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MODELLING OF MICROSTRUCTURE CHANGES DURING HOT DEFORMATION USING CELLULAR AUTOMATA

MODELOWANIE ZA POMOCĄ AUTOMATÓW KOMÓRKOWYCH ZMIAN MIKROSTRUKTURY PODCZAS ODKSZTAŁCENIA
NA GORĄCO

The paper is focused on an application of the cellular automata (CA) method to description of microstructure changes in
continuous deformation condition. The model approach consists of Cellular Automata model of microstructure development
and the thermal-mechanical finite element (FE) code. Dynamic recrystallization phenomenon is taken into account in 2D CA
model which takes advantage of explicit representation of microstructure, including individual grains and grain boundaries.
Flow stress is the main material parameter in mechanical part of FE and is calculated on the basis of average dislocation
density obtained from the CA model. The results obtained from the model were validated with the experimental data. In
the present study, austenitic steel X3CrNi18-10 was investigated. The examination of microstructure for the initial and final
microstructures was carried out, using light microscopy, transmission electron microscopy and EBSD technique. Compression
forces were recorded during the tests and flow stresses were determined using the inverse method.
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W artykule przedstawiono model, który opisuje zmiany struktury w warunkach ciągłego odkształcenia z wykorzystaniem
automatów komórkowych. Opracowane rozwiązanie wykorzystuje połączenie modelu automatów komórkowych (ang. Cellular
Automata, CA) zmian mikrostruktury i kodu elementów skończonych rozwiązującego problem termomechaniczny. Do opraco-
wania modelu zmian mikrostruktury wykorzystano dwuwymiarową siatkę automatów komórkowych. Model zmian naprężenia
uplastyczniającego bazuje na średniej gęstości dyslokacji wyliczonej poprzez homogenizację gęstości dyslokacji w siatce au-
tomatów komórkowych. Opracowany model zweryfikowano w oparciu o wyznaczone krzywe płynięcia dla stali austenitycznej
X3CrNi18-10 i badania mikrostruktury z wykorzystaniem mikroskopii świetlnej, transmisyjnej mikroskopii elektronowej oraz
techniki EBSD. Naprężenie uplastyczniające zostało wyznaczone w oparciu o metodę obliczeń odwrotnych na podstawie danych
uzyskanych z prób osiowosymetrycznego ściskania.

1. Introduction

Over the last ten years the models of recrystallization
phenomena have become extended by several groups of
approaches based on direct representation of microstruc-
ture. The interactions between individual grains and in-
side grain interiors can be simulated using the methods
such as Monte Carlo (MC), Cellular Automata (CA),
Phase Field (PF), Vertex Method and others (a review
can be found e.g. in [1]). The key concept of these meth-
ods is to represent a microstructure in a suitable compu-
tational lattice by a spatial discretization in two or three
dimensions. An initial representation of the microstruc-
ture is commonly generated using normal grain growth
algorithm. In previous studies, the grain size was consid-

ered as a major parameter describing the microstructure
represented in the lattice. Minor emphasis was put on
grain misorientation distribution in the initial microstruc-
ture, despite the initial misorientation affects the recrys-
tallization process to a large extent. In particular, the
nucleation process is influenced by the presence of spe-
cific types of grain boundaries. The paper is focused on
application of a multi-scale 2D method in hot forming.
Modern Cellular Automata models of recrystallization
phenomena take into account the influence of grain mis-
orientation on both the nucleation and the growth of
new grains. Therefore, correctness of the assumptions
on misorientation between the grains is crucial for the
overall reliability of the CA simulation.

Over the last decade several successful applications

∗ SILESIAN UNIVERSITY OF TECHNOLOGY, FACULTY OF MATERIALS SCIENCE AND METALLURGY, 40-019 KATOWICE, 8 KRASIŃSKIEGO STR., POLAND
∗∗ AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, FACULTY OF METAL ENGINEERING AND INDUSTRIAL COMPUTER SCIENCE, 30-049 KRAKÓW, 30 MICKIEWICZA AV., POLAND



524

of the CA in simulation of dynamic recrystallization can
be found in the literature, e.g. [2–5]. The CA method of-
fers a reasonable balance between its computational sim-
plicity and ability to provide quantitative results. Howev-
er, the boundary conditions that are imposed in the CA
simulation of dynamic recrystallization are usually sim-
plistic. For example, constant temperature and strain rate
are typically assumed throughout the entire deformation
process. One can make more realistic assumptions on the
boundary conditions by combining the CA method with
a macroscopic model of deformation process. A specific
coupling of the CA with the FE method is referred to
as a CAFE approach [6]. The CAFE consists of Cellu-
lar Automata model of microstructure development and
the thermal-mechanical Finite Element (FE) macroscop-
ic simulation. If a hot forming process is considered, the
CAFE model can take into account the recrystallization
phenomena. For example, the dynamic recrystallization
phenomenon can be modelled by the CA, which takes
advantage of an explicit representation of the microstruc-
ture, dealing with individual grains, grain boundaries and
inertia of the grains. Flow stress is the main material pa-
rameter in the FE mechanical part of the CAFE and is
calculated on the basis of average dislocation density ob-
tained from the CA model. Some previously published
results that were obtained using this approach appear
very encouraging, see [5, 7].

In the present study, austenitic X3CrNi18-10 steel
was investigated. This specific material was selected to
avoid phase transformation in the lower range of temper-
atures. The samples were subjected to an axisymmetrical
hot compression test. The results attained from the CA
model were validated with the experimental data.

2. Cellular automata model of recrystallization

In general, any Cellular Automaton is described by
a quadruplet: <L, S, F, N>, where L is a lattice (spa-
tial ordering) of the cells, S is a state of the cell, F
is a state transition rule governing an evolution of the
state in consecutive time steps and N is a definition of
neighbourhood describing a range of local interactions
between the cells. In the current work the CA is used for
modelling of the microstructure and dislocation density
evolution. The 2D CA lattice of cells represents a cross
section of a three dimensional microstructure and repro-
duces topological relations between the grains. These
relations include length of the grain boundaries (GB) as
well as selected properties of the boundary, e.g. its mis-
orientation. Periodic boundary conditions are imposed
at the outer edges of the lattice. The pseudohexagonal
neighbourhood provides a context for the state transition
rule as described in [1]. The state of each CA cell is

described by three state variables: 1) local dislocation
density ρ, 2) distance variable x that controls migration
of GB, 3) assignment to a grain.

The grains in the system are modelled by Distant
Neighbourhoods (DN). Detailed motivation for the con-
cept of DN and its description are presented in [3]. Every
instance of the DN keeps an internal state which com-
prises: 1) orientation of a grain φ, 2) average disloca-
tion density inside the grain ρgr and 3) number of cells
belonging to the grain. The evolution of average dislo-
cation density is calculated separately for each grain in
the computational lattice, according to the differential
equation in which the first term describes a hardening
of material, while the second expresses the influence of
a dynamic recovery [8]:

dρgr

dt
= k1

ε̇

bl
− k2ε̇

m exp
(
Qs

RT

)
ρgr (1)

where t is time, b is Burgers vector, l is a mean free path
of dislocation, ε̇ is strain rate, Qs is activation energy of
self-diffusion, T is temperature, R is gas constant and
k1, k2, m are parameters.

The equation (1) is solved numerically using the
fourthorder Runge-Kutta method. The average disloca-
tion density calculated in the previous time step is used
as an initial condition for the subsequent step. Once the
increment of dislocation density ρgr is calculated, the ρ
variable in the CA cells belonging to the grain is up-
dated using a nondeterministic algorithm ensuring ho-
mogeneous distribution of dislocation density inside the
grain.

Nucleation of new grains and their successive
growth is reproduced in the model by the state tran-
sition rules. Despite the rules itself are deterministic,
the result of their application is not deterministic, due to
quasi-random neighbourhood definition and dislocation
density distribution within the CA lattice. The rule de-
scribing the nucleation of new grains is based on critical
dislocation density criterion. The nucleus appears if the
cell is located at the GB and the dislocation density in
the cell reaches a critical value ρc, according to equation
derived from [9]:

ρcr =

(
20

3bτ2

ε̇ (ε)
l (ε,D)

γ (θ)
M (θ,T )

)1/3

(2)

where γ is GB energy, M is GB mobility, τ is average
energy of dislocation line, θ is GB misorientation angle
calculated as θ = |φ1 – φ2|, where φ1 and φ2 are orienta-
tion variables of grains on both sides of GB. Due to both
heterogeneous distribution of dislocation density within
the grains as well as the misorientation dependence of
ρc, it is possible to select a subset of sites in the CA lat-
tice in which the nuclei may appear. The current model
allows the nuclei to appear rather due to actual process
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conditions than due to a premise on an a priori known
nucleation rate. Once the CA cell is selected as a nucle-
us, the dislocation density in the cell is set to ρDRX and
new instance of DN is created. A random orientation is
assigned to a newly created grain.

The further growth of recrystallized grains is de-
scribed by the second rule, which may increment the
state variable x. In principle, this rule is based on the
GB velocity, which is a product of GB mobility M and
the driving force for growth F:

∆x =
α√
S

MF∆t (3)

where ∆t is length of the time step, S is area of the 2D
CA cell and α is a scaling factor.

The distance variable is updated by using a threshold
function, which ensures 0 6 x 6 1. The GB mobility is
assumed to depend on GB misorientation angle and the
temperature of the system. Mobility of an arbitrary GB
is limited by a mobility of high angle boundary [10]:

M (θ,T ) = M0 exp
(−Q
kT

) [
1 − exp

(
−B

θ

θm

)n]
(4)

where M0 is a pre-exponential factor, Q is activation en-
thalpy for GB motion, k is Boltzmann constant, T is tem-
perature, θm – misorientation angle for high angle GB
and B, n are coefficients.

Grain boundary energy γ is calculated according to
the Read–Shockley equation [10]:

γ (θ) = γm
θ

θm

(
1 − ln

θ

θm

)
(5)

where γm is GB energy for high angle boundaries ex-
ceeding misorientation θm.

An equation describing a driving force for grain
growth is based on an assumption that the grain bound-
aries migrate mainly due to a difference in stored energy
on both sides of the boundary. Therefore, the effect of a
difference in dislocation density across the GB prevails
over any other factors (e.g. curvature of the boundary)
that may control the migration of the GB [1]. The driving
force is calculated according to the difference in dislo-
cation density between the current CA cell belonging
to the recrystallized grain and the ith neighbouring cell
belonging to the deformed matrix:

F =
πD2τ

M

R∑

i=1

(ρi − ρ) (6)

where R is a number of neighbouring cells belonging to
other grains, D is the equivalent grain size.

The CA model of DRX provides the macroscop-
ic mechanical FE with the flow stress. In the current

model the flow stress is calculated by homogenizing the
dislocation density over the whole CA lattice. The ho-
mogenization procedure delivers an average dislocation
density inside a representative volume of material that is
connected to a given FE integration point. Subsequently,
the average dislocation density is used for calculation of
the flow stress, which is an essential material parameter
for the FE model:

σ f (t, ε̇,T ) = αµb
√
ρCA (t, ε̇,T ) (7)

where α is a coefficient, µ is shear modulus, b is a length
of the Burgers vector, t is time and ρCA is the average
dislocation density in the CA lattice.

3. Experimental procedure

An austenitic steel X3CrNi18-10 was investigated.
This steel grade does not undergo a phase transforma-
tion in a lower range of temperatures, which simpli-
fies a quantitative characterization of the microstructure.
The steel was used for a preparation of samples for the
axisymmetrical hot compression tests on a GLEEBLE
3800 simulator. The compression tests were conducted
at temperature in range 900-1100◦C and a strain rate of
0.001-0.1s−1. The samples were rapidly quenched after
the deformation in order to freeze the microstructure.
The metallographic investigation was performed on an
OLYMPUS GX51 light microscope. Structural studies
were conducted on longitudinal sections of the samples.
Misorientation maps were elaborated in that case on a
high-resolution scanning electron microscope. Process-
ing of the results (i.e. obtaining maps, distributions, etc.)
was performed using TSL OIM Data Collection 5. As a
result of the examination, structural maps were obtained
for the steel in its initial state after soaking and after
hot plastic deformation, which allowed one to determine
distributions of misorientation angles and grain size dis-
tributions in the samples.

The examination of the substructure was carried out
by means of a JEOL 100B transmission microscope of
accelerating voltage of 100 kV. The mean dislocation
density was calculated by use of a method based on
counting the inter-section points of a network superim-
posed over the micrograph with dislocation lines. The
dislocation density ρ as calculated for the thin foils ac-
cording to the relation [11]:

ρ =
x(n1/l1 + n2/l2)

t
(8)

where x is a coefficient which defines the fraction of
invisible dislocations with Burgers vectors a/<111> for
the A1 structure [11]:
x = 2 for image of dislocations observed in (111) reflex,
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x = 1,5 for image of dislocations observed in (200) reflex,
x = 1,5 for image of dislocations observed in (220) reflex,

l1(2) is the total length of the horizontal (vertical)
lattice lines n1(2) is a number of intersections of the hor-
izontal (vertical) lattice with dislocations, and t is the
thickness of the foil.

The thickness of the foil in the investigated areas
can be approximately calculated following the formula:

t = n ·ζhkl(9)

where n is a number of extinction lines; ζhkl is a value
of extinction. The values of extinction ζhkl can be found
in [12]. One should remark that the value of extinction
depends on various factors, including chemical composi-
tion of the sample. For this reason the value of ζhkl given
in [12] must be considered as a rough estimation of the
actual value of extinction for the investigated material.

4. Results

The CA simulation requires an initial representa-
tion of the microstructure in the computational lattice. A
CA-based algorithm of normal grain growth was used for
this purpose. A method that generates initial microstruc-
tures bearing resemblance to the initial ones is described
in detail elsewhere [3]. The digital microstructure con-
sisted of 100 grains. The generated microstructure re-
sembled the austenitic structure that had been obtained
after the heat treatment of the samples. The investigat-
ed steel had a diverse grain size with a small number
of annealing twins (Fig. 1). The plot of the generated
microstructure is shown in Figure 2. The distribution
of grain size for the real microstructure of the mater-
ial is shown in Figure 3a. The Kolmogorow-Smirnow
statistical test has confirmed compatibility of grain size
distribution in the generated and real microstructure.

Fig. 1. Microstructures of the investigated steel after solution heat treatment at 1150◦C 1h

Fig. 2. A generated representation of the austenitic microstructure in the 2D CA lattice. The microstructure consists of 100 grains,
misorientation angles of grain boundaries are marked with colour scale
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a) b)

Fig. 3. Distribution of average equivalent diameter of grain plane section (a) and misorientation angle (b) as obtained from the experimental
data and calculated using the CA model for the sample in the initial state

Fig. 4. Typical microstructures after hot deformation of investigated
austenitic steel. The samples were subjected to deformation ε= 1 in
the following process conditions: a) 1100◦C / 0.01 s−1, b) 1100◦C
/ 0.1 s−1 and c) 1100◦C / 1 s−1. A completely dynamically recrys-
tallized microstructure is observed in Fig. c) while Fig. d) shows a
bimodal microstructure

As a result of this procedure, an initial representation
of microstructure minimizing the discrepancies between
experimental and calculated misorientation is obtained.
The comparison of the misorientation angles in the arti-
ficial microstructure with the EBSD data is presented in
Figure 3b.

For the entire analysed range of deformation rates,
substantial changes in the structure were observed, as
they were induced by the dynamic recrystallization
process. For instance, an entirely dynamically recrystal-
lized microstructure was observed after the deformation
at temperature 1100◦C at the rate of 0.01 s−1 and 0.1 s−1

(Fig. 4a, b). After compression at 1100◦C / 1 s−1 a bi-
modal structure consisting of recrystallized grains and
elongated primary grains was detected (Fig. 4c).

Influence of deformation on the redevelopment
process of the microstructure is presented in an EBSD
map shown in Figure 5. As the deformation increases,
new recrystallized grains gradually appear in the mi-
crostructure, initially at corrugated boundaries of prima-
ry grains (Fig. 5a), and next, also inside the deformed
primary grains (Fig. 5b). Once the deformation reaches
a level that corresponds to a steady-state flow, the struc-
ture of the steel consists of fine recrystallized grains (Fig.
5c). More detailed study on the development of the mi-
crostructure during the hot deformation of the material
was presented elsewhere [13].

The parameters of the CA model were determined
using the inverse analysis, following the methodology
described in [14]. Nelder-Mead simplex method was
used as an optimization procedure. The goal function
was defined as a square root error between the experi-
mentally determined flow stress and the stress calculated
by the CA model according to the equation (7).

The CA model allows one to track an instantaneous
state of the microstructure. As it is shown in Figure 6,
the CA model makes also possible to plot a spatial
distribution of recrystallized grains at successive stages
of deformation. Moreover, the CA model enables one to
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Fig. 5. EBSD microstructure maps after hot deformation at 1000◦C and strain rate of 0.01 s1: a) ε=0.4, b) ε=0.6, c) ε=0.8.
DRX – recrystallized grains, PG – elongated primary grain

a) b)

c) d)

Fig. 6. Evolution of the microstructure predicted by the CA model of DRX at selected stages of recrystallization: a) Xdrx = 0.15,
b) Xdrx = 0.35 c) Xdrx = 0.65 and d) Xdrx = 0.85. Deformation conditions: 1000◦C and strain rate of 0.01 s−1. New dynamically recrystallized
grains are marked gray, primary grain are denoted by white fields. Grain boundaries are marked with black lines
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Fig. 7. Distribution of grain size (average equivalent diameter of grain plane section) gathered from the experimental data and calculated
using the CA model for sample deformed at the temperature 1000◦C with a strain rate 0.01 s−1 up to strain: a) ε=0.3, b) ε=0.6

classify the grains observed in the simulated microstruc-
ture according to their size. Such classification can be
done at requested time steps of simulation, thus the evo-
lution of grain size distribution can be tracked as well.
The frequency of occurrence of the grains size in both
the simulated and the measured microstructure after de-
formation at 1000◦C at a strain rate of 0.01 s−1 up to
strain 0.4 and 0.8 are presented in figure 7a and b, re-
spectively. In the current work we decided to remove
very small grains from the analysis of the grain size
distribution. Those grains correspond to nuclei, which
in principle are not revealed in the experimental investi-
gation. For this reason, the grains that consisted of less
than two CA cells were filtered out. After the removal,
the distribution of the grain diameter calculated by the
model is in a good agreement with the experimental
measurement. The frequency of occurrence of the GBs
characterized by different misorientation angle can be
calculated as shown in Fig. 8. The corresponding EBSD

measurement of misorientation in the final microstruc-
tures is plotted in figure 5c. One may conclude that the
model is able to predict very precisely the distribution
of misorientation boundaries.
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Fig. 8. Distribution of misorientation angle determined from the EB-
SD data and calculated by means of the CA model for a sample
deformed at temperature 1000◦C with a rate 0.01 s−1 to strain ε =0.8
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0,2 µm1 µm

Fig. 9. Substructure after hot deformation at 1000◦C/0.01 s−1 to strain ε =: a) well-defined subgrain, b) example of an image that was used
for determination of the dislocation density
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TABLE 1
Grain size (Ddrx) (average equivalent diameter of grain plane section) and average dislocation density ρDRX after deformation ε =1 from the

experimental data and calculated using the developed CA model

T
[◦C]

ε̇

[s−1]
Ddrx

[µm]
Ddrx

model CA
ρDRX (ε = 1)

[m−2]
ρCA(ε = 1)
model CA

900 0.01
9.1

(partial DRX)
8.2

1.40×1014 1.01×1014

900 0.1 no DRX – – 2.10×1014

900 1 no DRX – 3.41×1014 2.81×1014

1000 0.01 23.1 22.2 2.53×1013 2.95×1013

1000 0.1
12.0

(partial DRX) 12.1 – 8.79×1013

1000 1
11.1

(partial DRX) 10.4 2,17×1014 1,81×1014

1100 0.01 26.9 28.5 2.21×1013 2.95×1013

1100 0.1 12.4 11.8 – 3.43×1013

1100 1
13.9

(partial DRX) 12.2 5.21×1013 4.22×1013

A substructure that has been formed after the de-
formation at 1000◦C with a strain rate of 0.01 s−1 is
presented in Figure 9a,b. A number of well-formed sub-
grains with diversity in the dislocation density can be
identified in Figure 9a. An example of the substructure
image that was used for estimation of dislocation density
is presented in Figure 9b.

Table 1 presents a comparison of the average grain
size and the average dislocation density that were ob-
tained from the experimental data and calculated by
means of the CA model for various strain rates and tem-
peratures. As it can be seen in this table, the model
is capable of predicting the most relevant final charac-
teristics of the microstructure. For example, after the
deformation at temperature 1100◦C with a stain rate of
0.01 s−1, the average grain diameter calculated by the
model is 28.5 µm, which remains in a reasonable quan-
titative agreement with the experimental measurement
(26.9 µm). For the same process conditions, the disloca-
tion density in the simulation reaches approximately the
same level as it was found in the experiment. As another
example, the CA simulation for deformation at 1000◦C
and strain rate of 0.01 s−1 yields in the dislocation den-

sity 2.95×1013 m−2, while the experimental measure-
ment of dislocation density resulted in 2.53×1013 m−2.
An assessment of the remaining cases suggests that the
CA model can estimate properly the overall influence
of hardening, recovery and dynamic recrystallization on
the development of dislocation density. However, one
must take cognizance of some limitations in the experi-
mental procedure that was used for determination of the
dislocation density. There is also another source of er-
rors due to inaccuracies of material parameters that were
used as an input for the CA model. Bearing in mind both
origins of errors, we may conclude that the estimations
of the dislocation density given by the model and the
experiment are in good correspondence.

The calculated flow stresses for selected process
conditions and their experimental counterparts are pre-
sented in Figure 10. The results of inverse analysis were
applied for the calculations. It can be seen that CA mod-
el is capable of predicting the flow stress quite precisely
for higher strains where the dynamic recrystallization
occurs. Nevertheless, some discrepancies are found for
the strains below 0.2.



531

Fig. 10. Flow stress obtained from an inverse analysis [13] of the experimental data (lines with marker) and calculated by the CA model
using identified parameters (continuous lines). Uniform strain rate of 0.01 s−1 was used in the deformation

5. Conclusion

The Cellular Automata model has been developed
to describe the microstructures evolution during the hot
deformation of the austenitic steel X3CrNi18-10. The
cellular automata model assumes a heterogeneous nu-
cleation: first on the primary grain boundaries and then
on the boundaries of deformed recrystallized grains. The
model makes use of basic material parameters and it can
predict the recrystallization kinetics, grain size and mis-
orientation. If the homogenization technique is applied,
the model can deliver the outputs that can be considered
as internal variables. For example, the average disloca-
tion density and average grain size evolve throughout the
deformation process, but those averaged values originate
from an intrinsic evolution of the simulated microstruc-
ture. In contrast to the internal variable models, the CA
approach is not limited to mean values, but it predicts
much richer state of the microstructure. Furthermore, the
distributions of these parameters can be derived as well,
e.g. distribution of grain size at selected material point.

Experimental verification of the CA model shows
good predictive capabilities of the model for austenitic
steels. The model is able to predict the evolution of flow
stress, grain size and dislocation density. The modelling
can be easily extended to other metals subjected to hot
deformations.
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