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Corrosion Behavior of Fly Ash-Based Geopolymer Concrete

This review paper investigates the corrosion characteristics of geopolymer concrete, which is considered a sustainable and 
environmentally friendly substitute for conventional concrete made with Portland cement. This study aims to consolidate the 
current understanding of corrosion mechanisms, the various factors contributing to corrosion, strategies for preventing corro-
sion, and the latest developments in this field. Geopolymer concrete has garnered considerable attention owing to its capacity to 
mitigate environmental impact and enhance the durability of concrete structures. A comprehensive understanding of a material’s 
vulnerability to corrosion is paramount to guaranteeing its sustained effectiveness over extended periods in diverse environmental 
conditions. Insights into the mechanisms of corrosion initiation and progression in geopolymer concrete have been derived from 
critical findings from experimental and theoretical studies. This paper examines the mechanisms of electrochemical corrosion, the 
characteristics of pore structure, permeability, and chemical composition, and the various factors that influence corrosion, such as 
environmental exposure and microstructural characteristics. This paper examines various methods for assessing corrosion, includ-
ing electrochemical techniques, non-destructive testing, and microstructural analysis.

Additionally, preventive measures such as material selection, coatings, sealants, cathodic protection, and inhibitors are 
discussed. Geopolymer concrete’s performance and challenges are exemplified through real-world case studies. The review pro-
vides a comprehensive summary of significant findings, implications, and areas for further research. It is a valuable resource for 
researchers and practitioners interested in utilizing the potential of geopolymer concrete while ensuring its corrosion resistance.
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1. Introduction

Geopolymer concrete, an environmentally sustainable al-
ternative to traditional cement-based concrete, utilizes industrial 
byproducts like Fly Ash (FA) and slag to create a binder matrix 
[1-4]. Unlike traditional concrete, geopolymer concrete signifi-
cantly reduces carbon emissions and energy consumption during 
manufacturing, making it a more environmentally responsible 
choice for building structures [2,3,5,6]. Its lower environmental 
impact stems from the reduced natural resource extraction and 
processing need.

While geopolymer concrete presents numerous advantages, 
its viability as a building material hinges on its ability to resist 
corrosion [7,8]. Corrosion of embedded reinforcement steel 
poses a significant challenge that can compromise the structural 
integrity and durability of geopolymer concrete structures [9-11]. 

With effective corrosion mitigation strategies, geopolymer con-
crete may withstand harsh environments and fulfill its potential 
as a sustainable building material [12,13]. Understanding the 
corrosion mechanisms and implementing preventative meas-
ures are crucial for ensuring geopolymer concrete’s long-term 
durability and performance.

The initial protective alkaline environment provided by 
geopolymerization offers inherent resistance to corrosion. How-
ever, pore structure, chemical composition, curing conditions, 
and environmental exposure can weaken this protection over 
time. Thus, an in-depth examination of the corrosion mechanisms 
is necessary to address potential deterioration [12-15]. Overall, 
unraveling these complexities is fundamental in fighting against 
geopolymer concrete corrosion.

The corrosion susceptibility of geopolymer concrete is go
verned by various influencing factors that dictate its response 
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to aggressive environments. The mineralogical composition of 
source materials, the type and concentration of activators, curing 
methods, and exposure conditions all impact the material’s corro-
sion behavior. Researchers and practitioners can tailor geopolymer 
concrete formulations to optimize corrosion resistance and longev-
ity by systematically dissecting and understanding these factors.

Half-cell potential measurements, electrical resistivity tests, 
and microscopic analysis are some of the most common evalua-
tion techniques for assessing corrosion in geopolymer concrete. 
Half-cell potential measurements involve measuring the electrical 
potential between a reference electrode and the reinforcement 
steel to determine the likelihood of corrosion. Electrical resistivity 
tests assess the ability of concrete to resist the flow of electrical 
current, indicating its corrosion resistance. Microscopic analysis, 
such as scanning electron microscopy, can provide detailed in-
sights into corrosion products and mechanisms at the microscopic 
level [7,16-19]. These evaluation techniques help to understand 
corrosion initiation, progression, and severity and guide mainte-
nance and repair strategies for geopolymer concrete structures.

Preventive measures are essential to achieve environmen-
tally responsible building practices and resilient infrastruc-
ture [20]. The use of geopolymer concrete offers a blank slate for 
the development of novel approaches, such as the incorporation 
of reinforcement that is resistant to corrosion and the creation 
of surface coatings that are tailored to specific needs [8,21,22]. 
These measures extend the service life of geopolymer concrete 
structures, aligning with the overarching goal of utilizing sus-
tainable construction practices. This is accomplished by directly 
addressing the challenges posed by corrosion.

This article demonstrates that an in-depth understanding of 
corrosion mechanisms, influencing factors, assessment methods, 
and preventative measures in geopolymer concrete has signifi-

cant implications for environmentally responsible construction 
practices. If corrosion challenges are confronted head-on and 
preventative measures are implemented, geopolymer concrete 
structures can have longer service lives. This will reduce the 
frequency of maintenance and replacement. This is consistent 
with the overarching objective of sustainable construction, which 
is to minimize resource consumption and reduce construction’s 
environmental impact. The continuation of geopolymer concrete 
corrosion research and development will refine and optimize the 
performance of this cutting-edge material, paving the way for 
its widespread adoption and contributing to the resilience and 
durability of the built environment.

2. Geopolymer Concrete: Composition and Properties

2.1. Geopolymerization Process

In recent years, several researchers have examined the 
geopolymerization process, which involves a complicated 
procedure [23]. Currently, there are numerous theories, and the 
evolution of their article-generating processes is accelerating. 
Glukhovsky was among the first to write in the 1950s about 
alkaline activation mechanisms. Duxson et al. [24] proposed 
a polymerization process that involves several steps proposed 
in the conceptual model. There are three stages: destruction-
coagulation, coagulation-condensation, and condensation-
crystallization. A general mechanism of geopolymerization 
is shown in Fig. 1.

Initially, the dissolution of the amorphous components oc-
curs, leading to the release of silicate and aluminate monomers, 
specifically [Si(OH)4]– and [Al(OH)4]–. This reaction, depicted 

Fig. 1. Geopolymerization process (a) destruction-coagulation, (b) coagulation-condensation, (c) condensation-crystallization
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in Fig. 1(a), is triggered when the OH– ions from the alkaline ac-
tivator break the Si-O-Si bonds and reposition themselves around 
the silicon atoms, resulting in the formation of silanol (-Si-OH) 
and sialate (-Si-O). The alkaline cations in the solution, such as 
Na+ or K+, neutralize the negative charge, leading to the forma-
tion of Si-O-Na+ or Si-O-K+ bonds, which prevent the return to 
the siloxane (Si-O-Si) structure [25]. When OH‾ ions target the 
Si-O-Al bonds, the dissolved aluminum species form complex 
bonds, primarily releasing Al(OH)4

= anions. In the second stage, 
the condensation process occurs, where the reactive silicate and 
aluminate monomers bond by sharing oxygen atoms to create 
a more crosslinked system. During this stage, water is removed 
from the structure through the hydrolysis process, as illustrated 
in Fig. 1(b) [26,27].

In the final stage, known as condensation crystallization, 
the presence of unreacted particles in the initial solid phase pro-
motes the precipitation of the polymerization reaction product. 
These alkali-activated products form an amorphous matrix with 
cementing properties, referred to as N-A-S-H (hydrated sodium 
aluminum silicate), which has a crystalline structure similar 
to zeolite [26]. Ultimately, the material hardens and develops 
mechanical properties. Fig. 1(c) displays the final structure of 
the 3D network formed in the composition of the geopolymers. 
The final composition of geopolymers is influenced by several 
factors, including the chemical composition of precursors and 
activators, mineralogy, and cure, among others [26].

Geopolymers are synthesized from aluminosilicate sources, 
rich in amorphous SiO2 and Al2O3, and a highly alkaline solution 
. These substances are inorganic polymers with a composition 
akin to zeolites but are fundamentally amorphous polymers 
[15,28]. The term “geo” in the name is associated with its re-
semblance to geological materials, and “polymer” is linked to 
the chemistry of silico-aluminates [29].

As per Davidovits [30], geopolymer materials have a broad 
spectrum of applications in various industries, such as construc-
tion, aerospace, and plastics. The usage of geopolymer material 
is contingent on the chemical structure in terms of the atomic 
ratio of Si: Al in the polysilane. The application classification 
of geopolymer material based on the Si: Al ratio is depicted 
in TABLE 1. A low Si: Al ratio of 1, 2, and 3 signifies a rigid 
polymer network, whereas a Si: Al ratio greater than 15 exhibits 
a polymeric nature of the geopolymer material.

The raw material is a crucial factor in the geopolymer for-
mulation process. Various materials are employed for geopolym-
erization, which may lead to different properties of geopolymers 
[4,31]. An essential prerequisite for geopolymerization is that 
the material must be abundant in silica and aluminum contents. 
Additional materials can be used as fillers to improve the proper-
ties of angeopolymer as per the requirements [32-34]. Therefore, 
the composition of each material must be regulated based on the 
concrete application.

2.2. Mechanical and Durability Properties

Geopolymer concrete exhibits superior mechanical proper-
ties to Ordinary Portland Cement (OPC), with improved com-
pressive strength attributed to the development of chemically 
stable aluminosilicate gels [35]. The robust interlocking structure 
enhances load-bearing capacity, making geopolymer concrete 
suitable for high-strength applications. Geopolymer concrete 
is recognized for its exceptional durability, demonstrating re-
silience against chemical assaults like acids and sulfates [36]. 
Calcium-aluminium-silicate-hydrate (C-A-S-H) and sodium-
aluminosilicate-hydrate (N-A-S-H) gels reduce permeability, 
restricting the penetration of harmful substances and enhancing 
resistance to sulfate exposure [33,37-39]. The material’s low 
water absorption and reduced penetration of chloride ions further 
contribute to its durability. 

The current research on mechanical and durability are 
summarized in TABLE 2 [3,40,41]. Studies by researchers such 
as Shaikh [3] and Ghafoor et al. [40] have provided valuable 
insights into the influencing factors of geopolymer concrete. 
Shaikh [3] investigated the impact of Natural Coarse Aggregates 
(NCA) and Recycled Coarse Aggregates (RCA) and revealed 
a significant 9% enhancement in compressive strength with 
NCA over 28 days. However, introducing RCA led to a gradual 
decline of 15% when the content reached 50%. The study em-
phasized the need for customized geopolymer concrete models 
to accommodate RCA, highlighting a positive correlation be-
tween the geopolymer binder and RCA and suggesting a promis-
ing bond between the two materials. These insights contribute 
to a comprehensive understanding of the mechanical properties 
of geopolymer concrete and the influencing factors in research.

In contrast, Ghafoor et al. [40] thoroughly examined the 
effects of various variables on the properties of geopolymer 
concrete. Various parameters, such as the molarity of NaOH, the 
ratio of Na2SiO3 to NaOH, and the ratio of Alkaline Activator 
to Fly Ash (AA/FA), were investigated. The compressive and 
flexural strength were found to be significantly increased with 
higher molarity of NaOH, reaching its maximum at a concentra-
tion of 14 M. This improvement can be attributed to the enhanced 
dissolution of silicon and aluminum. Initially, the excessive ratios 
of AA/FA contributed to increased flexural strength. However, 
when the ratios became overly high, it resulted in a decrease 
in strength. The importance of water in the process of geopolym-
erization was highlighted. It is worth mentioning that geopolymer 

Table 1

Application of geopolymer material based on Si:Al ratio

Si:Al Ratio Applications

1
Bricks

Ceramic
Fire Protection

2 Cement and concrete
Toxic waste management

3 Fire protection fibre glass composite
Heat resistant composite (200°C-1000°C)

>3 Sealants for industry (200°C-600°C)
20-35 Fire resistant and heat resistant fibre composites.
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concrete exhibited higher flexural strength than OPC concrete, 
even though their compressive strengths were similar. 

The study conducted by Prusty et al. [41] provided signifi-
cant insights into the various factors that influence the compres-
sive strength of Geopolymer Concrete (GPC). The replacement 
level of Ground Granulated Blast Furnace Slag (GGBS) has 
been identified as a crucial factor influencing the mechanical 
performance of GPC in its early and later stages. A positive 
correlation was observed between the amount of GGBS used 
and the level of compressive strength achieved. This can be 
attributed to the calcium content in GGBS, which promotes the 
geopolymerization process and the formation of calcium-silicate-
hydrate (C-S-H) gel. Achieving an optimal balance between FA 
and GGBS resulted in significant increases in strength during 
the period from the 7th to the 28th day. In a specific molarity, 
NaOH has enhanced geopolymerization. This is achieved by as-
sisting in the dissolution of the components involved, ultimately 
increasing the strength of the resulting material. The amount of 
binder and the Silica/Sodium Silicate (SS/SH) ratio influenced 
the compressive strength. However, it is essential to note that 
the effects of these factors may vary depending on the specific 
context. The importance of the replacement level of GGBS 
in influencing the strength properties of GPC was emphasized, 
indicating significant progress in the development of sustainable 
construction materials. 

In summary, the extensive research conducted by Shai-
kh [3], Ghafoor et al. [40], and Prusty et al. [41] have highlighted 
the impact of factors on the mechanical properties of geopolymer 
concrete. Shaikh found that NCA positively influences compres-
sive strength, while Ghafoor et al. highlighted the importance of 

NaOH molarity and AA/FA ratios. However, it also emphasized 
the potential decrease in performance as the content of RCA 
increases. Prusty et al. found a positive relationship between 
GGBS and compressive strength, highlighting the potential of 
sustainable building materials. However, it is essential to keep 
improving models and considering context variables to progress 
in geopolymer concrete. Research has also shown how important 
it is to address permeability to make geopolymer concrete last 
longer and be less affected by the environment.

Durability in concrete is crucial for its resistance to dis-
integration and decay, with permeability playing a significant 
role in influencing these properties. Geopolymer concrete, or 
Geocrete, enhances durability through practices like achieving 
complete compaction of admixtures and ensuring sufficient cur-
ing. Permeability measures how water and corrosive substances 
can infiltrate concrete, affecting its resistance to potential dete-
rioration [28,42]. Geopolymer concrete’s reduced permeability 
limits the penetration of acids, enhancing its ability to withstand 
acid attacks [43,44]. Various factors impact permeability in ge-
opolymer concrete. The appropriate polycondensation process, 
spherical morphology, and particle size of the alumino-silicate 
precursor in fly ash (FA) contribute to reduced permeability, 
resulting in a 6% increase in strength [45]. Conversely, using 
metakaolin (MK) increases permeability, leading to a 34% de-
crease in strength due to increased moisture penetration [46].

Studies by Wongpa et al. [47] show that increased liquid 
content decreases compressive strength and enhances water 
permeability. Water-repellent materials, like silane-siloxane, 
can increase chloride diffusion, but they may be ineffective in 
preventing water entry. Achieving low permeability in concrete 

Table 2

Summary of the previous finding on mechanical and durability properties

Researcher Aspect of Study Key Findings

Shaikh [3]

Compressive Strength
Compressive strength increased by 9% from 7 to 28 days for 100% NCA, decreased with 
increasing RCA content;
Optimum compressive strength at 16 M NaOH.

Indirect Tensile Strength Tensile strength decreased with higher RCA content:
Longer curing improved tensile strength by 11-21%.

Elastic Modulus Elastic modulus decreased with increasing RCA content.
Empirical Models Existing models showed discrepancies for geopolymer concrete with RCA.

Ghafoor  
et al. [40]

Effect of NaOH Molarity Compressive strength increased up to 14 M NaOH, reduced at 16 M due to hydroxide  
ion congestion.

Effect of Na2SiO3/NaOH Ratio Compressive strength decreased with higher Na2SiO3/NaOH ratio.
Effect of AA/FA Ratio Complex effect on compressive strength based on NaOH molarity.
Modulus of Elasticity M.O.E. increased with molarity up to 14 M, decreased at 16 M NaOH.
Effect of NaOH Molarity Flexural strength increased with higher NaOH molarity.
Effect of Na2SiO3/NaOH Ratio Flexural strength decreased with higher Na2SiO3/NaOH ratio.
Effect of AA/FA Ratio Complex effect on flexural strength based on NaOH molarity.
Comparison with OPC Concrete Flexural strength of GPC significantly higher than OPC for similar compressive strength.

Prusty et 
al. [41]

GGBS Replacement Level Compressive strength affected by GGBS content, higher GGBS improved early and 28 
days strength.

NaOH Solution Molarity Higher molarity improved compressive strength through increased geopolymerization rate.
Binder Content Binder content influenced compressive strength.
SS/SH Ratio Varied effects on compressive strength, possibly due to different factors.
ANOVA Analysis GGBS replacement level had significant impact on compressive strength.
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involves appropriate cement amount, low water-cement ratio, 
and thorough compaction. Specific practices, including slag 
replacement, increased MK content, limestone and silica fume 
ash incorporation, higher amounts of FA and rice husk ash, and 
proper curing contribute to low permeability. In geopolymer 
concrete, water content, binder content, water/binder ratio, ag-
gregate content, and curing method significantly contribute to 
matrix weakness and increased permeability. The permeability 
evaluation in geopolymer concrete is crucial for assessing its 
durability and long-term performance, directly impacting its abil-
ity to resist aggressive external agents and complex mechanisms 
involved in corrosion processes.

3. Corrosion Mechanism in Geopolymer Concrete

Extensive discussions on the corrosion mechanisms of steel 
in concrete can be found in various sources [7,48]. Nevertheless, 
this section will provide a concise overview to equip readers with 
the requisite background knowledge to understand the subse-
quent sections on corrosion detection and protection methodolo-
gies. In the concrete context, Healthy concrete’s pore solution 
has a pH level of 13 due to calcium hydroxide as the dominant 
phase, facilitating the formation of a slender passive film on the 
rebar surface, providing steel corrosion protection [49]. However, 
the pH level is not the sole determining factor in forming vari-
ous chemical species of metals. The electrochemical potential 
is an essential determinant in governing it. The Pourbaix diagram, 
also known as a potential-pH diagram, is a tool that combines 
the Nernst equation to represent potential and pH in an aqueous 
electrochemical system. Fig. 2 illustrates the Pourbaix diagram 
for the Fe-H2O system, depicting thermodynamically stable 
scenarios [50]. The vertical axis represents the electrochemical 
potential, where positive potentials indicate metal oxidation and 
negative potentials suggest reduction, particularly of oxygen 

atoms. The x-axis represents pH, with values below 6 being 
acidic, around 7 being neutral, and above 6 being alkaline 
or basic. The immunity region, below the line a-b-j, signifies 
where metal corrosion does not occur. Above the line g-f-h, 
the corrosion region indicates metal oxidation into FeO42- in 
an aqueous solution. Passivation involves oxidation, forming 
a protective Fe2O3 oxide layer that prevents further reactions.

The presence of aggressive ions of Cl–, such as in seawater, 
can destroy the film and lead to pitting corrosion in steels. Other 
passivation zones include e-i-p-n and n-p-j-b, where solid ox-
ides formed are Fe3O4 and Fe(OH)2, respectively. The Pourbaix 
diagram in Fig. 2 demonstrates that the passive film can remain 
intact and prevent corrosion within the range where solid Fe2O3 
and Fe3O4 are stable. Nonetheless, it is essential to note that the 
Pourbaix diagram only offers thermodynamic information for 
a specific system condition, such as concentration, temperature, 
and pressure. It does not provide information on kinetics [51]. 
Steel corrosion in concrete is an electrochemical process involv-
ing half-cell reactions [7]. At the anode, iron releases electrons 
and dissolves in a ferrous state, as illustrated in Eq. (1). These 
electrons then move to the cathode, where oxygen reduction 
takes place in the presence of oxygen, as shown in Eq. (2). The 
cathode reaction can also involve water reduction in the absence 
of oxygen, as demonstrated in Eq. (3). 

 F e → Fe2+ + 2e–	 (1)

 O2 + 2H2O + 4e– → 4OH–	 (2)

 2e– + 2H2O → 2 OH– + H2	 (3)

The composition of corrosion products formed on steel 
surfaces is heavily influenced by environmental factors, such 
as exposure duration and chloride concentration, as noted in 
previous research [52,53]. A study on weathering steel exposed 
to atmospheric corrosion found that the rust layer consisted of 
an inner α-FeOOH-rich layer and an outer layer predominantly 
composed of γ-FeOOH. The transformation from γ-FeOOH to 
α-FeOOH was attributed to amorphous ferric oxyhydroxide re-
sulting from acid rains and wet-dry cycles. In contrast, steel rebar 
in concrete experiences the formation of goethite (α-FeOOH) 
and lepidocrocite (γ-FeOOH) in carbonated concrete. The pres-
ence of high chloride ion concentrations leads to the creation 
of akageneite (β-FeOOH) [53-55]. The passive film on steel in 
concrete is disrupted when chloride ion concentration near the 
rebar surface exceeds a critical value or when concrete carbona-
tion lowers the pH below nine [22].

3. Corrosion Detection Methods

Accurately predicting the residual service life, developing 
suitable strengthening and repair strategies, and implement-
ing effective anti-corrosion measures are crucial in detecting 
corrosion conditions in geopolymer concrete structures. The 
evaluation methods employed for corrosion detection in ge-
opolymer concrete have undergone significant development Fig. 2. Pourbaix diagram
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over the years. The methods can be classified into direct and 
indirect techniques, depending on the type of information they 
yield. Direct methods encompass monitoring various corrosion 
parameters, such as corrosion potential, corrosion rate, and the 
quantity of steel corrosion. Electrochemical and physical meth-
ods are two distinct subsets of direct methods, each employing 
unique testing principles.

In contrast, indirect methods are employed to evaluate pa-
rameters associated with the corrosion process, such as chloride 
concentration, pH levels of the concrete pore solution, depth 
of concrete carbonation, concrete resistivity, and the result-
ing damages caused by corrosion, such as concrete cracking 
and redistribution of steel strain. These indirect methods offer 
valuable information regarding the degree of steel corrosion. 
This article focuses on the latter category and does not include 
coverage of the former indirect methods. Specifically, the fol-
lowing methods of finding corrosion are explained in detail: 
half-cell potential measurements, electrical resistivity tests, and 
microscopic analysis. Table 3 comprehensively summarizes 
these methods’ underlying principles, measured parameters, and 
critical characteristics for reference.

3.1. Half-Cell Potential Measurement

Half-cell potential (HCP) is also called open circuit po-
tential (OCP) and corrosion potential (Ecorr). Its measurement 
is the easiest and most common way to find out about corrosion 
in the field, besides looking for rust stains and cracks caused 
by corrosion. As shown in Fig. 3, it is measured with a working 
electrode (the steel reinforcement) and a reference electrode. 
Based on ASTM C876 and TABLE 4 [56,57], the HCP of steel 

can be used to determine how likely it is to rust. The ASTM 
C876 HCP values are based on the copper/saturated copper 
sulfate electrode (CSE), the most common reference electrode 
used in the field. Standard silver/silver chloride electrodes 
(SSCE) and saturated calomel electrodes (SCE) are often used 
in lab tests. Table 4 shows the HCP vs. SSCE, HCP vs. SCE, 
and HCP vs. standard hydrogen electrode (SHE) for each cor-
rosion risk.

Fig. 3. Configuration to measure corrosion potential of steel

The HCP method is primarily utilized for conducting initial 
and early field assessments to identify areas at risk of corrosion. 
However, the interpretation of its meaning can be intricate, as 

Table 3
Summary of Corrosion Detection Methods

Methods Principle Measured Parameter Remarks

Half-cell 
Potential 
(HCP)

HCP is the potential difference 
between steel and reference 
electrode, also known as 
corrosion potential and open 
circuit potential (OCP).

Corrosion potential, 
from which corrosion 
probability is 
estimated.

Fast measurement; 
Allow the identification of the main defect points with high 
corrosion risk; No quantitative information of the corrosion rate; 
Absolute value is highly affected by concrete conditions, the 
condition of the steel rebar, the availability of oxygen near the 
steel surface and environmental factors; 
Potential gradient is recommended instead of absolute potential  
to reduce errors.

Electrical 
resistance 
probe (ER)

The resistivity of a metal depends 
on its geometry. Thickness 
reduction of steel due to corrosion 
leads to an increase of its 
electrical resistance.

Resistance of corrosion 
coupon. Corrosion 
amount can be deduced 
from the resistance 
changes.

Straightfoward principle; 
Simple setup; 
Accurate detection for corrosion amount; 
The estimated corrosion rate is an averaged value over a certain 
period and consequently incapable to indicate localized corrosion; 
Reasonable arrangement of ER point sensors before embedding; 
Effects of temperatures must be compensated.

X-μCT 
tomography

Different materials have different 
X- ray adsorption capabilities, 
thereby steel rebar, corrosion 
products, cementitious materials, 
and defects in concrete can be 
identified and distinguished.

Corrosion distribution, 
geometry, amount, and 
the time variation of 
these quantities can be 
obtained.

Nondestructive;Accurate detection for corrosion amount; 
Visualization of morphology of both general and localized 
corrosion; Restrict limitation on the dimension of tested sample; 
Unportable equipment; 
High costs.
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it is influenced not only by the level of corrosion but also by 
various factors such as the thickness of the concrete covering, 
resistivity, and oxygen availability [58]. Although it is non-
destructive and only necessitates an electrical connection to the 
steel reinforcement, there are certain limitations associated with 
this method. These include the labor-intensive process of map-
ping larger surfaces and difficulty accessing specific structural 
elements [58]. A prospective gradient method was proposed to 
solve this matter, which employs two reference electrodes to ob-
viate the necessity of a direct linkage to the steel. This approach 
entails the relocation of the reference electrodes to determine an 
equivalent potential gradient [59].

Recent developments have introduced novel solutions 
to surmount additional challenges and broaden the method’s 
practicality. Researchers have successfully created a flying 
robot with electrochemical sensors [60]. These sensors can 
measure both the half-cell potential and concrete resistance. 
This technology effectively tackles the challenges associated 
with labor-intensive tasks involving large surfaces and structur-
ally complex components that are hard to access. Nevertheless, 
despite progress in this area, the HCP method still faces certain 
constraints that impede its widespread and regular implementa-
tion. This highlights the necessity for continuous innovation in 
corrosion detection techniques.

3.2. Electric Resistance 

The detection of corrosion using the Electrical Resistance 
(ER) method is based on a fundamental principle, which states 
that the electrical resistivity of a metal is influenced by its ge-
ometry [61]. The decrease in steel thickness caused by corrosion 
leads to an elevation in its electrical resistance. As a result, the 
alterations in electrical resistance, as detected by ER probes, 
can be converted into the cumulative loss of steel mass. In the 
case of uniform corrosion, it is possible to calculate the average 
corrosion rate within specific time intervals [62]. Nevertheless, 
as temperature impacts the resistance of a metal, it is necessary 
to make adjustments to the measured resistance values to elimi-
nate the influence of temperature. In order to compensate for 
temperature variations, an uncorroded ER probe is placed within 
the same environment.

Electrochemical impedance spectroscopy (EIS), specifically 
Electrochemical Resistance (ER) probes, is proficient in detect-
ing general corrosion but less effective in identifying localized 
corrosion [62]. Severe localized corrosion may lead to minimal 
overall metal loss, making sensor resistance changes inconspicu-

ous. ER probes have historically faced limitations in response 
time, requiring weeks to detect low corrosion rates. Recent 
material and electrical circuitry advancements have improved 
ER probe sensitivity [63]. While ER probes are commonly used 
in petrochemical engineering, their application in cementitious 
materials, mainly concrete, is less explored. Studies by Zivica 
[64] ella, and Taylor [62] demonstrated the practicality and 
accuracy of ER in measuring mass loss and corrosion depth in 
concrete structures, surpassing other electrochemical techniques. 
Despite its benefits, ER probes are limited to point sensors, 
requiring strategic planning for installation. Gartner et al. [65] 
monitored corrosion in marine-exposed Reinforced Concrete 
(RC) columns over 52 months using ER probes, emphasizing 
the importance of installation location planning. Legat et al. [66] 
used a combination of ER and electrochemical noise techniques 
to effectively monitor cumulative and localized corrosion levels 
in concrete subjected to wet-dry cycles.

It is crucial to acknowledge that when using electrical 
resistance (ER) probes in reinforced concrete (RC) structures, 
the measured corrosion level corresponds to the sensing mate-
rial on the probes rather than the rebar itself. This discrepancy 
in corrosion conditions may arise between the probes and the 
actual rebar when exposed to the same environmental conditions. 
Not withstanding these challenges, electrochemical impedance 
spectroscopy (ER) techniques exhibit potential for corrosion 
monitoring and continuously advance through materials im-
provements and innovative application methods.

3.3. Microscopic Analysis

Microscopic analysis, mainly through X-ray micro-comput-
ed tomography (X-ray μCT), is a corrosion assessment method 
that examines materials at a microscopic scale to identify and 
characterize corrosion-related features, defects, and structural 
changes. X-ray μCT  is an advanced imaging technique that 
provides non-destructive, three-dimensional visualization of 
internal structures [67-74]. This method relies on various materi-
als’ distinct X-ray absorption capabilities, with internal images 
represented by varying shades of grey based on X-ray intensity 
mapping. Brighter regions indicate higher attenuation coefficient 
values, while darker regions indicate lower values.

Recent applications of X-ray μCT  in monitoring corro-
sion processes in steel within cementitious materials have been 
introduced. The technique identifies and differentiates steel 
rebar, corrosion products, cementitious materials, and concrete 
defects such as voids, pores, and cracks. Various studies have 

Table 4
The relationship between HCP of steel and corrosion probability

HCP Values
Corrosion Probability

(mV vs. CSE) (mV vs. SSCE) (mV vs. SHE) (mV vs. SCE)
< –350 < –256 < –34 < –276 > 90% probability corrosion is occuring

–350 to –200 –106 to –256 +116 to –34 –126 to –276 Uncertain
> –200 > –106 > –116 > –126 > 90% probability no corrosion
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demonstrated the ability to quantify cross-sectional areas of 
different targets, including steel loss, corrosion products, and 
cracks [70,72,75]. Fig. 4(a) illustrates the principle of X-ray CT 
observation, and Fig. 4(b) depicts the quantification of cross-
sectional areas in a sample [72].

X-ray micro-computed tomography (μCT) enables the 
visual and quantitative monitoring of corrosion progression in 
steel embedded in concrete, providing real-time in-situ observa-
tions. By utilizing 3D images of corroded steel reinforcements, 
it is possible to obtain information regarding the distribution 
of corrosion and the accumulated amount of corrosion [67,70]. 
Additionally, the temporal changes in these quantities can also 
be determined. Other corrosion detection techniques often 
struggle to achieve this level of difficulty. The X-ray μCT’s 
capability renders it a highly suitable instrument for investigat-
ing the processes of corrosion accumulation, corrosion-induced 
internal deterioration of concrete, and the infiltration of rust into 
pores and cracks [70,71]. This makes it an invaluable tool for 
laboratory research.

Nevertheless, the X-ray μCT technique requires the tested 
samples to be minor, typically less than a few hundred millim-
eters, to achieve a high resolution. Moreover, the exorbitant 
expenses and specific prerequisites associated with existing 
X-ray μCT instruments limit its utilization. In order to evaluate 
the current structures, it is necessary to extract small samples 
from the site and transport them to laboratories for analysis. 
These methods serve a dual purpose of predicting the remaining 
service life of structures and providing guidance for mainte-
nance strategies. This aids in preventing expensive repairs and 
ensures the overall structural integrity. However, prevention is 
also an equally crucial aspect of corrosion management. Im-
plementing suitable corrosion prevention measures can signifi-
cantly enhance the durability of materials subjected to corrosive  
environments.

4. Corrosion Prevention Methods

Methods for preventing existing reinforced concrete (RC) 
structures can be classified into passive prevention solutions and 
active therapy solutions. Various actions, including protective 
coatings, are implemented to preserve the current condition 
and hinder or postpone additional degradation. The concept of 
“therapy solutions” aims to effectively mitigate or halt corrosion 
processes, such as electrochemical rehabilitation techniques, 
although achieving complete cessation is challenging in practi-
cal applications. First, the passive “prevention solutions” are 
presented, followed by the active “therapy solutions.” TABLE 5 
comprehensively summarizes the various protection methods and 
their advantages and disadvantages. In the case of structures that 
have experienced severe corrosion, there is a significant require-
ment to restore their structural performance. Specific protection 
methods serve a dual purpose of enhancing structural integrity 
and safeguarding against corrosion. The relevant sections are 
highlighted.

4.1. High-performance fiber-reinforced Cementitious 
Composite Overlay

High-performance fiber-reinforced cementitious compos-
ite (HPFRCC) is a type of HPC with random fiber distribution 
[76]. HPC improves workability, mechanical properties, and 
durability by adding FA, silica fume, and blast-furnace slag 
and reducing the water-binder ratio. Due to fiber bridging, HP-
FRCC outperforms HPC in fracture toughness and crack width 
control. Engineered cementitious composites (ECC), or SHCC 
or UHTCC, are stretch-hardening HPFRCC. The product was 
developed by adding a 1.5-2% volume fraction of polymeric fib-
ers and micromechanics to the fiber, matrix, and interface [76]. 

Fig. 4. Principle of the X-ray micro-CT observation and illustration of the scanning region. (a) The principle of X-ray CT observation and (b) the 
obtained cross-sectional area with respect to different targets
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Strain-hardening before crack localization produces small crack 
widths, close spaces, high ductility, and 2-5% stain capacity. 
When strain exceeds 1%, ECC cracks are tens of microns. Ac-
cording to research, cracked ECC has similar water permeability 
to sound concrete but delayed chloride penetration. 

Maximum packing density theory, ultrafine reactive mineral 
admixtures, and a low water/binder ratio can give ultra-high 
performance concrete (UHPC) compressive and tensile strengths 
over 150 and 10 MPa, respectively [77]. UHPFRCC improves 
cracking resistance and ductility by adding short discrete fib-
ers (usually steel) to UHPC at a 2-6% volume fraction [78,79]. 
UHPC has a durability of <2 mm carbonation depth for up to 
3 years, 4.5 times lower than regular concrete [80], and a chloride 
diffusion coefficient of 0.2 to 4.1×10–13 m2/s, at least one order 
lower than ordinary concrete [80,81]

HPFRCC’s mechanical properties and durability make it 
ideal for harsh environments. Recent studies have examined pure 
HPFRCC or hybrid HPFRCC-RC structures [80,82]. HPFRCC 
is used in hybrid structure cover layers due to its crack control 
and chemical resistance. HPFRCC overlays have been studied 
for strengthening and corrosion protection on corroded RC 
beams and slabs [83-85]. These materials are more robust than 
steel plates and have better bond compatibility, more accessible 
construction, lighter weight, and corrosion-free properties. The 
strengthened system improves flexural, tension, shear, and du-
rability [85]. Most HPFRCC strengthening studies have shown 
mechanical performance benefits, but the authors are unaware 
of long-term corrosion protection studies. These materials are 
more corrosion-resistant than conventional concrete, but gal-

vanic coupling between the old, degraded concrete and the new 
strengthened layer may affect their effectiveness in corroded 
structures [86,87].

4.2. Anti-Corrosion Coating

An anti-corrosion coating is a surface treatment used on 
reinforced concrete and steel. Previous research suggests coat-
ing the surface to control corrosion in reinforced concrete (RC) 
structures [88]. Besides anti-corrosion protection, this component 
is decorative and prevents concrete degradation from ultraviolet 
light. The typical method for preventing concrete surface coating 
corrosion is to reduce aggressive substances like carbon dioxide, 
chloride ions, oxygen, and water. There are also efforts to reduce 
concrete conductivity and corrosion [89]. Organic coatings create 
a seamless film on concrete, making it chemically resistant to 
aggressive substances. Silanes, siloxy silanes, and chemically 
similar compounds can infiltrate concrete pores and react with 
water to form a hydrophobic layer that repels water. The water 
repellency of organic coatings is essential because water carries 
harmful ions. Acrylate, polyurethane, chlorinated rubber, and 
epoxy are standard organic coating matrices. Organic coating 
loses effectiveness over time due to concrete’s alkalinity and the 
erosive environment [90].

The durability of inorganic coating makes it more popular 
than organic coating. According to Al-Zahrani et al. [91], the 
inorganic coating is a cement-based material with low perme-
ability and a thickness of less than 10 mm. The fine-grained 

Table 5
Summary of Prevention Methods against corrosion

Methods Advantages Disadvantages

High-performance fiber-
reinforced cementitious 
composite (HPFRCC) 
overlay

Good durability in adverse service condition;  
No maintenance required; 
Dual function as an anti- corrosion barrier and 
a strengthening overlay; Suitable for corrosion- 
damaged structures needing strengthening.

The anti-corrosion effects are limited as HPFRCCs are still 
a porous material; 
Risk of galvanic coupling.

Anti-corrosion coating Convenient application; No maintenance required.

Organic coating has problems of poor fire resistance, 
crack, delamination, ultraviolet ageing, uneasy to remove; 
Inorganic coating performs not as good as organic coating 
as a physical barrier; 
Not suitable for heavily contaminated concrete.

Corrosion inhibitors
Convenient application; Lower cost; 
Multiple alternative inhibitors are available towards 
different corrosion mechanism.

High requirement of penetrability when applied on the 
hardened concrete surface; Dosage is crucial otherwise  
it will backfire sometimes.

Sacrificial anode 
cathodic protection 
(SACP)

Simple installation, design and low maintenance; 
No external power source required; 
Low risk of hydrogen embrittlement and 
consequently SACP is feasible to apply to prestressed 
structures; Availability of wide range of anodes.

Lack of control system and knowledge of protection 
degrees; Limited service life; Low driving voltage, thus 
can be used only in less resistive concrete and may be 
inadequate to provide full protection; Anodes can be large 
and intrusive compared to ICCP.

Impressed current 
cathodic protection 
(ICCP)

Protection current is controllable; 
Effective for high resistive environment like concrete; 
Longer lifespan; Secondary benefits, such as 
increasing pH values near steel rebar and repelling 
chlorides; Low maintenance cost in the long run.

The need for permanent external power source and 
constant monitoring; Risk of hydrogen embrittlement 
of steel, concrete softening, and steel/concrete bond 
degradation; 
Electrical connection of all the rebars should be insured, 
or rebars that are skipped will corrode more severely; 
Lifelong running; Anodic acidity.
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mortar is enhanced with polymers to reduce permeability and 
improve concrete adhesion. In recent years, geopolymer coatings 
with high chemical resistance have garnered attention. Several 
scholarly articles have suggested and investigated this topic 
[92,93]. Due to the coating’s thinness, the reinforcing function 
of cement materials can be ignored in studies on mechanical 
strength.

4.3. Corrosion Inhibitor

ISO 8044-1989 defines a corrosion inhibitor as “a chemical 
substance that reduces the corrosion rate when present in the cor-
rosion system at a suitable concentration without significantly 
altering the concentration of other corrosion agents.” Oil and 
gas industries use corrosion inhibitors that work up to 95-99% 
in uniform, slightly acidic, or nearly neutral media around cor-
roding steel [94]. Due to the high alkalinity of concrete pore 
solution, complex concrete matrix, and carbonation, chloride, 
or sulfate corrosion, RC systems vary. Add corrosion inhibitors 
to fresh concrete or transport them through hardened concrete 
for RC structures. The admixed inhibitor allows precise dosage 
control. Migrating inhibitors in rehabilitation systems struggle 
to dose and diffuse from concrete to rebar [95]. 

 2Fe2+ + 2OH + 2NO2
– → Fe2O3 + 2NO↑	 (4)

 Fe2+ + OH– + NO2
– → NO↑ + γ-FeOOH	 (5)

Anti-corrosion inhibitors are anodic, cathodic, or mixed. 
Anodic inhibitors increase steel corrosion potential by reacting 
with its dissolution. Calcium nitrite is the most common anodic 
inhibitor. Sodium nitrite, benzoate, and chromate are used. Ni-
trite’s oxidizing properties make it the main active component. 
Nitrites compete with chloride ions to oxidize Fe2+ at film 
defects, strengthening passive film (Eq. (4) and (5) [94,96]. 
Regardless of the product (Fe2O3 or γ-FeOOH), a dense pas-
sive film can form on steel surfaces, even with chloride. The 
nitrate/chloride molar ratio determines inhibition. For corrosion 
prevention, use values from 0.8 to 1 [97]. Unfortunately, nitrite 
consumption and inhibition reduce concentration gradually. 
Low nitrite concentration is a harmful corrosion inhibitor that 
accelerates steel dissolution [98]. 

 RCOOR'
(ester)

+ + +OH–

(base)
RO2

–

(carboxylic acid)
R'OH

(alcohol)
	(6)

By preventing electron migration or lowering oxide con-
centration, cathodic inhibitors slow corrosion. The cathodic 
inhibitors are phosphates and fatty acid esters. Representative 
production is sodium monofluorophosphate. PO3F2 reacts with 
Ca(OH)2 to form Ca3(PO4)2, an indissoluble salt and a barrier 
layer [99]. This barrier layer prevents oxygen intrusion and in-
creases cathodic resistance. MFP is used as an admixed inhibitor 
instead of a migrating inhibitor because it penetrates hardened 
concrete poorly [100]. Eq. (6) shows that concrete pore solution 
esters hydrolyze to carboxylic acid and its alcohol. The carbox-

ylic acid anions quickly combine with free calcium to form an 
insoluble calcium salt of the fatty acid, creating a barrier layer 
on steel rebar like MFP. Second, fatty acids and calcium salts 
hydrophobicize concrete pores. Water escapes pores due to con-
tact angle changes, preventing oxygen and chloride intrusion. 
Cathodic inhibitors include sodium hydroxide, carbonate, zinc 
oxide, silicate, and polyphosphates. A mixed inhibitor inhibits 
anodic and cathodic corrosion. Performance should be better 
than anodic or cathodic inhibitors alone. Zinc oxide and calcium 
nitrite are used [101]. An insufficient nitrite/chloride molar ratio 
can increase corrosion. Zinc oxide lowers chloride levels around 
steel rebar, reducing nitrite risks.

4.4. Cathodic Protection

Cathodic protection uses polarized steel reinforcement 
as an electrochemical cell cathode [102]. The main methods 
are the main methods for sacrificial anode cathodic protection 
(SACP) and impressed current cathodic protection. SACP steel 
rebar is connected to a lower metal. The sacrificial anode must 
have a lower potential than the cathode steel rebar to prevent 
corrosion. SACP unanimously chose zinc as the sacrifice an-
ode. There are titanium, magnesium, and zinc alloy anodes like 
85Zn-15Al. SACP is better for prestressed RC structures with-
out hydrogen embrittlement than Impressed Current Cathodic 
Protection (ICCP) because it requires less maintenance and no 
DC power [103]. Short-circuiting’s poor controllability, short 
lifespan, frequent anode replacement, and low self-driving volt-
age may not be enough to protect a larger structure, especially 
high-resistance concrete.

The Federal Highway Administration claims ICCP is the 
only effective chloride-containing concrete corrosion rehabili-
tation method [104]. It works as shown in Fig. 5. The external 
electrical field “primary effect.” negatively polarizes immunity 
zone rebar. This process moves chloride ions from rebar to con-
crete or outdoor anodes. Rebar’s surface produces hydroxyl by 
reducing oxygen. The benefits are “secondary effects” [105,106]. 
Research shows that ICCP’s “secondary effects” – raising pH 
and repelling chlorides – work [102,107,108]. Long-term use of 
steel in concrete can cause passivation or re-passivation, resulting 
in a dense ferric oxide (Fe3O4) layer [109] and a sublayer and 
γ-Fe2O3 layer [105]. The type of anode and chloride presence 
affect anodic reactions. The acidification of anode materials 
and interfaces leaches solids from hardened cement paste [110]. 
Passive steel is more accessible to polarize and requires less 
negative potential for cathodic protection [111]. ICCP improves 
pH and reduces chlorides to keep steel reinforcement passive 
longer after the current is reduced or turned off, eliminating the 
need for a high-density current to corrode [87,112]. High charge 
until steel re-passivates, then low current maintains passivity for 
corroding sites [102].

The study by Glass et al. [108] proposes intermittent im-
pressed current cathodic protection (ICCP) and highlights the 
need for low integrated protection current densities. Koleva et 
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al. [113] introduce pulse current advanced ICCP, emphasizing 
its safety and effectiveness compared to conventional methods. 
While ICCP reduces corrosion, it can adversely affect reinforced 
concrete (RC) elements by altering concrete microstructure, 
causing hydrogen embrittlement, and degrading the steel-
concrete bond [114-117].

ICCP protection efficiency is anode-dependent, with Ge et 
al. [118] suggesting a minimum total charge density for anodes 
at 38,500 A·h/m2 (over its surface area). The success of ICCP 
systems over decades depends on the reliability of the anode-
concrete interface, necessitating more research [110]. Durable 
anode systems are crucial, and conductive cement overlay 
anodes, particularly with carbon fibre content near the percola-
tion threshold, are recommended. Carbon fiber fabric anodes in 
various shapes are gaining popularity due to their mechanical, 
electrical, and electrochemical properties. CFRP composites 
strengthen and serve as anodes in ICCP systems [119-121].

Studies by Gadve and Lu [122] propose a CFRP and con-
crete bonding matrix with a conductive polymer and graphite 
in epoxy resin, addressing issues with the insulating CFRP mat
rix. Zhu et al. utilize conductive cement on carbon fiber fabric 
anodes, reinforcing and anodizing concrete with prefabricated 
CFRP bars. Lambert et al. [123] suggest U-shaping CFRP to 
enhance concrete-CFP bonding and flexural strength.

Research findings indicate that CFRP/ICCP-strengthened 
RC beams exhibit lower mass losses, corrosion rates, and flexural 
strengths than controls. However, active protection may decrease 
CFRP-concrete bond strength, highlighting the need for careful 
consideration in applying these techniques.

5. Conclusions

This study aimed to investigate the existing knowledge 
on corrosion mechanisms, the diverse elements contributing to 
corrosion, methods for corrosion prevention, and recent advance-
ments in this domain. The conclusions drawn from the literature 
reviews presented in this study are as follows:
A.	 The mechanical and durability performance of geopolymer 

concrete are dependent on geopolymerization. Factors such 
as water content, binder content, water/binder ratio, aggre-

gate content, and curing method determine the material’s 
durability and performance.

B.	H ealthy concrete forms a passive film on steel due to its 
alkaline pore solution, providing essential protection. How-
ever, corrosion can also be influenced by electrochemical 
potential and pH. Environmental factors like exposure 
duration and chloride concentration affect steel corrosion 
product composition.

C.	H CP is a standard field corrosion measurement method. 
However, it is labor-intensive and can be challenging to 
access certain structural elements. Recent developments 
use two reference electrodes to determine an equivalent 
potential gradient, improving the method’s effectiveness.

D.	ER  is another corrosion detection method based on metal 
resistivity. It struggles to detect localized corrosion and has 
a slow response time. However, ER techniques have the po-
tential for corrosion monitoring and are improving through 
material improvements and new application methods.

E.	 X-ray micro-computed tomography (X-ray μCT) is used to 
visualize and quantify corrosion progression in steel em-
bedded in concrete. This method provides real-time in-situ 
corrosion distribution and accumulation data. However, it is 
limited by high costs and specific requirements, requiring 
small samples for high resolution.

F.	 Corrosion prevention include passive and active methods. 
Protection coatings preserve the current condition and delay 
degradation in passive prevention solutions. Electrochemi-
cal rehabilitation is an active therapy that reduces or stops 
corrosion.

G.	 Chemical corrosion inhibitors work 95-99% in uniform, 
slightly acidic, or nearly neutral media around corroding 
steel. Anodic inhibitors increase corrosion potential by 
reacting with steel dissolution, while cathodic inhibitors 
slow corrosion by preventing electron migration or lower-
ing oxide concentration.

H.	 Polarized steel reinforcement is used as an electrochemical 
cell cathode in SACP and impressed current cathodic pro-
tection. Carbon fibre fabric anodes’ mechanical, electrical, 
and electrochemical properties make them popular. Carbon 
Fiber Reinforced Polymer (CFRP) and carbon fibre fabrics 
are ICCP anodes and strengthening materials.

Fig. 5. Schematic illustration of impressed current cathodic protection (ICCP) of reinforcing steel in concrete
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