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THE EFFECT OF WOOD ADDITION ON THE PROPERTIES OF GEOPOLYMERS: A SHORT REVIEW

One of the latest approaches to substituting the natural aggregates or fibers in the geopolymers is the use of wood waste.
The wood flour, chips, or fibers coming from end-of-life furniture or construction and demolition waste can be incorporated into
the composition of geopolymers to achieve lighter products and, most importantly, to reduce the use of virgin raw materials.
However, when combining inorganic and organic materials into a product that should withstand thousands or hundreds of years,
the exhaustive evaluation of the behavior of the obtained composites is very challenging. The current literature mainly approaches
the influence of the wood type and amount on the main properties of the geopolymers, but a deep evaluation of the long-term
behavior of these wood-aluminosilicate mixtures is still necessary. The current study presents a brief overview of the research
conducted on the effect of wood addition on the compressive strength, flexural strength, physical properties, microstructure, and
durability of geopolymers. Accordingly, it was concluded that low amounts of wood particles will increase the compressive strength
of geopolymer composites. However, the wood presence may result in a slight decrease in durability due to water absorption and
the higher porosity of the resulting composite compared to the geopolymer without wood content. Moreover, the current challenges,

opportunities, and limitations were identified.
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1. Introduction

The current need for construction materials has led to an
increased demand for virgin raw materials [1]. To support this
increased consumption, it is strongly needed to identify suitable
substitutes for the main components of the materials used in
construction. Therefore, nowadays, researchers focus on finding
solutions to incorporate the high wastes available in high volumes
worldwide into the composition of building materials. One of
the main directions developed in the last century is the use of
alkali-activated materials, or geopolymers, instead of Ordinary
Portland Cement (OPC) based materials [2]. However, the need
for developing materials with tailored properties cannot be met
without properly designing the composition of these eco-friendly
materials [3-5]. Usually, this adjustment is strongly related to the
composition of the components used for the manufacturing of the
geopolymers [6,7]. Therefore, the flexural strength of a brittle
matrix can be improved by incorporating different types of fibers,
natural or synthetic [8-10]. Also, to decrease the water absorption
and improve the compressive strength, different types of particles
have been introduced into the mixture [11]. To further reduce

the weight of the final product, some researchers have also used
wood particles [12-14].

The lignocellulosic wastes consisting of lignin, cellulose,
hemicellulose, and extractives have been used as raw materi-
als for many types of geopolymers (metakaolin or fly ash-
based) [15]. However, the literature reports contradictory results
regarding the influence of sawdust or wood chips as fillers in
geopolymer composition.

This study aims to present a brief overview of the potential
use of wood waste in the composition of geopolymers and, most
importantly, the optimum amount and type of wood that can be
incorporated to develop tailored properties.

2. Compressive strength

Asante et al. [16] evaluated the influence of pine or eucalypt
particles, untreated or treated in hot water, on the composition of
fly ash-based geopolymers. According to their study, the treat-
ment applied to the wood particles showed almost no influence
on the compressive strength. However, the type of wood can
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have a significant effect on the mechanical properties, since the
maximum compressive strength they obtained for pine particles
was around 1.50 MPa, while the geopolymer with eucalyptus
particles showed up to 2.59 MPa.

Wang et al. [17] evaluated the influence of introducing
wood waste between 20 and 40 vol.% in the matrix of geopoly-
mers on their compressive strength. Finally, they concluded
that even if the compressive strength increases over time, the
increase in the wood addition will result in a significant decrease
in the mechanical properties. This behavior was mainly due to
the intrinsic absorption of wood, which will lead to the incor-
poration of activators in the first stages of hydration. Moreover,
over time, the activator will be released during curing, resulting
in the formation of large pores and most importantly the cracks
in the interfacial transition zone between the artificial aggregates
and the matrix.

Weng et al. [18] observed that an addition of 10% wood
flour to fly ash-based geopolymers will exhibit the optimum
compressive strength compared with other amounts between 5
and 30%. Moreover, they observed that when the proper content
is achieved, the water absorbed in the wood could positively
influence the hydration reaction, while at too low water content
the hydration is incomplete, or a foaming effect will be obtained
at too much water.

Wood waste has also been involved in the composition of
geopolymers as fibers (wool) to develop ecofriendly boards [19].
After assessing the influence of Na,O concentration and the
GGBFS addition, the same authors concluded that the Na,O con-
centration of 12% and the ground granulated blast furnace slag
(GGBFS) addition of 15% will exhibit the highest compressive
strength. Despite the fact that a concentration of 10 M is usually
reported in the literature as the main concentration for the alkali-
activated geopolymers, it seems that in those with wood addition,
the optimum concentration is 12 M, which could be related to
the reaction between the hydroxyl groups present on the wood
surface and the excess hydroxide from the activator. Another
study [20] assessed the use of 2 wt.% wood fibers in geopolymers
with GGBFS, silica fume (SF) and FA mixed with construction
demolition waste materials (CDW) and obtained a compressive
strength of 33.50 MPa. In acid activated geopolymers, the addi-
tion of wood fibers seems to have a negative effect on compres-
sive strength despite the percentage. Lin et al. [21] observed that
a 5% addition of wood fibers in metakaolin based geopolymers
will result in a 20.9% decrease in compressive strength.

A mixture between wood waste and cenospheres or rubber
was designed and tested by Gigar et al. [14]. At 28 days of curing,
they obtained up to 15 MPa for the sample with a rubber-to-wood
ratio of 25%, while using an addition of 25% waste aggregates
in the geopolymer matrix. However, a slight increase from
15 MPa to 17 MPa could be obtained by replacing the fly ash
with cenospheres. Also, when mixing the fly ash with GGBFS,
the same group of researchers [22] obtained up to 28 MPa. With
the same type of matrix, i.e., fly ash mixed with GGBFS, Mehdi
et al. [23] obtained more than 45 MPa by using wood sawdust
instead of wood chips.

As reported by [24], the type of wood will also have a slight
effect on the compressive strength of geopolymers. After the
evaluation of E. gradis, E. camal, B. wattle, P. jack, Spurce and
Pine addition, they observed that the E. gradis wood will result
in an increase in the compressive strength, while all the other five
types of wood will contribute to the decrease of this mechani-
cal property. Moreover, when the wood waste was treated with
NaOH solution, an up to 21% increase in compressive strength
could be obtained.

An overview of the amounts and types of wood used in the
mixtures of geopolymers is presented in TABLE 1. As can
be seen, for the fly ash based geopolymers, the mixture with the
highest compressive strength is the one with 10 wt.% wood flour,
while when the wood is used in the form of chips, a maximum
compressive strength of 15 MPa can be obtained for an addition
of 25 wt.%. Wood flour also seems to be the most preferred form
even when flu ash GGBS blended geopolymers are tested. In the
case of all the evaluated mixtures, the geopolymers that used
metakaolin as an aluminosilicate source exhibited the highest
compressive strength.

TABLE 1

The compressive strength of geopolymers with different types
and amounts of wood waste

Compres-
. sive Refe-
Matrix type Wood-type | Amount strength, rence
MPa
Weng
V)

Fly ash Wood flour | 10 wt.% 69.1 etal. [18]

Fly ash Pine-particles | 20 wt.% 1.5 Asant

sante

Fly ash E;:;izgs 20wt% | 2.59 |etal.[16]

E. gradis 20 wt.% 13.77
E. camal, 20 wt.% 13.2
Flv ash B. wattle 20 wt.% 13.5 Asante
Y Pjack | 20wt% | 13.1 |etal [24]
Spurce 20 wt.% 11.87
Pine 20 wt.% 11.11
. Gigar
V)

Fly ash Wood chips | 25 wt.% 15 etal. [14]
Metakaolin Wood fibers | 5 wt.% 82.4 Lin et al.
Metakaolin Wood fibers | 10 wt.% 78.5 [21]

Fly ash & . o Gigar

GGBFS Wood chips | 10 wt.% 26 etal. [22]

Fly ash & o Koh et al.
GGBFS Wood wool | 30 wt.% | 1.4 (c10) [19]
Sulfoaluminate Fruit wood |30 vol.% 25
cement
Sulfoaluminate Fir wood |30 vol.% 21
cement
Sulfoaluminate | - po o ood 30 volo% | 23 Wang
cement etal. [17]
Sulfoaluminate | o, o icles |20 vol.% | 34.8
cement
OPC Pine-particles | 20 vol.% 16
Mineral powder | Pine-particles | 20 vol.% 30




3. Flexural strength

In the case of flexural strength, the most significant effect
is given by the shape of the wood waste. Therefore, the highest
flexural strength is achieved with the incorporation of wood as
fibers. Compared to compressive strength, in the case of flexural
strength, a slight improvement was observed when increasing the
amount of wood [21]. However, this behavior is only related to
the addition of wood fibers, since when flour or chips are used,
the flexural strength also decreased when the amount of wood
was increased in the composition [17]. By incorporating 15%
wood fibers into the composition of geopolymers, the flexural
strength was 2.26 higher compared to that of the control sam-
ple [21]. The positive influence on the flexural strength will
exhibit a maximum at 25 wt.% of wood, and then supplementary
amounts will result in a decrease in both mechanical properties,
i.e., compressive and flexural strength [22].

4. Physical properties

Depending on the type of wood, geopolymer wood com-
posites may exhibit a slight difference in porosity (Fig. 1).
As reported in [16], the porosity of the materials with pine
wood was 47.21%, while those with eucalyptus wood showed
47.13%. However, significant differences were observed in bulk
density, i.e., 0.88 g/cm® for those with pine wood and 1.03 g/cm?
for those with eucalypt wood, and water absorption, where the
mixture with Eucalypt particles showed almost 46%, compared
to 53.53% of that with pine particles. Along with the type of
wood, the bulk density of this composite is also influenced by
the Na,O concentration from the activator. As observed by Koh
et al. [19] the increase in Na,O concentration from 6% to 12%
will increase the bulk density from 340 kg/m® to 440 kg/m?.
The same parameter also significantly influenced the thermal

1195

conductivity resulting in an increase of almost 15%. However,
by replacing the natural aggregates with fine and coarse sawdust
a significant decrease in the thermal conductivity of geopolymers
can be obtained. Mehdi et al. [23] reported a 5 times higher
heat transfer time when substituting all the natural aggregates
with wood particles. Wang et al. [17] also reported a direct rela-
tion between the amount of wood aggregates and the thermal
conductivity of the geopolymer composites. Moreover, they
reported that higher amounts of wood will result in low thermal
conductivity, but also poor mechanical performance.

5. Microstructure

The microstructural analysis of the geopolymers with
wood particles reveals the challenges in obtaining a composite
without structural defects. As can be seen from Fig. 2 between
the geopolymer matrix and the wood chips usually cracks will
occur. These cracks will act as defects and will consequently lead
to a decrease in mechanical properties. This behavior could ex-
plain the poor compressive strength of the composites with high
amounts of wood. Also, the cracks in the interface zone could
also be related to the high differences between the toughness
of the matrix and that of the wood since, under external forces,
the compact geopolymer matrix will cause elastic deformation
of the wood and subsequently delamination after the stress
is removed [25]. Moreover, the crack formation could also be
related to the shrinkage of the wood during curing or drying [26].
The microstructural analysis at high magnification also reveals
that the wood particles will absorb or embed the matrix into the
cells (Fig. 2(a)), while at low magnification only the presence
of cracks in the interfacial transition zone could be observed
(Fig. 2(b)). As can also be seen from Fig. 3, the absorption of
the geopolymer matrix into the wood particles will lead to an
increased density and stronger bond between the components of

80 74
70
60 5353
47.13
50 46.01 47.21
S 40
® 32
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10 5 1.03
I 0.88 1.5132 44 1.72
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20 wt.% pine [16]
120 wt. % wood [14]
10 wt. % wood flour* [18]

20 wt. % eucalypt [16]
=8 vol. % wood [17]

20 wt. % wood* [22]
30 wt.% wood wool* [19]

Fig. 1. The influence of wood addition on the physical properties of geopolymers (the values for the references marked with * are approximated

from the charts published in the cited papers)
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Fig. 2. Microstructural analysis of geopolymers containing wood chips: (a) wood particles embending geopolymer matrix; (b) interfacial transi-

tion zone (adapted from [14]

Fig. 3. The morphology of the fly ash geopolymers with different amounts of wood: (a) geopolymer matrix; (b) with 10 wt.% wood; (c) with 25
wt.% wood; (d) with 35 wt.% wood (adapted from [29])

these composites [22]. The high adhesion between the bentonite-
based geopolymer and wood surface was also demonstrated by
Gonultas et al. [27] which studied the potential substitution of
petroleum-based urea formaldehyde adhesives to geopolymer
paste. Ye et al. [28] performed pull out tests to evaluate the in-
terfacial bonding properties between wood surfaces and geopoly-
mers. Moreover, they observed that between beech and spruce,
the beech wood will exhibit stronger mechanical interlocking.
Also, for both types of wood, the interfacial bonding could be
improved by sanding the wood surface and by embedding it into
the geopolymer at an optimum depth of 25 mm.

6. Durability

To assess the durability of the geopolymers with wood
addition, Asante et al. [16] performed an aging test consisting
of 200 cycles of soaking and drying. Based on their evaluation,
the compressive strength of these composites will decrease over
time, especially in the case of those with untreated wood waste.
Moreover, the thermal or alkali treatment of the wood surface
will also improve the interfacial bonding properties [28].

The life cycle assessment of geopolymer bio-composites
showed encouraging results compared to the environmental

impact produced by other products that incorporate wood waste.
According to Bajare et al. [30], these types of composites are
producing around 68.15 kg CO, eq. per square meter of wall
compared to bio-composites based on starch which exhibited
82.89 kg CO, eq. per square meter of wall.

7. Conclusions

The compressive strength of geopolymers could be im-
proved by incorporating low amounts of wood particles. Also, to
increase the flexural strength of these composites, up to 25 wt.%
of wood wastes in the shape of fibers can be incorporated.

The wood addition will mainly show a positive influence
on the thermal insulation capacity of these composites. How-
ever, the durability of the geopolymers will be decreased, due to
a significant increase in porosity and water absorption.

8. Further directions and limitations
Currently, the literature lacks a deep understanding of the

wood behavior in the alkaline environment specific to the ge-
opolymer mixtures. Moreover, it seems that a proper method of



treating the wood to avoid cracks and delamination between the
wood and the geopolymer matrix wasn’t identified.

Due to the intrinsic porosity of the geopolymers as well
as the wood particles, the use of these composites seems to be
limited to indoor applications because during water absorption,
the volume of the wood will increase, then decrease during
drying, which will result in fast deterioration of the geopoly-
mer structure and consequently a rapid decrease in mechani-
cal properties. Moreover, in some regions, freeze-thaw cycles
specific to winter will affect the structure of these composites
even more.

Further research should be conducted on identifying
a proper method for reducing the water absorption of the wood
used in these composites. Also, durability studies should be
conducted on evaluating the freeze-thaw resistance and finding
proper methods of mitigating these limitations.
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