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Characterization of SnO2/TiO2 with the Addition of Polyethylene Glycol  
via Sol-Gel Method for Self-Cleaning Application 

TiO2 is one of the most widely used metal oxide semiconductors in the field of photocatalysis for the self-cleaning purpose 
to withdraw pollutants. Polyethylene glycol (PEG) is recommended as a stabilizer and booster during preparation of water-soluble 
TiO2. Preparation of SnO2/TiO2 thin film deposition on the surface of ceramic tile was carried out by the sol-gel spin coating 
method by adding different amount of PEG (0g, 0.2g, 0.4g, 0.6g, 0.8g) during the preparation of the sol precursor. The effects of 
PEG content and the annealing temperature on the phase composition, crystallite size and the hydrophilic properties of SnO2/TiO2 
films were studied. The X-ray diffraction (XRD) spectra revealed different phases existed when the films were annealed at different 
annealing temperatures of 350°C, 550°C and 750°C with 0.4 g of PEG addition. The crystallite sizes of the films were measured 
using Scherrer equation. It shows crystallite size was dependent on crystal structure existed in the films. The films with mixed 
phases of brookite and rutile shows the smallest crystallite size. In order to measure the hydrophilicity properties of films, the 
water contact angles for each film with different content of PEG were measured. It can be observed that the water contact angle 
decreased with the increasing of the content of PEG. It shows the superhydrophilicity properties for the films with the 0.8 g of 
PEG annealed at 750°C. This demonstrates that the annealed temperature and the addition of PEG affect the phase composition 
and the hydrophilicity properties of the films.
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1. Introduction

Titanium dioxide (TiO2) has various environmental ap-
plications. Under UV light, the oxidation of biological species 
and organic compounds occurred through the photocatalytic 
properties of TiO2, providing a self-decontamination function. 
Next, TiO2 under the exposure of UV promotes photocatalyti-
cally induced superhydrophilicity which transforms the more 
hydrophobic surface to have better hydrophilic properties with 
better uniformity water film [1-3].

TiO2 is present in nature mainly in three crystalline forms: 
rutile, anatase and brookite [4]. The properties of TiO2 depend 
on many parameters like crystal phase, nanoparticle size and 
morphology. Of many materials that have been studied for 
photocatalysis, TiO2 has been extensively researched because 

it possesses may merits such as high photocatalytic activity, ex-
cellent physical and chemical stability, low cost, non-corrosive, 
nontoxicity and high availability [5]. The photocatalytic activity 
of TiO2 depends on its phase. The anatase phase is metastable and 
has a higher photocatalytic activity, while the rutile phase is more 
chemically stable but less active. Some TiO2 with a mixture of 
both anatase and rutile phases exhibit higher activities compared 
to pure anatase and rutile phases [6]. A large number of research 
works have been published on TiO2 modification to enhance its 
photocatalytic properties. There are numerous studies on surface 
modification by doping metal oxides with TiO2 for improvement 
in hydrophilicity and photocatalytic activity of the TiO2 thin 
films. Doping SnO2 with TiO2 thin films will give enhancement 
in charge carriers separation and reduction in oxidation rate, 
hence it is more effective in reactions of photocatalytic [1,7]. 
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Furthermore, polyethylene glycol (PEG) has been recom-
mended as a booster of photocatalytic and hydrophilic for the 
TiO2 films. Previous works has been reported by adding PEG 
during the synthesizing of TiO2 via sol-gel which gives a promi-
nent improvement in self-cleaning properties on the crystallite 
size, microstructure and surface adhesion of the TiO2thin films 
[8-10]. Porous films have been obtained by using PEG as 
a chelating agent. Some researchers used PEG in order to control 
the porosity of Fe3+ doped TiO2 films starting with Ti(OC2H5)4 
as TiO2 precursor and PEG with molecular weight of 600. The 
porosity increases with the PEG amount introduced in the film. 
Other researchers prepared TiO2 films starting with Ti(OC3H7)4 
and PEG with different molecular weights and amounts [11]. 

Sol-gel technique is a general and powerful technique which 
enables high-purity materials to be synthesized at low tempera-
tures. Sol-gel technique has become a trend amongst researchers 
when synthesizing TiO2 films in the various environment due to 
its simplicity, speed, and reproducibility [12-16]. This research 
focuses on SnO2 doped with TiO2 thin film via synthesizing, 
using the sol-gel spin coating method. 

2. Methodology

The preparation of TiO2 and SnO2 particle solutions were 
prepared separately. For TiO2 particle solution, 0.5 mL titanium 
(IV) isopropoxide (Ti (OC3H7)4) was added dropwise to 10 mL 
of absolute ethanol. For SnO2 particle solution, 0.3g of powder 
tin (II) chloride 2-hydrate (Cl2.Sn.2H2O) is added to 5 ml of 
absolute ethanol. Both solutions are then mixed with 0.5 mL 
of acetic acid. The primary solution is prepared 5 times by 
varying the amount of polyethylene glycol 2000 (PEG) added. 
Five combination volume ratios of titanium (IV) isopropoxide 
(Ti (OC3H7)4), tin (IV) chloride pentahydrate (SnCl4.5H2O), 
acetic acid, and polyethylene glycol 2000 (PEG) are shown in 
TABLE 1. Next, the mixture Sn solution is stirred via magnetic 
stirrer for 1 hour until it forms a clear solution. The spin coat-
ing processes are repeated 3 times at 3000 rpm for 60s to obtain 
a uniform and thin coating layer for samples, respectively. The 
films were deposited onto ceramic tiles. Lastly, the films were 
annealed at different temperatures which were 350°C, 550°C, 
and 750°C, respectively with a heating rate of 10°C/ min, for 
3 hours. TABLE 2 shows the annealing temperature of samples 
in the Vistec tube furnace model HTF-15/20 for 3 hours. 

TABLE 1
The modification of sol solution using different ratios

Solution
Volume Ratio Combination

1 2 3 4 5
Titanium (IV) 

isopropoxide, mL 0.5 0.5 0.5 0.5 0.5

Tin (II) chloride  
2-hydrate, mL 0.3 0.3 0.3 0.3 0.3

Acetic acid, g 0.5 0.5 0.5 0.5 0.5
Polyethylene glycol, g 0 0.2 0.4 0.6 0.8

TABLE 2

The annealing temperature used for different ratios  
in the tube furnace for 3 hours he modification of sol solution  

using different ratios 

Film Annealing 
Temperature (°C)

Volume Ratio Combination
1 2 3 4 5

(a) 350 A1 B1 C1 D1 E1
(b) 550 A2 B2 C2 D2 E2
(c) 750 A3 B3 C3 D3 E3

2.1. Characterization of the thin films

The phase composition and crystal structure of the TiO2 thin 
films were characterized by Bruker D2 Phaser which is a type 
of X-Ray Diffractometer with Cu Kα radiation (λ = 1.5406Å) 
at a scan rate of 0.1° per min ranging from 20° to 90°. On the 
other hand, the wettability test was conducted by measuring 
the contact angle of a drop of distilled water with the controlled 
volume on the surface of all prepared thin films. The hydrophilic 
property was evaluated by measuring the contact angle of the 
water droplet on the films under an ambient condition. A droplet 
was injected on the surface of the SnO2/TiO2 thin film using 1 μl 
micro-injector. Assuming that the geometry of the water droplet 
was a spherical section, the contact angle could be estimated 
by measuring the spreading diameter of the contact circle using 
a reading microscope. The complexity of contact angle analysis 
ranges was obtained from the simple visual estimation of the 
contact angle using an angle measurement tool to the mathemati-
cally rigorous technique found in the Low-Bond Axisymmetric 
Drop Shape Analysis (LBADSA) Plugin for ImageJ.

3. Results and discussion

3.1. Structural properties

Fig. 1 shows the X-ray diffraction (XRD) diffraction pattern 
for the films with 0.4 g of PEG which annealed at three different 
annealing temperatures; 350°C, 550°C, and 750°C. The XRD 
pattern has only shown the pattern of 0.4 g PEG because when 
only small amount of PEG was added, the XRD peak existed 
shown a mixed phases of anatase, rutile and brookite. It can be 
seen the film shows rutile phase for the film annealed at 350°C. 
The film showed the tetragonal structure in polycrystalline with 
the characteristic peaks corresponding to the plane of (111), 
(101), (211) and (220) planes, referring to ICDD card No. 01-
076-0323. Nonetheless, there is the occurrence of a mixed phase 
of anatase and rutile which was annealed at 550°C. The anatase 
phase which existed along with rutile also shows a tetragonal 
structure. The characteristic peaks of anatase were formed at 
2θ = 36.587°, 67.996° and 75.501° corresponding to the plane 
of (103), (116), and (301) (ICDD card No. 01-071-1169). The 
brookite phase was formed with rutile when the film was an-
nealed at 750°C. The brookite phase with orthorhombic structure 
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was clearly revealed by the diffraction peaks at 2θ = 20.388°, 
68.474° and 81.307° corresponding to the plane of (110), (324), 
(080) (ICDD card No. 01-082-112). However, the characteristic 
peaks of the film which was annealed at 550°C have a greater 
crystallinity compared to the films annealed at 350°C and 750°C. 
No characteristic peaks of metal Sn or SnO2 can be detected, 
because a small amount of Sn was added into the TiO2 parent 
solution and the peak is below the detection limit of the XRD. 
Besides that, it may be due to the uniform distribution of Sn 
particles in the titanium matrix, or the Sn peak is covered by 
the TiO2 peak owning to the high dispersion or a small amount 
of Sn addition. This is in a good agreement with another study 
reported by Xiufeng et al. [17]. 

It can be clearly seen that all of the TiO2 in SnO2/TiO2 
gel has been transformed to a rutile phase when the films were 
annealed at 350°C. When the annealing temperature increased 
to 550°C, the single phase of rutile, TiO2 started to change to 
dwi-phase of anatase and rutile of TiO2. While the annealing 
temperature was increased to 750°C, the dwi-phase of anatase 
and rutile were transformed to dwi-phase of rutile and brookite 
of TiO2. It can be seen that the annealing temperature had a great 
effect on the phase transition of TiO2. Furthermore, the crystallite 
size of the TiO2 in the films was estimated by using the Scherrer 
equation as follows:

 

.
cos
kD 

 
  	 (1)

where k = 0.9 is the Scherrer coefficient, λ = 1.540598 Å is the 
Cu Kα radiation wavelength, β is the full width at half maximum 
(FWHM) of the diffraction peak, and θ is the diffraction angle 
of the diffraction peak. The values of D (crystallite size of TiO2) 
for each film were summarized in TABLE 3. It was observed 

that crystalline size lies with a range of 5.366 nm to 13.508 nm. 
The crystallite size of rutile was 6.754 nm with the annealing 
temperature 350°C while the mixed phases of rutile and anatase 
formed the crystallite size of 13.508 nm when the annealing 
temperature increased to 550°C. With increase in the anneal-
ing temperature from 350°C to 550°C, the anatase crystallites 
grow bigger in size with a consequent reduction in the volume 
fraction of their grain boundary [18]. Then, the crystallite size 
of mixed phases of rutile and brookite were decreased from 
13.508 nm to 5.366 nm when the temperature of annealing was 
increased to 750°C.

The crystallite size was not dependent on annealing tem-
perature but it may due to the different crystal structure of TiO2 
existed in the films. TiO2 in bulk form exists in three crystalline 
polymorphs [19]: Two tetragonal phases of anatase and rutile and 
a third orthorhombic phase, brookite. The polymorphic transfor-
mation of TiO2 is complex. There occur in both phase conver-
sions as well as micro-structural modification on annealing at 
high temperatures [18]. The smallest crystallite size was shown 
in the films which was annealed at high temperature (750°C). 
It was observed that the volume of the unit cell in the polymorph 
shrank slightly with the increase in the annealing temperature 
and it may be due to the increasing pressure developed at higher 
temperatures [20]. 

TABLE 3
Crystallite size calculated using Scherrer equation  

for the SnO2/TiO2 thin films

Film Annealing Temperature (°C) Crystallite size (nm)
(a) 350 6.754
(b) 550 13.508
(c) 750 5.366

Fig. 1. XRD diffractogram for 0.4 g of PEG in SnO2/TiO2 thin films at different annealing temperature; (a) 350°C; (b) 550°C; (c) 750°C
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3.2. Hydrophilicity properties 

The are several self-cleaning properties and one of the most 
promising properties is the hydrophilic property. The hydrophilic 
property was based on the contact angle of the water droplet 
on the films between the thin film and the water droplet under 
an ambient condition. The hydrophilic property was reflected 
from a water droplet test which shows that the thin film will 
become hydrophilic when the contact angle is between 0° to 90°. 
The image of water droplet was captured by the optical micro-
scope. The optical image obtained was input into a computer to 
measure its contact angle Image J Software. Fig. 2 shows the 
water droplet becoming smaller as the amount of PEG increases 
when the thin film annealed at the temperature of 350°C, 550°C 
and 750°C. However, the lowest water contact angle observed 
was from the samples annealed at 750°C and this is known as 
superhydrophilicity.

The superhydrophilicity properties of films which was an-
nealed at 750°C is in a good agreement with Diebold et al. which 
claim that there are structural differences between the anatase, 
brookite and rutile surfaces, which are responsible for the differ-
ent interaction of the two polymorphs with molecules and for the 
different photocatalytic reactivity [21-22]. Much work has been 
also done in recent years on the influence of sub-surface defects 
on the anatase surface reactivity toward water [23], so confirm-
ing that the interaction of the ‘‘clean’’ TiO2 surface with water 
depends on the particular ‘‘form’’ of the considered material, 
including the abundance of defects present on non-stoichiometric 
reduced surfaces. The proportion of H2O molecules strongly 
coordinated to cus Ti4+ over H2O molecules strongly H-bonded 
to titanol (Ti-OH) species depends the structural features of the 
‘‘clean’’ surface of the different polymorphs (e.g., distances 
between the surface-active sites) [24]. 

Fig. 2. Optical image of water droplet contact angle of SnO2/TiO2 thin films with different amount of PEG (0.0 g, 0.2 g, 0.4g, 0.6 g and 0.8 g) 
(refer Table 2)
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Meanwhile, Fig. 3 shows the water contact angle versus 
amount of PEG added in SnO2/TiO2 thin films. The highest 
measured value for contact angle was 66.92° for sample A1 
which was synthesized by adding 0g of PEG for the sample 
which was annealed at a temperature of 350°C. On the other 
hand, the lowest measured value for contact angle was 24.30° 
for sample E3 which was synthesized by adding 0.8g of PEG 
and the annealing temperature used was 750°C.

The results exhibit that samples A1, B1, and C1 which 
were synthesized using volume ratio 1, decreased due to the 
increasing of annealing temperature. According to Che Halin et 
al, at high temperature of annealing process, the formation of 
anatase phase will be present where the film will be oxidized 
and turn into oxide. This will affect the increasing of crystallite 
size. The formation of anatase phase and the grain growth were 
the result of diffusion of the titania species towards the nucle-
ated grain. Besides that, the water contact angle also decreases 
when more PEG is added. PEG helps to improve the surface of 
the thin film by forming a porous surface. PEG also increases 
the active surface area with porous surface structure due to pore 
forming properties. It could be described that the post-annealing 
temperature greatly affects the hydrophilic properties that can 
alter the lowering of the wettability on the surface of TiO2 by 
adding it from outside, to the subsequent films to strengthen the 
hydrophilic properties [25]. 

The content of PEG in samples had a clear effect on the 
hydrophilic properties of the film. It can be seen that the larger 
PEG content in the TiO2 film, the lower the water contact angle 
value obtained. Generally speaking, the increase in the PEG con-
centration is favourable to improve wettability. This observation 
can be explained as follows: During the preparation, PEG was 

introduced in TiO2 solution, thin film was then coated and ther-
mally treated at high temperature to evaporate the PEG and create 
pores in the film. Therefore, the presence of PEG will normally 
make the film highly porous and increase internal surface area, 
which will subsequently also enable more water molecules to 
be absorbed, hence increasing the number of free OH groups on 
the film surface. These OH groups will create hydrogen bonds 
with water so that the water can easily spread itself on the film 
surface and thus decrease water contact angle values. However, 
the porosity of the film can be only optimal at a certain PEG 
concentration. At a high content of PEG greater than the optimal 
concentration, the porosity of the film will be deteriorated due 
to phase separation of TiO2 and PEG – they will be unevenly 
distributed in solution as well in film, as the aggregation of TiO2 
particles into islands will take place and the total internal surface 
area will decrease [26].

4. Conclusion

The SnO2/TiO2 thin films were successfully synthesized by 
the sol-gel method via spin coating and annealed for 3 hours at 3 
different temperatures; 350°C, 550°C and 750°C. The XRD pat-
tern has only shown the pattern of 0.4 g PEG because when only 
small amount of PEG was added, the XRD peak show a mixed 
phases of anatase, rutile and brookite. It shows the annealing 
temperature of the film leads to crystallization in the anatase 
structure above 350°C. The film which was annealed at 550°C 
has mixed phases of anatase and rutile with tetragonal crystal 
structure. The mixed phase of rutile and brookite has a tetragonal 
and orthorhombic crystal structure which was annealed at 750°C, 

Fig. 3. Water contact angle versus amount of PEG for the SnO2/TiO2 thin film
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showing the smallest crystallite size. The crystallite size and 
the transition phases existed in the TiO2 was due to annealing 
temperature. The water contact angles for each film with differ-
ent content of PEG were measured to observe the hydrophilic-
ity properties. It can be observed that the water contact angle 
decreased with the increasing of the content of PEG. It shows 
the superhydrophilicity properties for the films with the 0.8 g 
of PEG annealed at 750°C. The value of water contact angle 
obtained for all films show a superhydrophilic property. The film 
with a larger amount of PEG with the annealing temperature of 
750°C shows the lowest water contact angle. It shows that the 
annealed temperature and the addition of PEG affect the phase 
composition and the hydrophilicity properties of the films.
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