In addition their data show
relatively good compatibility, except the surface tension
value for Ni.

Fig. 3. Surface tension dependence on composition in Fe-Ni system.
Data of [7,8,12] at 1873K and data of [9-11] at 1823K. Lines are
used to suggest the trends only

In the case of nickel the surface tension data of
[8] are about 40 mN·m−1 lower than the data of [7]
at 1873K. These differences are not great in compari-
son with the value of the surface tension of metals and
alloys. There is also, some inconsistency in Brillo and
Egry’s work [8] between the data given in figure and
those calculated using equations describing the surface

tension temperature dependence for respective composi-
tions. It concerns the alloy of XFe = 0.25 for which the
calculated surface tension from equation is about 140
mN·m−1 lower than that in figure. It should be noted
that the deviations of the experimental data from the
linear changes are higher for the data of Brillo [8] then
for Lee [7]. This means that the calculated excess Gibbs
free energy will be characterized by the much lower val-
ues in comparison to that calculated from the data of
Lee [7]. As in the process of calculations of the excess
Gibbs free energy the experimental data of the surface
tension are used in the form of the equation (9) (to have
many points (X, σ) as input data), first the parameters Zi
and σi were calculated basing on the experimental data.
Because of inconsistency regarding Brillo and Egry’s
work [8], the experimental values of the surface tension
presented in figures by [7] and [8] were digitized. Then
by the least squares method the coefficients of equations
σ = a + bT with the errors Ei at any temperature for
the given alloy [23] were determined. These coefficients
and errors were next used in the procedure of calculat-
ing the parameters of Eq. (9) by applying the weights
defined by the following relation: W i = Emax/Ei, where:
W i is the weight of the surface tension at the point (T i,
σi), Ei is the error in the point (T i, σi) and Emax is
the maximal error obtained in the set of points (T,σ).
In effect, the points with the lower errors Ei influence
much more the goal function (sum of squared differences
between calculated and experimental values) and finally
the value of the parameters in Eq. (9). It ensures that the
values calculated from Eq. (9) are close to those from
the experiment characterizing lower value of error.

The obtained linear equations of the investigated al-
loys showed very good agreement with those presented
in publications except that cited earlier. The worked out
relations (11) and (12) for Lee [7] and Brillo [8] results,
respectively, are as follows:

σFeNi = (2579 − 0.3601T) XFe + (2349 − 0.3055T) XNi+

+94(XNi − X2
Ni

)
(11)

σFeNi = (2450 − 0.2927T) XFe + (2180−0.2381T) XNi+

+204(XNi − X2
Ni

)
(12)

The calculated standard deviations are 6 and 8 mN·
m−1, respectively.

The comparison of the experimental data with those
calculated from Eqs (11) and (12) is presented in Figs
4a and 4b. In these figures points represent experimental
data, while lines show values calculated using equation
(11) and (12), respectively.
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Fig. 4. Surface tension dependence on composition in Fe-Ni system. Data of a) Lee et al. [7], b) Brillo and Egry [8], respectively

The surface tension was first modeled with the use
of thermodynamic data of Lee [14] and Speiser [15]
and compared to experimental data of [7] (Fig. 5a) and
[8] (Fig. 5b). Such a procedure gives the possibility to
estimate whether the experimental surface tension data
are well reproduced by thermodynamic properties and at
the same time to estimate if the excess Gibbs free energy
calculated from the surface tension data will be similar
to those used in modeling.

According to the Butler [1] and Hoar-Melford [2]
equations such a mutual relation between the thermody-
namic and physical properties (Gex, σ) measured in the
same conditions is expected when β and S are suitably
defined and measurements correctly conducted. This fact
is very easy to notice, especially for systems with the low
difference of the surface tension. It may be expected, that
basing on the well worked out and checked thermody-
namic parameters (excess Gibbs free energy) the mea-
sured surface tension should well agree with the modeled
surface tension and vice versa [4, 5]. If the mutual corre-

lation is not observed the experimental method, probably
for the surface tension, should be revised.

In calculations of the surface tension of Fe-Ni alloys
the density data of pure components given in table 3 were
adopted from Smithells Metals Reference Book [22] to
calculate molar surface area. Values of kr and β for pure
components are given in tables 1 and 2, respectively. Sur-
face tension values for Fe and Ni were taken from Eqs
11 and 12, respectively. The calculated surface tension
of Fe-Ni alloys together with the experimental values is
presented in Figure 5a) and 5b).

TABLE 3
Density of Co, Fe, Ni [22]

Metal ρi, g·cm3

Co = 9.685 - 0.00109T

Fe = 8.622 - 0.00088T

Ni = 9.960 - 0.00119T

TABLE 4
Redlich-Kister polynomial parameters for Fe-Ni system determined from thermodynamic data

R-K parameters
Lee [14]

R-K parameters
Speiser [15]

R-K parameters
Hultgren [21]

L0 = -16911 + 5.1622T

L1 = 10180-4.146656

L0 = -20292.4 + 5.14894T

L1 = 11924.4-6.16329T

L0 = -11227, L2 = -599.494

L1 = 6757.97, L3 = -2452.49
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In these figures continuous lines denote the values
calculated from HMNP model while dotted lines those
calculated from BTR model. Thin lines represent the re-
sults of calculations using the excess Gibbs free energy
data of Lee [14] and thick line the data of Speiser [15],
respectively (see table 4). As can be seen in figure 5a),
HMNP gives better agreement with experimental surface
tension data regardless which thermodynamic data were
used. In case of data of Brillo and Egry (see Fig 5b) the
situation is different. Here, for both models, the agree-
ment is better for Speiser’s [15] data used in calculations.
Most importantly, although the agreement is quite good
at 1673 K there is no agreement with experimental data
at 1873 K. It suggests that the data of Brillo [8] will
give much lower values of the excess Gibbs free energy
than the data of Lee [7].

In the following step the excess Gibbs free energy
for Fe-Ni alloys was calculated with the use of surface

tension data given by Lee [7] and Brillo [8] applying
both BTR and HMNP model. Table 5 presents parame-
ters Pi calculated for Fe-Ni system from surface tension
data. Calculated Gibbs free energy was compared to the
data of different investigators, as can be seen in Fig. 6.
From this figure it is clear that the agreement between
the experimental data [7] is much better for HMNP than
for BTR model. The values of excess Gibbs free ener-
gy calculated with HMNP are very close to the aver-
age of experimental results, although they slightly differ
depending on surface tension data used. It is interest-
ing to note that the excess Gibbs free energy calculated
from the BTR model is up to 2.5 times lower than that
calculated from HMNP. The excess Gibbs free energy
calculated from the surface tension data of Brillio et
al. [8] shows about twice lower values in comparison
with those calculated using Lee [7] data. Disagreement
is observed for both models of calculations.

Fig. 5. Values of the surface tension in Fe-Ni system: a) calculated [7] and b) experimental [8]

Fig. 6. Calculated and experimental [14, 15, 21] thermodynamic properties of the Fe-Ni system at 1873K
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TABLE 5
Parameters Pi (Eq. 10) of the excess Gibbs free energy of liquid Fe-Ni alloys calculated from the surface tension data at 1873 K

Surface tension data
Pi

Model BTR
Pi

Model HMNP

Lee [7], Eq. (11)
P1 = -18014.65
P2 = 10807.60
P3 = 7207.06

P1 = -6876.42
P2 = 1511.49
P3 = 5364.94

Brillo [8], Eq. (12)
P1 = -38100.05
P2 = 22723.72
P3 = 15376.33

P1 = -13864.92
P2 = 1853.66

P3 = 12011.26

4.2. Iron-cobalt system

Iron and cobalt have similar melting temperature and
surface tension at melting point, and so one could expect
surface tension composition dependence of Fe-Co alloys
to be linear. The surface tension of Fe-Co alloys was in-
vestigated by many authors including [10, 12, 13]. Figure
7 shows a comparison between the data of Eichel and
Egry [13] and Ogino et al. [12], who covered the whole
concentration range, at the same temperature 1873 K. It
can be seen that the data obtained with the oscillating
drop method [13] are generally higher than the data ob-
tained with the sessile drop method [12]. Moreover, they
also differ in general trend i.e. there is a strong minima
between 0.6 and 0.8 mole fraction of iron in the data of
[13] while no such thing occurs in the data of [12]. The
experimental surface tension data were described with
the equation (9):

σCoFe = 1809.5XCo + 1761.4XFe−15.1037XFe−
−123.4839X2

Fe + 138X3
Fe

(13)

σCoFe= (2501.3 − 0.34659T)XCo+(2597.8 − 0.39210T)XFe+

+(−348.6 + 0.0183)(XFe − X2
Fe

)
(14)

for the Ogino [12] and Eichel [13] data, respectively.
Comparison of experimental and calculated from Eqs
(11) and (14) values is shown in Fig. 7. It was impossible
to use the same procedure of calculations of the equation
(11) parameters, because the Ogino data [12] were giv-
en only for one temperature (1873 K) while Eichel [13]
reported data for many concentrations at 4 temperatures,
calculated from the worked out earlier linear equations
(σ = a + bT), so their weights were assumed to be 1.

Using the thermodynamic data of [16-18], two sets
of Redlich-Kister polynomial parameters were worked
out for Fe-Co system (see table 6) and finally excess
Gibbs free energy at 1873K was determined. As can be
seen in Fig. 8, those two sets of data give similar depen-
dences of the excess Gibbs free energy vs. composition,

Fig. 7. Surface tension of Fe-Co alloys at 1873K

however, they differ in maxima location. In the case of
Gex calculated from the data of Belton and Predel [16,
18] it is XFe = 0,3 and in case of Gex calculated from
the data of Batalin and Predel [17,18] it is XFe = 0,6.
It is worth noting that these sets of data are quite simi-
lar to those of Morachevskii [20] and Tomiska & Neckel
[19], respectively. For this reason both sets [12, 13] were
used in the surface tension calculation at 1873 K using
the surface tension data for iron and cobalt from Eq. 13
and 14.

TABLE 6
Redlich-Kister polynomial parameters for Fe-Co system determined

from thermodynamic data. (SD-average standard deviation)

R-K parameters
Reference [16,18]

R-K parameters
Reference [17,18]

L0 = -10146 + 8.41903T
L1 = -2916.21 + 3.90722T
L2 = 308.196

SD=21 J/g-atom

L0 = -9962.28 + 8.01428T
L1 = -2825.69-0.244203T
L2 = 308.196

SD=63 J/g-atom
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Fig. 8. Determined thermodynamic properties for Fe-Co alloys

Fig. 9. Calculated and experimental surface tension [12, 13] at
1873K. Gex used in surface tension modeling was calculated from
the data of a) Belton and Predel [16,18] and b) Batalin and Predel
[17,18], respectively

As can be seen from Fig. 9a and 9b, calculated sur-
face tension deviates negatively from linear trend as it
is in case of experimental data. The agreement between
calculated surface tension (both using BTR and HMNP
model) is much better in case of Ogino’s [12] data. It is
also clear that new model (HMNP) gives better agree-
ment than the BTR model.

Weak agreement between results of calculation and
the data of Eichel and Egry [13] suggest that these data
are less reliable than the data of Ogino [12] and that
the excess Gibbs free energy calculated from theirs [13]
surface tension will show much higher values then that
obtained from Ogino data [12].

Later, using the algorithm presented in section 3 and
the data of [12] and [13] described with equations (13)
and (14), respectively, the excess Gibbs free energy for
this alloy was calculated at 1873K with the use of HM-
NP model and compared with the result of calculation
with the use of BTR. Table 7 presents parameters Pi cal-
culated for Co-Fe system from surface tension data. As
can be seen in Fig. 10, using Ogino surface tension data
[12], the results of calculation with the use of HMNP
agree well with the experimental data of other authors,
while the data calculated with BTR equation are more
than three times higher than the average of the other val-
ues. The values of Gex calculated from the Eichel and
Egry surface tension data [13] show over twice higher
values in comparison with those obtained from Ogino
values [12] and from other thermodynamic investigation
methods [16-20].

TABLE 7
Parameters Pi (Eq.10) of the excess Gibbs free energy of liquid
Co-Fe alloys calculated from the surface tension data at 1873 K

Surface tension
data

Pi

Model BTR
Pi

Model HMNP

Ogino [12],
Eq. (13)

P1 = 371.98
P2 = 30089.52
P3 = -30461.50

P1 = 646.28
P2 = 11126.96
P3 = -11773.24

Eichel [13],
Eq. (14)

P1 = 37570.59
P2 = -37669.26

P3 = 98.67

P1 = 24732.59
P2 = -24797.11

P3 = 64.52
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Fig. 10. Excess Gibbs free energy of the Fe-Co system calculated from the models and obtained from the experiments [16-20]

5. Conclusion

Recently put forward model [4, 5] including new
definition of both surface layer and parameter β was de-
scribed. It was shown that the model can be successfully
applied to surface tension modeling from thermodynam-
ic data as well as modeling of thermodynamic properties
(excess Gibbs free energy) from surface tension data in
case of high temperature systems.

Among surface tension data for Fe-Ni system avail-
able in literature two sets [7, 8], most justified ther-
modynamically, were selected. Both sets of data were
obtained by the oscillating droplet method and show
relatively good agreement one with another. However,
it was shown that the data of Brillo and Egry [8] are
less reliable than the data of Lee and coworkers [7].
Data [7] were compared to surface tension calculated
with the use of BTR and HMNP models using two sets
of thermodynamic data taken from literature [14, 15].
The results of calculations show that HMNP model gives
better agreement between calculated surface tension and
experimental data than it is possible in the case of BTR
model, regardless which thermodynamic data were used
in calculations. Next the excess Gibbs free energy was
calculated and the values obtained from HMNP are close
to the average of experimental data of different authors,
while the values calculated from BTR are up to 2.5 times
lower. This proves that not only is the HMNP model
much better tool for surface tension modeling compared
to BTR model, but also it is the only acceptable tool for
excess Gibbs free energy modeling from surface tension
data.

Also in the case of Fe-Co system two sets of sur-
face tension data were investigated, one obtained from
oscillating drop method [13] and the other from sessile
drop method [12]. The surface tension of Fe-Co alloys
was modeled with the use of two sets of thermodynamic
data assessed in this work and it was shown that HM-
NP gives improved agreement with experimental sur-
face tension data compared to BTR model. It was also
shown that HMNP can be used as a tool to assess the
reliability of experimental surface tension data with the
difference between calculated and experimental data be-
ing the criteria. The excess Gibbs free energy calculated
using Ogino surface tension data [12] agrees well and
is only slightly higher than experimental data of other
authors while results from BTR model are up to three
times higher. Analogical calculations of the excess Gibbs
free energy conducted basing on Eichel and Egry surface
tension values [13] show complete disagreement either
with those from Ogino results [12] or from different
thermodynamic investigation methods.
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