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NUMERICAL ANALYSIS OF THERMO-MECHANICAL PHENOMENA OF THE PROGRESSIVE HARDENING ELEMENTS MADE 
OF TOOL STEEL FOR COLD WORK

The numerical algorithm of thermal phenomena is based on the solution of the heat conduction equations in Petrov-Galerkin’s 
formula using the finite element method. In the modeling of phase transformation in the solid state, the models based on the diagrams 
of continuous heating and continuous cooling (CHT and CCT). In the modeling of mechanical phenomena, equations of equilibrium 
and constitutive relationships were adopted in the rate form. It was assumed that the hardened material is elastic-plastic, and the 
plasticizing can be characterized by isotropic, kinematic or mixed strengthening. In the model of mechanical phenomena besides 
thermal, plastic and structural strains,  the transformations plasticity was taken into account. Thermo-physical size occurring in 
the constitutive relationship, such as Young’s modulus and tangential modulus, while yield point depend on temperature and phase 
composition of the material. The modified Leblond model was used to determine transformation plasticity. This model was sup-
plemented by an algorithm of modified plane strain state, advantageous in application to the modeling of mechanical phenomena 
in slender objects. The problem of thermoelasticity and plasticity was solved by the FEM. In order to evaluate the quality and 
usefulness of the presented numerical models, numerical analysis of temperature fields, phase fractions, stresses and strains was 
performed, i.e. the basic phenomena accompanying surface layer of progressive-hardening with a movable heat source of slender 
elements made of tool steel for cold work. 
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1. Introduction

The variety of working conditions of tools creates the need 
to diversify the requirements for tool steels. The tool is always 
sought for the highest durability, and this is achieved by using 
appropriate heat treatment with a hardening procedure. The 
prediction of final properties of the element that undergoes 
progressive hardening is possible after defining the type of the 
formed microstructure, instantaneous stresses, and then of inter-
nal stresses that necessarily accompany this thermal treatment. In 
order to achieve this aim it is essential to consider such a treat-
ment of thermal phenomena, phase transformations and mechani-
cal phenomena in numerical modeling (Fig. 1). Phenomena that 
are complicated, and so far they are incompletely described. 
Findings of the numerical simulation of the above-mentioned 
phenomena depend on, inter alia, the accuracy of determination 
of phase transformation kinetics in the solid state [1-3]. To have 
the possibility to carry out a full analysis of thermal treatment it 
is necessary to have proper mathematical and numerical models 
that can provide information about instantaneous temperature 
fields, the change in time of fractions of particular phase propor-
tions of the material, instantaneous stress distributions and, as 
a result, about internal stresses. 

Fig. 1. Scheme of interdependence of thermo-mechanical phenomena 
of hardening 

Numerical analysis of heat treatment processes is an im-
portant problem facing modern design studios for the industry, 
not necessarily steel. Particular accent on the development of 
this branch of numerical methods is inspired by the industry, 
which, due to modern technologies and efforts to reduce costs, 
is looking for tools to improve heat treatment processes [4-6]. 
Currently, the numerical analysis of thermal treatment processes 
is an important problem standing before contemporary workers 
designing for a given industry, not necessarily connected with 
steel. Special emphasis put on this branch of numerical methods 
is inspired by the industry that, due to modern technologies and 
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aims to reduce costs, requires tools improving thermal treatment 
processes [2,7-10]. The analysis of findings obtained by means of 
experimental research lead to the formation of many mathemati-
cal models that determine phase fractions in the solid state. The 
primary equations in almost all formulations pertaining to the 
transformation of austenite into ferrite, perlite and bainite are the 
Johnson-Mehl - Avrami equation [11]. To determine the fraction 
of the diffusionless phase, one may mainly use the Koistinen-
Marburger equation or its modified versions [12]. The element 
that has a decisive influence on the numerical simulation findings 
pertaining to hardening is also connected with the proper selection 
of cooling conditions that are modeled with boundary conditions. 
Significant stresses are generated in the thermal treatment process. 
In order to ensure the credibility of numerical simulation findings 
of mechanical phenomena, one should also consider transforma-
tion plasticity in addition to thermal, structural and structural 
strains [3,5,9,13]. Up to now, there are no comprehensive nu-
merical models regarding the hardening of the carbon tool steel 
group. Existing models are, to some extent, fragmentary. They 
most often pertain to phase transformations in the cooling process 
without a link to stresses that are generated in such processes. 

For numerical modeling of heat treatment phenomena, the 
finite element method, the finite difference method, and less often 
the boundary element method are most often used [2,5,9]. The 
credibility of obtaining findings of numerical simulations often 
depends on the selection of a method of calculation, and it mainly 
pertains to the possibility of consideration, or non-consideration, 
of multiplicity of phenomena in the model, with respect to the 
hardening process. For this reason, the finite element method 
was used to solve thermal conduction problems and the problems 
of thermo-elasticity and plasticity. 

2.     Thermal phenomena 

In the model of thermal phenomena of the progressive steel 
hardening process we used the conductivity equation with a con-
vection term. Arguments of the sought-after temperature field 
are, spatial coordinates (Euler coordinates). This equation, which 
governs temperature distribution in the Ω area with a boundary 
Γ = ΓD  Γq  Γ∞, has the following form [14]: 
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where: T = T(xα,t) is the temperature [K], λ = λ(xα) is the thermal 
conductivity coefficient [W/(mK)], Cef = Cef (xα) is the proper 
effective heat capacity [J/(m3K)], in which one may consider 
the heat of phase transformation (in a particular case it is equal 
to Cef = C = cρ, c – specific heat [J/(kgK)], ρ – density [kg/m3], 
Q· = Q· (xα,t is the capacity of internal sources [W/m3], xα is the 
position vector of the considered particle (point), v = v(xα,t) 
[m/s] is the particle velocity vector in the control area of the 
considered object, t means time [s].

Equation (2.1) is supplemented with the initial and bound-
ary conditions:
– initial conditions 
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– boundary conditions 
a) Temperature is given on the part of the boundary ΓD, the 

Dirichlet condition (fi rst-type condition). This condition 
type is given on one of the boundaries of the control area. 
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b) Heat fl ux (q*) on the part of the boundary Γ∞ (intensive 
cooling zone) is determined by the temperature dif-
ference of the boundary and the surrounding medium, 
Newton Condition (third-type condition). In this work, 
such boundary condition is used to model cooling. 
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where: α∞ = α∞(T) is the heat transfer coefficient [W/(m2K)], 
Tw is the temperature of the cooling medium (ambient tempera-
ture from the side Γ∞). 

If on the part of the boundary Γ∞ heat transfer depends on 
the intensity of radiation, then the heat flux (q*) (in the Newton 
condition) is supplemented with the flux resulting from the 
intensity of radiation. In the numerical algorithm, we use the 
substitution [14]: 
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where: α*
∞ = α*

∞(T) is the heat transfer coefficient that includes 
convection as well as radiation, and αr is the experimentally 
determined heat transfer coefficient. 

Substitution of (2.5) allows us to retain the classical Newton 
condition in the numerical algorithm pertaining to the solution of 
the thermal conductivity problem. The finite element method in 
the formulation of Petrov-Galerkin was used to solve the above-
mentioned problem of heat conductivity, i.e., the conductivity 
equation (2.1) with boundary conditions (2.3)÷(2.5). In the 
built algorithm, weight functions (w = w(xα)) are the so-called 
"upwind function" [14]. 

3. Phase transformations 

In the model of phase transfor  mations take advantage 
of diagrams of continuous heating (CHT) and cooling (CCT) 
[15,16]. Initial phase transformation in the austenite is a diffusive 
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transformation. The kinetics of transformation good defined the 
formula Johnson - Mehl - Avrami [11], i.e.: 

 ,, 1 exp( , s fn t tH
A s fT t b t t t T   (3.1)

where: ηA
H is austenite initial fraction nascent in heating process, 

b (ts, tf) and n(ts, tf) are coefficients determined from the trans-
formation (3.1) assuming the initial fraction (ηs (ts) = 0.01) and 
final fraction (ηf (tf) = 0.99) forming a phase, ts and tf  are start 
times and end of transformations. 

Pearlite and bainite fractions (in the model of phase 
transformations upper and lower bainite is not distinguish) are 
determined by Johnson-Mehl and Avrami formula, taking into 
account the fraction of the austenite phase formed in the heating 
process, i.e.:
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where: η(·)
% is the maximum phase fraction for the established 

of the cooling rate, estimated on the based of the continuous 
cooling graph [16]. 

The fraction of martensite forming below the temperatu-
re Ms is determined by the Koistinen and Marburger formula 
[12]: 

 1 exp ( )mM sT k M T   (3.3)

where: m is the constant chosen by means of experiment (for 
considered steel determine m = 1), whereas the constant k is 
determined from (3.3) the end of transformation condition at 
the temperature Mf (for ψ = 1): 
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With respect to considered steel, for which Ms = 493 K, 
Mf ≈ 173 K, the constant k resulting from (3.4) is equal to: 
k = 0,0144. The obtained coefficient is comparable to the value 
given in literature with respect to carbon near-eutectoid steels 
(k ≈ 0.011) [9]. 

Increases of the isotropic strain (ε· Tph) caused by changes 
of the temperature and phase transformation in the heating and 
cooling processes are calculated using the following relations 
for heating and cooling, respectively: 
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where: αk = αk(T) are coefficients of thermal expansion of: aus-
tenite, bainite, ferrite, martensite and pearlite, respectively, εA

ph 
(ε1

ph) is the isotropic strains accompanying transformation of the 
input structure into austenite, whereas εk

ph are isotropic strains 

from phase transformation of: austenite into bainite, ferrite, 
martensite, or of austenite into pearlite, respectively. 

The methods for calculation of the fractions of the phases 
created referred to above were used for carbon tool steel of 
chemical compositions given in the table 1 [15,17]: 

TABLE 1

Chemical composition of test steels 

Steel C% Mn% Si% P% S% Cr% Ni% Mo% Cu%
C80U 0,84 0,19 0,21 0,006 0,003 0,11 0,08 0,03 0,14

In order to confirm the accuracy of the phase transformation 
model dilatometric tests were carried out on the samples of the 
steel under consideration. The model was verified by compar-
ing the dilatometric curves received for different cooling paces 
with simulation curves. On the basis of the analysis of the results 
a slight move of CCT diagram was made in order to reconcile 
the initiation time of the simulation transformation and the times 
obtained in the experimental research. 

  Fig. 2. Diagram CCT with CHT curves for considered steel

Using the results of the tests carried out and the CCT 
diagram as well as the literature CCT diagram for the steel 
in question, the CCT diagram was shifted for the purpose of 
numerical simulations of phase transformation kinetics. Dis-
placement graph obtained from the test result is created in the 
numerical algorithm that the cooling process the temperature 
is tracked T(tcool = 0) = 810°C). This assumption was based on 
literature data. The recommended austenitizing temperature for 
the steel considered is ~810°C [16]. It was assumed that the 
type of structure obtained in the hardening process depends on 
the cooling rate starting from the equilibrium temperature Accm, 
and the curve of the beginning of the appropriate transformation. 
It gives the possibility of using one CCT diagram for different 
(“substantiation”) austenitizing temperatures. These moves 
were presented, for example, in the studies [15], Fig. 2. After 
analyzing of the above diagrams it can be noticed that steel under 
consideration does not contain ferrite but can contain remnant 
cementite. The curves of CCT diagrams are introduced into 
a relevant module of phase fraction determination with sup-
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plementary information regarding maximum participation of 
each phase. By using the formulated model of kinetics regarding 
phase transformations in the solid state, a computer program was 
built to simulate phase transformations. In order to verify the 
said program we carried out numerical simulations pertaining 
to the heating and cooling of an element from carbon tool steel, 
and then we compared the obtained findings with the findings 
from dilatometric research [15].

Findings of test simulations are given in figures 3. Due to 
the fact that in the scope of cooling rate 10÷30 K/s significant 

changes in the obtained structure were not observed, we only 
presented findings with respect to 30 K/s. The cooling rate 100 
and 200 K/s also was not characterized by significant changes 
in the obtained structure, hence only the findings with respect 
to the cooling rate 100 and 300 K/s were presented. By analyz-
ing the obtained findings one may notice that after low cooling 
rates the considered steel has a perlitic structure (Fig. 3). While 
the cooling rate increases, the fraction of bainite increases at 
the expense of declining perlite. However, after high cooling 
rates – it has martensitic-bainitic or martensitic structure (Figs 

Fig. 3. Experimental and simulation dilatometric curves (a) and kinetics of individual transformation, cool. rate 30, 100 and 300 K/s (b)

a) b)

Fig. 4. Steel microstructure – zoom × 1000, cool. rate 30, 100 and 300 K/s
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3a and 3b). The dilatometric curve obtained from the sample 
cooled at the rate 100 K/s almost does not exhibit diffusive 
transformations in the upper temperature range (only traces), 
and austenite is transformed into bainite (from the temperature 
~300oC), and then into martensite (from the temperature Ms). 
After sample cooling at the rate of 300 K/s, the fraction of mar-
tensite is at the level of ~90%, and the rest (~10%) constitutes 
the retained austenite (Fig. 3b). On the basis of the analysis of 
simulation and dilatometric curves the values of the thermal 
expansion coefficient (αk) and isotropic structural deformations 
of each structural component (εk

ph) were specified. These coef-
ficients are: 22, 10, 14.5, 10 and 14.5 (×10–6) [1/K] and 1.0, 
4.5, 1.5, 8.7 and 1.5 (×10–3). It was adopted that 1,2,3,4 and 5 
refer to austenite, bainite, ferrite, martensite and pearlite, res-
pectively. 

Coefficient of thermal expansion the pearlite structure for 
considered steel is dependent on temperature (Figs 3a), approxi-
mate this coefficient by square function: 
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4. Mechanical phenomena 

In the model of mechanical phenomena, the equilibrium 
equation without mass forces was adopted in the rate form 
[2,9,14]. 

 , , Tx t 0   (4.1)

where: σ = σ (σαβ) is a stress tensor, (°) means incomplete internal 
multiplication factor.

The equations (4.1) are supplemented by constitutive 
relationships that, if based on an additive model of the rate of 
strains, will be expressed as follows 

 eTph p tpE E   (4.2)

where: E = E(T ) is a elasticity tensor dependent on temperature 
(T), εe represents an elasticity strains tensor, εTph isotropic tensor 
of thermal and structural strains (cf. 3.5), ε p plastic strains tensor, 
whereas ε tp represents the tensor of transformation plasticity.

The equilibrium equations (4.1) is supplemented with the 
initial conditions 

 0 0 0 0, , ,ex t x x t x0 0   (4.3)

and the boundary conditions on parts of the boundary (Γ) is 
remove the degrees of freedom, i.e.: 

 , , ,
u u

x t x tU U U 0   (4.4)

where: U is a displacement vector. 
To mark plastic strain the non-isothermal plastic law of 

flow with the isotropic strengthening and condition plasticity 

of Huber-Misses and isotropic or kinematic strengthening were 
used. Functions of plastic flow (f = f(σ,Y )) adopted so as:
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where: σef is effective stress, εef
p effective plastic strain, 

Y = Y(T,∑ηk, εef
p ) is a plasticized stress of material on the 

phase components ∑ηk at a temperature T and plasticizing εef
p , 

Y0 = Y0(T,∑ηk) is a yield points.
Yield stress, in the case of the material model with the 

isotropic strengthening, is determined a linear function:
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where: YH is the surplus of the yield strength resulting from the 
strengthening of the material.

Plastic strains are determined by the associated theory of 
plastic flow [11,17]: 
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where: Λ is a plasticity scalar multiplication factor, S represents 
a deviator of stress tensor (S = σ – Iσkk /3), a is a tensor of dis-
placement of the centre of plastic flow surface (in model with 
kinematic strengthening).

To investigate transformation plasticity, the modified 
Leblond equation was used in which a function decreasing the 
rate of transformation plasticity with the time of transformation 
was applied [3], i.e., for isotropic or kinematic strengthening:
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where: K1k = 3ε1k
ph are volumetric structural strains when the 

material is transformed from the initial phase „1” into k-phase, 
Y1 and Y01 are plasticized stress and the yield points at the output 
phase (soft i.e.: austenite). 

The problem of thermo-elasto-plasticity is solved by the 
finite element method, and the modified Newton-Raphson al-
gorithm was used in the iterative process of determining plastic 
deformation. [14], and the end of the iterative process in the 
incremental step determined the conditions:

 01 1 1
0, Ys s Y s

ef efY Y  (4.9)

where: ΔY, ΔY0 they are assumed errors of the completion of the 
iterative process, they were assumed equal: ΔY = 10–3×Y(T,∑ηk), 
ΔY0 = 10–3×Y0(T,∑ηk).
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5. Example of calculations 

On the basis of the presented models pertaining to hardening 
phenomena we built a computer program to simulate hardening 
phenomena. By using this program a numerical simulation was 
carried out with respect to the progressive hardening of a carbon 
tool steel element. The initial structure was perlite (spheroidite). 
An axially symmetric object (shaft), 25 mm in diameter, was 
subjected to the simulation. A control area equal to h = 120 mm 
was adopted. It was assumed that from the coordinate z = h to the 
coordinate z = h + h∞ = 250 mm temperature changes linearly to 
the temperature of the cooling medium (T∞). Dimensions, source 
location, intensive cooling zone, and boundary conditions for the 
thermal conductivity equation are presented in figure 5.

Fig. 5. Diagram of the considere d system and adopted boundary con-
ditions

Surface layer heating was carried out by means of the 
volume source (simulating induction heating [17]) on the 
length of 10 mm to the depth of 2 mm from the outer surface. 
Thermophysical coefficients appearing in the conductivity 
equation (λ,ρ and c) were adopted as constant. Their values, 
calculated on the basis of data given in the works [2,9], were 
equal to: λ = 35 W/(mK), ρc = 5.5×106 J/(m3K), respectively. The 
cooling was carried out by the flux resulting from temperature 
differences between the side surface and the cooling medium 
(Newton boundary condition). Two lengths of the cooling zone 
were assumed, equal to 70 or 90 mm (Fig. 7)). Temperatures: 
initial of the object (T0) and of the cooling medium (T∞) were 
adopted as equal to 300 K. The heat transfer coefficient in the 
spray zone was constant, equal to 4200 W/(m2K). In the open 
zone, the heat transfer coefficient, with the radiation (αr) (cf. 2.5) 
was adopted with the value 50 W/(m2K). The adjustment rate of 
the object, in the control area, was equal to 36 m/hour. The force 

of the heating source, which ensured maximal temperature on the 
surface ≈1500 K with respect to the assumed rate (Figs 6 and 7), 
was determined to be 1.4 kW. It resulted in force density (Q in 
the equation (2.1)) equal to 9.7×108 W/m3, in the area of source 
activity. In the simulation of thermal phenomena, the heat of 
phase transformation was not considered due to the excessively 
small area heated above the temperature Ac1 (Fig. 6), heat of 
phase transitions was not taken into account. Temperature dis-
tributions, obtained from the simulation after the determination 
of the heating process, are presented in figures 6 and 7. 

Fig. 6. Temperature distributions in longitudinal section of hardened 
object, a) cooling the length of 70 mm, b) cooling the length of 90 mm

Fig. 7. Temperature distribution on a side surface of the hardened object

After object heating we carried out a simulation of phase 
transformation and mechanical phenomena determining the frac-
tions of phases, plastic strains and stresses. In the simulation of 
phase transformation into austenite, CHT diagram was used, i.e., 
curves Ac1(t) and Accm(t) (see Fig. 2). Distributions of particular 
phases obtained from the simulation of phase transformations, 
transformation kinetics in the surface layer and the history of 
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thermal and structural strain generation, are presented in figures 8 
and 9, respectively. 

In the simulation of mechanical phenomena, the Young’s 
modulus and the tangential modulus was dependent on tem-
perature, whereas the yield point – on temperature and phase 
composition of the object. Young’s modulus and tangential 
modulus (E and Et) were equal to E = 2×105 and Et=1,1×103 
[MPa] (Et = 0,055E), respectively, whereas the yield point (Y0(.)): 
150, 450, 1100 and 300 [MPa], for austenite, bainite, martensite, 
and perlite (ferrite), respectively, at the temperature 300 K. At 
the solidus temperature (1700 K) and higher, the Young’s modu-
lus and tangential modulus were adopted with values 100 and 
5.5 [MPa], whereas yield points were equal to 5 [MPa]. These 
values were adopted on the basis of data given in the works 
[2,9]. The assumed values of the Young’s modulus, tangential 
modulus and yield point for perlite (spheroidite), at the tempera-
ture 300 K, confirm the findings obtained from the static tensile 
test of the sample from the considered steel. By using discrete 
values of thermophysical sizes dependent on temperature it was 
possible to carry out approximation thereof by means of square 
spline functions (tangents for the temperature argument Ttn) to 
obtain the following approximation polynomials (temperature 
in Kelvin degrees). 
– for Young’s modulus and tangent module [MPa], 

Ttn = 970 K
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where: 
aj = (1.8394E+0005, 1.0709E+0002, –1.7848E-0001),
bj = (6.8785E+0005 –8.0912E+0002, 2.3798E-0001), 
j = 0,1,2.

– for yield points Y0(T0, ηk) [MPa] (k = 1,2,3,4,5 for austenite, 
bainite, ferrite, martensite and perlite, respectively),  
Ttn = 900 K
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where: 

aj
(1) = (1.3446E+0002, 1.0357E–0001, –1.7262E–0004),

bj
(1) = (3.7915E+0002, –4.4018E–0001, 1.2946E–0004), 

Fig. 8. Phases fractions, a) distributions along the radius, b) the kinetics 
of transformations in boundary layer

Fig. 9. The history of generating isotropic thermal and structural strains 
(εTph) in the core and in the surface layer (Fig. 5) 
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aj
(2) = (4.0232E+0002, 3.1786E–0001, –5.2976E–0004),

bj
(2) = (1.1533E+0003, –1.3509E+0000, 3.9732E–0004), 

aj
(3) = (2.6839E+0002, 2.1071E–0001, –3.5119E–0004),

bj
(3) = (7.6621E+0002, –8.9554E–0001, 2.6339E–0004), 

aj
(4) = (1.0273E+0003, 8.1786E–0001, –1.3631E–0003),

bj
(4) = (2.9595E+0003, –3.4759E+0000, 1.0223E–0003), 

aj
(5) = aj

(3), bj
(5) = bj

(3), j = 0,1,2.

Due to the complicated geometry of the object and the man-
ner of its hardening (progressive hardening), we used the equi-
librium equation in polar coordinates. Constitutive relationships 
adopted for the modified plane state of strain (ε·33(x3) = ε·z (z) ≠ 0) 
fulfilling the integral conditions: 

 
33

33 33

33 330 and 0d d N   (5.3)

where: N is the resultant normal force acting in cross-section G33 
(in cross-section perpendicular to the axis z = x3) (see Fig. 5), 
coming from the boundary conditions (in cases of conditions 
ensuring external static determination it is equal to zero). 

In the simulation of mechanical phenomena, with the as-
sumption regarding the modified plane strain state and normal 
resultant force zeroing (N = 0) in the cross-section of the object 
(Γ33). Therefore, it was assumed that in a given shaft ring with 
differential thickness δz = δz(z) (Fig. 5), due to the circumferential 
symmetry of heat load and from phase transformations, the total 
strains on the direction perpendicular to the cross-section are 
different from zero, (independent from the radius εz(r) = const), 
i.e., ε·33 = ε·z(z). These strains are determined by the integral 
equation (5.3):

After using the constitutive relationship for σ33 [14] and 
substitution to (5.3) gives the formula for ε·z(z):
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where: λ = λ(E(T),ν) μ = μ(E(T ),ν) are the Lame constants, E is 
Young’s module, ν it is Poisson’s ratio.

Unfortunately, non-zero strains in the direction perpendicu-
lar to the considered cross-section determined by the dependence 
(5.4) and inserted into the constitutive relationship (4.2) enforce 
an additional iterative process. In this iterative process, it was 
assumed that the termination of iteration is:

 331 43 10i i i
z z z   (5.5)

In the iterative process of searching for plastic deforma-
tion, the condition (4.9) is generally met in parallel with the 
conditions (5.5). 

The obtained simulation results of mechanical phenomena 
are presented on the figure 10÷13. Based on the analysis of the 
results from the simulation of such a hardening method, one can 
assess it, what influence on the hardening stress that is generated 

a)

b)

Fig. 10. Distributions of residual stress along the radius. a) influence of 
length of the cooling zone, b) with and without transformation plasticity 

Fig. 11. Distributions of residual stress along the radius. The influence 
of the type of strengthening 
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is to take into account in the stresses model transformation plas-
ticity, the length of the cooling area and the type of strengthening 
of the hardened material. 

6. Conclusions

During the analysis of findings obtained from the simula-
tion of progressive hardening of the tool steel object, which was 
heated by means of the movable volumetric heat source, one 
may observe that after the adoption of the heating and cooling 
method with respect to the hardened shaft, the retained austen-
ite, bainite and martensite occur only in surface layers (Fig. 8). 
It means that, already at this stage of the simulation, one may 
predict a positive distribution of hardening stresses and a positive 
strengthening zone of the material. Stress distributions after such 
hardening are very beneficial (Fig. 10¸12). In the surface layer, 

circumferential and axial stresses are compressive. Although 
the depth of the hardened zone is almost independent from the 
length of the cooling zone (Fig. 8a), a change of the length of 
the cooling zone has impact on the hardening stress distribution 
(Fig. 10a). It occurs due to the influence of a change of generated 
thermal and structural strains in cooling zones (Fig. 9a) on the 
generation history of hardening stresses (Fig. 12a). 

Even though the impact of transformation plasticity may be 
omitted in the simulation of progressive hardening of the surface 
layer heated by the surface volumetric movable heat source, the 
influence is already noticeable (Fig. 10b). Differences in the 
stress distributions are also obtained depending on the assump-
tion in the simulation with regard to the material that can have 
either an isotropic or kinematic strengthening characteristic 
(Fig. 11). These differences are not significant (despite the sig-
nificant difference in the stress generation history (Fig. 12b)), 
but – noticeable because in such a process there are in loading 
and unloading. It is also observed that in such a hardening 
method significant plastic strains are generated in the surface 
layer. Material strengthening appears in surface layers (Fig. 13) 
meaning that the surface layer after such hardening has good 
mechanical properties (increased yield point). 

Fig. 12. History of stress generating in the surface layer, a) influence of 
the cooling zone, b) influence of the type of strengthening 

Fig. 13. The effective plastic strain, a) distribution along the radius, b) 
history of generating strains in the surface layer 
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