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Titania Nanoparticles Doped Electrospun Membranes

Electrospun membranes exhibit very promising properties, such as high surface area, high surface area-to-pore volume ratio, 
high pore interconnectivity, and uniform pore distribution. Nanoparticles are a promising alternative for improving the properties 
of the electrospun membranes. Titania nanoparticles, which are stable, resistant, and non-toxic, have various applications including 
water treatment, sensors, food additive and cosmetics. Due to the high hydrophilicity of titania nanoparticles, membrane fouling is 
reduced in titania nanoparticles doped membranes. Titania nanoparticle doped polyacrylonitrile (PAN) nanocomposite electrospun 
membranes were prepared by electrospinning method in this work. Compared to bare PAN electrospun membranes 0.05% titania 
nanoparticles doped electrospun membranes have thinner nanofibers, higher hydrophilicity and almost 2 times lower bovine serum 
albumin adsorption, which shows lower fouling tendency.
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1. Introduction

One dimensional nanocomposite fibers are used in sensors, 
membrane filtration, biomedical applications, energy production, 
etc. due to their improved electrical, optical and chemical prop-
erties [1-7]. There are various methods to produce nanofibers, 
including drawing, templates, phase separation, self-assembly, 
and electrospinning [8]. Among them, electrospinning is the 
most practical, economical, and fast [9,10]. Electrospinning 
has attracted attention since its discovery in 1934. Nanofibers 
prepared by electrospinning has many remarkable features such 
as small diameter (50 nm-10 mm), high aspect ratio (length-to-
diameter ratio), large specific surface area (ratio of surface area 
to volume), diversity in composition, unique physicochemical 
properties, flexibility in chemical / physical surface function-
alization [5,11,12]. Nanomaterial addition can enhance the 
properties of electrospun nanofibers like electrical conductivity, 
mechanical properties, antibacterial properties, etc. [13]. There 
are many studies about preparing nanomaterials doped electro-
spun nanofibers to be used in energy generation and storage, 
water treatment and environmental remediation, healthcare and 
biomedical engineering [14]. 

Electrospun membranes have very promising properties 
such as high surface area, a high surface area-to-pore volume 

ratio, high pore interconnectivity, and uniform pore distribution. 
Due to these properties, electrospun membranes are gaining 
a wide attention to be used in separation processes [15]. One 
limitation of the electrospun membranes is pore size [16] which 
ranges from 10 nm to 100 µm [17]. Membranes with smaller 
pore size cannot be produced by electrospinning. In addition, 
electrospun membranes might act as adsorbents with an interpen-
etrating porous structure [18]. There are many recent researches 
in functionalizing electrospun nanofibers to improve their ap-
plicability in different areas [19]. Nanoparticles are a promis-
ing alternative for improving the properties of the electrospun 
nanofibers. Properties like uniform pore size, narrow pore size 
distribution, hydrophilicity, mechanical strength, and stability 
can be enhanced by nanoparticle addition in the nanofiber struc-
ture [19]. Even though nanoparticle leaching might be possible 
in nanoparticles doped polymeric materials, it can be prevented 
by chemical bonding with novel immobilizing strategies [20]. 
In addition, nanoparticles might possess higher risk of toxicity 
than the corresponding bulk. The potential hazards of the metal 
nanoparticles to humans are not fully elucidated yet [21]. 

Titania nanoparticles are stable, resistant, and non-toxic. 
Hence, they have various applications, including water treat-
ment, sensors, food additive and cosmetics [22-24]. Due to the 
high hydrophilicity of titania nanoparticles, membrane fouling 
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is reduced in titania nanoparticles doped membranes [25]. The 
objective of this work is to synthesize titania nanoparticles 
doped polyacrylonitrile (PAN) nanocomposite electrospun 
membranes by electrospinning with lower fouling tendency. 
Fourier transform infrared (FTIR) spectroscopy and scanning 
electron microscopy (SEM) were employed for characterizing the 
nanocomposite electrospun membranes. The major obstacle to 
the application of membranes is fouling, which is mostly caused 
by adsorption of proteins [26] or protein-like substances [27]. 
Bovine serum albumin, mostly used macromolecule in mem-
brane filtration tests [28], was chosen as a model protein in this 
study and bovine serum albumin adsorption of nanocomposite 
electrospun membranes was determined.

2. Materials and methods

Titania nanoparticles (with a diameter of less than 25 nm) 
and anhydrous N, N-dimethyl formamide (DMF, 99.8%) were 
purchased from Sigma (USA), and PAN (with a molecular weight 
of 150,000) from Polysciences Inc. (USA). 

The dope solution for the nanofiber synthesis was prepared 
as follows: Initially, titania nanoparticles were ultrasonicated 
in DMF, then PAN was dissolved. Afterwards, the solution 
was ultrasonicated to remove air bubbles. All nanofibers were 
synthesized by using the electrospinning instrument (NE100, 
Inovenco Co. Ltd., Turkey) represented in Fig. 1.

Fig. 1. Schematic representation of electrospinning instrument

Electric field was generated between the nozzle system and 
a rotating collection drum. There were 4 nozzles with an inner 
diameter of 700 μm each. The rotation speed of the collection 
drum was 350 rpm. A syringe pump was used for pumping 
the dope solution. Nanofibers were collected on a non-woven 
fabric. Initially, voltage applied, distance between the nozzle 
system and the collection drum, and the feed rate of the dope 
solutions were optimized for all solutions. Then these values 
(TABLE 1) were used for nanocomposite electrospun membrane  
synthesis.

Table 1

Electrospinning characteristics

Membrane 
Name

nTiO2 Ratio 
(%)

Voltage 
(kV)

Feed Rate 
(mL/h)

Distance 
(cm)

P/T-0 0 35 6 16
P/T-0.05 0.05 34 12 16
P/T-0.10 0.10 34 12 16
P/T-0.20 0.20 34 10 16

A viscosimeter (Vibro, And, Japan) was used to measure the 
viscosities of the polymer solutions. SEM (Quanta FEG 250; FEI, 
USA) and FTIR (Spectrum Two, Perkin Elmer) were used to deter-
mine the surface morphologies and the structure of the nanocom-
posite electrospun membranes, respectively. Average fiber diam-
eters were reported by averaging the diameters of the 20 nanofib-
ers from each of 20 different SEM images for each membrane. 

The structures of the electrospun membranes were exam-
ined by FTIR (Spectrum Two, PerkinElmer, USA), and their 
surface hydrophilicity was determined using a contact angle 
goniometer (Theta Lite, Attension, Sweden). It is calculated 
by averaging at least seven contact angle values measured for 
each membrane.

For the adsorption tests, membranes were cut into small 
pieces and immersed into 1 g/L BSA solution, prepared using 
a 10 mM phosphate buffer solution at pH 7, at room tempera-
ture for 4 h. Afterwards, the coupons were ultrasonicated in DI 
water for 2 min. The amount of the adsorbed BSA was directly 
measured using a UV-vis spectrometer (UV-VIS Spectropho-
tometer Shimadzu, Japan) at 280 nm. Calibration curve of BSA 
at concentrations ranging from 0.020 g/L to 1.0 g/L was used 
for BSA quantification. The linear calibration equation of the 
data was y = 0.0006x – 0.0068 (R2 = 0.9998). The average of at 
least two measurements was reported.

3. Results and discussion

Viscosities of the polymer solutions of the electrospun 
membranes are given in TABLE 2. As shown in the table 
titania nanoparticles addition increased the viscosity of the 
polymer solution. The increase in the viscosity in the polymer 
solution improved the dispersion of the nanoparticles in the 
polymer solution.

Table 2

Viscosities of the polymer solutions

Membrane Name Viscosity (Pa.s) Temperature (°C)
P/T-0 3.25 21.0

P/T-0.05 4.09 20.3
P/T-0.10 3.70 20.1
P/T-0.20 3.65 20.2

SEM images of the electrospun membranes are given in 
Fig. 2. SEM images show that no beads were formed in any of the 



349

Fig. 2. SEM images of electrospun membranes at different magnifications; (a) P/T-0 at 1000× magnification, (b) P/T-0 at 10000× magnification, 
(c) P/T-0.05 at 1000× magnification, (d) P/T-0.05 at 10000× magnification, (e) P/T-0.1 at 1000× magnification, (f) P/T-0.1 at 10000× magnifica-
tion, (g) P/T-0.2 at 1000× magnification, (h) P/T-0.2 at 10000× magnification
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electrospun membranes. The balance between the electrostatic 
repulsion, surface tension, and viscoelastic forces determines 
the quality of the fibers in the electrospinning process. Increase 
in viscosity of the polymer solution results in suppression of 
the surface tension due to the electrostatic repulsion and viscoe-
lastic forces. Bead free and smooth fibers were formed by the 
dominating viscoelastic forces [9].

The average of the nanofiber diameters determined is 
shown in Fig. 3. Reported nanofiber diameters of the electrospun 
membranes are the average of the 20 nanofibers from 20 differ-
ent SEM images for each membrane. Addition of 0.05% titania 
nanoparticles in the polymer solution reduced the nanofiber 
diameter. However, further increase in the titania nanoparticles 
amount resulted in increased nanofiber diameter. 

Fig. 3. Fiber thicknesses of the electrospun membranes

FTIR spectra recorded in the spectral range of 4000-400 cm–1 
of the electrospun membranes are given in Fig. 4. The peak 
around 2250 cm−1 corresponds to C≡N stretching vibration [29], 
around 1260 cm−1 corresponds to weak ether peak (C–O–C) 

of PAN [30]. Compared to the bare PAN electrospun membrane, 
(P/T-0) two new peaks were observed in titania nanoparticles 
doped PAN electrospun membranes (P/T-0.05, P/T-0.1, P/T-0.2) 
around 874 cm–1 and 972 cm–1 corresponding to Ti–O–Ti vibra-
tions [29,31], which confirmed the presence of titania nanopar-
ticles into the nanofiber matrix.

Hydrophilicity of the membranes was evaluated by de-
termining contact angles (Fig. 5). Lower contact angle shows 
higher hydrophilicity and higher contact angle shows higher 
hydrophobicity. Addition of titania nanoparticles increased the 
hydrophilicity of the electrospun membranes. Moreover, increas-
ing the titania nanoparticles amount in the fiber composition 
increased the hydrophilicity of the electrospun membranes. The 
increased hydrophilicity of the membrane can not only increase 
the water permeability but also reduce the fouling by reducing 
protein adsorption [32].

Fig. 5. Contact angles of the electrospun membranes

BSA was chosen as a model protein for determining the 
adsorption resistances of the electrospun membranes. BSA 
adsorption on electrospun membranes is shown in Fig. 6. Ad-

Fig. 4. FTIR spectra of electrospun membranes Fig. 6. BSA adsorption on electrospun membranes
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dition of titania nanoparticles in the structure of the nanofibers 
of the electrospun membranes reduced the BSA adsorption 
almost 2 times compared to the bare membranes at neutral pH. 
This indicates the potential usage of titania nanoparticles for 
alleviating the fouling. Al-Ani et al. [33] showed a prolonged 
membrane lifetime during long-term applications of titania na-
noparticles doped membranes. Similarly, titania nanoparticles 
doped electrospun membranes prepared in this study might be 
used for a long time applications with reduced fouling.

4. Conclusions

The preparation and fouling behavior of titania nanopar-
ticles doped PAN electrospun membranes were investigated, 
with several conclusions subsequently drawn. These conclusions 
include the following.
•	 Titania nanoparticles doped PAN electrospun membranes 

were successfully synthesized by the electrospinning 
method. New peak formations in FTIR analysis confirmed 
that titania nanoparticles successfully blended into the 
nanofiber structure.

•	 Nanofibers of the titania nanoparticles doped PAN electro-
spun membranes are thinner than the bare membranes.

•	 Titania nanoparticles doped PAN electrospun membranes 
are more hydrophilic than the bare membranes.

•	 BSA adsorption on titania nanoparticles doped PAN elec-
trospun membranes are almost 2 times lower than the bare 
membranes, indicating potential usage of titania nanopar-
ticles for alleviating the fouling. 

•	 Titania nanoparticles doped PAN electrospun membranes  
can be an alternative to surface water filtration with their re-
duced adsorptive fouling tendency. However, additional stud-
ies, including filtration tests with complex water matrix and 
composition of the feed water effects on the fouling behavior 
of the membranes, will need to be performed in the future.
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