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USING FLY ASH AS A RAW MATERIAL FOR CERAMIC TILES

Ceramic tiles are among the most commonly used ceramic products. However, the excessive consumption of natural resources
poses a significant challenge for this industry. This article presents test results using 0-20 wt.% fly ash as a raw material for produc-
ing ceramic tiles fired at 1150°C. Fly ash serves as an alternative to traditional raw materials. The findings demonstrated that a fly
ash content of 7.5 wt.% was optimal, resulting in the highest bending strength (45.10 MPa) and favorable values for other param-
eters, including volumetric density (2.41 g/cm?), actual density (2.48 g/cm?), apparent density (2.43 g/cm?), and water absorption
(0.28%), all of which remained within permissible limits. Analysis using X-ray Diffraction and Differential Scanning Calorimetry
revealed that the primary mineral constituents of the product are quartz, mullite, fayalite, sillimanite, and albite. Notably, fly ash

plays a pivotal role in facilitating mullite formation.
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1. Introduction

Currently, industrial waste is extensively studied for reuse
applications in civil engineering, and the reuse of fly ash (FA)
from thermal power plants is one of the essential trends [1-5].
Fly ash serves as an alternative source of minerals typically
present in the composition of building ceramics. There are
chemical composition and fine particle similarities between FA
and traditional building ceramics. Both are mixtures of inorganic
oxides such as SiO,, Al,03, Na,O, Fe,05, CaO, TiO,, and other
minerals [6-9]. Furthermore, it has been concluded that adding
FA to a raw mixture enhances the mechanical properties of fired
ceramics [10-12].

When reusing FA in the ceramic industry, the main chal-
lenge is determining its optimal amount in the initial raw ma-
terial mixtures concerning the final properties of the ceramic
product and the manufacturing process. J.H. Kim et al. [13] used
0-40 wt.% FA addition in the manufacturing process of ceramic
wall tiles and observed that the bending strength of ceramic tiles,
including 10 wt.% FA, increased to a level comparable to ceramic
tiles without FA. The water absorption and porosity of the fired
body were slightly altered with increasing fly ash content up to
30 wt.% and decreased with higher FA additions. High calcium

FA (HCFA) was utilized by Rodchom M. et al. as a raw material
for ceramic production [14], replacing potash feldspar in amounts
of 10-40 (wt.%) at sintering temperatures of 1000-1200°C. The
results showed that HCFA promoted the vitrification behavior
of ceramic samples. Optimal ceramic properties were achieved
by adding HCFA content between 10-30 wt.% and sintering at
1150-1200°C. Based on these favorable mechanical and thermal
characteristics, utilizing HCFA as an alternative raw material for
manufacturing ceramic tiles is feasible. To maximize the use of
FA, Ji R. [14] used alumina-rich FA as the primary raw material
for producing porcelain tiles. The rupture modulus of samples
containing 60 wt.% FA and 4 (wt.%) quartz reached 51.28 MPa
at 1200°C. Moreover, the water absorption, apparent porosity,
and linear shrinkage of 0.47 wt.%, 1.1 wt.%, and 13.51 wt.%,
respectively, exceed the requirements for porcelain tiles [14].

Most studies have demonstrated physic-mechanical prop-
erties such as mechanical strength, volumetric density, water
absorption, and shrinkage of the products. Other studies have
employed more advanced analytical methods, such as thermo-
gravimetry (TGA), differential thermal analysis (DTA), and
thermodilatometry (TDA), combined with X-ray diffractometry
(XRD) to provide a more precise explanation of the influence of
FA on the firing process of ceramic products [6,8,12].
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This paper experimentally investigated the influence of
FA (content 0-20 wt.%) on the fundamental properties of ce-
ramic tiles, such as mechanical strength, water absorption, and
porosity. The study aimed to determine the optimal FA content
that yields the highest flexural strength. To further investigate
the sintering changes in this optimal ceramic material sample
compared to the FA-free control, thermogravimetric analysis and
differential thermal analysis, combined with X-ray diffraction
measurements, were performed.

2. Experimental Method

The chemical compositions of FA and samples were
determined by X-ray fluorescence (XRF) — equipment used:
ARL ADVANT’X — Thermo Brand. The mineral phases in the
samples were identified using XRD within a 26 range of 5° to
70°, with a scan step size of 0.02°. The analysis was conducted
on powdered samples using a TOOPIYREAN XRD instrument
from the PANalytical brand.

FA was added to the basic ceramic tile mixture consisting of
40 wt.% kaolin, 30 wt.% clay, and 30 wt.% feldspar. The added FA
content was 2.5 wt.%, 5 wt.%, 7.5 wt.%, 10 wt.%, 15 wt.%, and
20 wt.% by weight, denoted as F2.5, F5, F7.5, F10, F15, and F20,
respectively. FO serves as the reference sample with 0 wt.% FA.

TABLE 1 delineates the detailed chemical compositions
of FA alongside the raw materials employed in the study. By
analyzing the data presented in TABLE 1 in conjunction with
the standards specified in TCVN 10302:201, it is evident that
the FA utilized in these experiments is categorized under class F,
characterized by a calcium oxide (CaO) content of less than
5 wt.%. The results from the chemical composition analysis
suggest that substituting FA at various proportions does not sub-
stantially impact the overall chemical composition of the ceramic
matrices. This observation indicates that the intrinsic chemical
properties of the ceramic bodies remain largely invariant despite
the incorporation of FA at different levels.

The batches were ground in a ball mill, passed through
a 63-mesh sieve, and then dried at 110°C for 24 hours in a labo-
ratory dryer. The dry mix powder was moistened to 5-7 wt.%
and pressed in a mold of 80%20 mm at a pressure of 4 MPa. The
mass of each sample was approximately 25 g+ 1 g. The pressed

samples were dried at 110°C for 24 hours to prevent deformation
during the drying and firing. The samples were fired at 1150°C
for 15 minutes in a laboratory furnace.

The physical and mechanical properties of the samples,
including bending strength (ASTM C648), water absorption,
volumetric density, and actual and apparent density, were de-
termined by ASTM C373 for ceramic tiles.

Compare the bending strength of the samples and identify
the sample with the optimal FA ratio based on the criterion of
the highest bending strength. Differential Scanning Calorimetry
(DSC) analysis was conducted to investigate the changes in ther-
mal properties of the FO and optimally formulated FA samples
across a temperature range of 30°C to 1200°C. The analysis
was performed at a heating rate of 10°C/min, using a sample
mass of 10 mg, and was carried out with a Differential Scanning
Calorimeter (LABSYS EVO). This analysis aims to understand
the enhancement of bending strength better.

3. Results and discussions
3.1. The physical and mechanical properties

The experimental results about the bending strength and
water absorption of the samples are illustrated in Fig. 1. An analy-
sis of the data highlights the inverse correlation between water
absorption and bending strength. Specifically, as water absorp-
tion increases, the bending strength correspondingly decreases.
This trend is evident in the sample designated as F7.5, which has
emerged as the optimal formulation among the tested samples.
F7.5 achieved a remarkable peak bending strength 0f45.10 MPa,
showcasing its superior mechanical properties. Additionally, the
F7.5 sample demonstrated a low water absorption rate of 0.28
wt.%. This minimal water uptake reinforces the sample’s high
bending strength and underscores its robustness and durability
in varying environmental conditions. Such properties are espe-
cially advantageous in fields like construction, where materials
are routinely exposed to moisture. The performance metrics of
the F7.5 sample suggest its potential for broad usage in various
high-stress and high-performance environments.

Additionally, Fig. 2 provides an overview of the volumetric,
actual, and apparent density for a range of samples. According to

TABLE 1
The Chemical compositions of FA and samples (wt.%)
Denote of Chemical compositions (wt.% oxide)
Sample SiO, AL Oy Fe,04 TiO, K,0 CaO Na,O MgO other L.O.I"
FO 57.01 21.07 6.26 1.76 2.80 0.32 3.63 0.12 1.79 5.79
F2.5 56.92 21.16 6.25 1.75 2.81 0.40 3.55 0.13 1.75 5.83
F5 56.83 21.25 6.24 1.73 2.81 0.48 3.46 0.14 1.71 5.87
F7.5 56.73 21.34 6.22 1.71 2.82 0.56 3.38 0.16 1.67 5.91
F10 56.64 21.44 6.21 1.70 2.82 0.64 3.29 0.17 1.63 5.95
F15 56.46 21.62 6.18 1.67 2.83 0.80 3.12 0.20 1.55 6.03
F20 56.27 21.80 6.15 1.63 2.84 0.96 2.95 0.22 1.47 6.11
FA 53.33 24.72 5.71 1.12 2.99 3.50 0.24 0.65 0.19 7.40

(*) Loss on ignition
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Fig. 1. The bending strength and water absorption of the samples

the data analyzed in compliance with the EN 177 specifications,
all samples meet the Blla classification criteria. This classifica-
tion signifies that ceramic materials demonstrate practical and
reliable properties, ensuring their suitability and robustness for
real-world applications. The compliance with the Blla classifi-
cation indicates that these ceramic materials are engineered to
perform efficiently under various conditions, showcasing their
durability and reliability.

Sample F 7.5 had the highest bending strength, but its wa-
ter absorption, volumetric density, actual density, and apparent
density were not the lowest. Thus, the quality of the bond formed
in the the sample played a decisive role in this case. The XRD
analysis results below will show us the compounds formed in
the test samples.

3.2. The results of XRD analysis

The XRD patterns of the samples are shown in Fig. 3. The
XRD analysis indicates the mineralogy transformations occur-
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Fig. 2. The volumetric density, actual and apparent density of the
samples

ring in the ceramic green bodies after firing at 1150°C. The pre-
fired FA sample was initially characterized by the presence of
quartz (observed at 20.84°, 26.63°, and 50.12°), mullite (detected
at 16.48°, 42.85°, and 19.72°), and hematite (seen at 33.17°,
35.65° and 40.88°), as reported in previous studies [15-17].
In contrast, the raw, unburnt sample labeled FO contained quartz,
as well as albite (identified at 22.01° and 28.26°) and kaolinite
(seen at 12.42° and 25.52°) minerals [15,18-20].

Upon subjecting the samples to a firing temperature of
1150°C, significant mineralogical changes were observed. The
kaolinite and albite minerals in all samples, with varying FA
content from 0 wt.% to 20 wt.%, transformed. These minerals
were converted into mullite, quartz, sillimanite (identified at
35.30° and 40.91°), and fayalite (detected at 33.99°, 19.87°, and
39.02°). The synthesis of mullite through the transformation of
clay minerals and fly ash has been extensively documented in
prior research [15,16,21,22]. The transformation process can
be clarified using chemical Egs. (1) to (4). This transformation
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Fig. 3. The XRD patterns of samples
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indicates a substantial alteration in the crystalline structure, con-
tributing to developing the desired ceramic properties through
the high-temperature firing process.

900-1000°C

3.3. The results of DSC analysis

Fig. 4. and Fig. 5. display DSC, DDSC, TG, and DTG
curves for the samples FO and F7.5. The thermal effect observed
in the DSC curves occurs at approximately 77.35°C for the FO

2(Al,04.28i0,) — 2Al,04.3Si0, +SiO, A
: sample and 74.58°C for the F7.5 sample, indicating the release of
(2 23 spmel) (1) . C
physically bound water from the raw materials in both samples.
. 900-1000°C . . Corresponding to these thermal effects, the TG curves show mass
2AL0,38i0, —  2(ALO,.Si0,)+Si0, PORCIng
o losses of 1.41 wt.% for FO and 0.83 wt.% for F7.5. The second
(1+1 silimanite) (2)  set of thermal effects is minor, occurring around 426.05°C and
RRIEKe ) ) 409.16°C in the DSC curves of the FO and F7.5 samples, respec-
3(AL,05.8i0;) — 3A1,05.28i0, +Si0, tively. These thermal effects correlate with mass losses of 1.77
(3 12 mullite) (3)  wt.% for FO and 0.84 wt.% for F7.5, as indicated by the TG curves.
' 1000-1150°C ' These phenomena can be attributed to the raw samples’ pyrolysis
Fe,0;+ Si0, -  Fe,0;5.8i0, of residual organic materials and carbon. Subsequent thermal
(Fayalite) (4) effects are observed at approximately 483.61°C and 490.92°C,
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corresponding to mass losses of 2.87 wt.% for FO and 4.39 wt.%
for F7.5, respectively. These effects are indicative of the dehy-
dration reactions occurring in clay minerals. Additionally, the
allotropic transformation of a-quartz to B-quartz is recorded at
574.25°C for the FO sample and 573.88°C for the F7.5 sample.

The exothermic effect observed at 775.25°C appears ex-
clusively in the DSC curve of sample F7.5, corresponding to the
transformation of calcite present in the FA. As the FO sample
does not contain CaO, no similar effect is observed in its DSC
curve. Initially, the decomposition of calcite (CaCO;) to CaO is
indicated by a mass loss in the TG curve [23,24]. Subsequently,
CaO reacts with silicon dioxide (Si0O,) to form calcium silicates,
resulting in an exothermic effect in the DSC curve [25].

The exothermic effect observed in both DSC curves within
the temperature range of 900-1200°C corresponds to the forma-
tion of the mineral’s spinel and mullite, as described by chemical
reactions 1-4 [25].

It can be inferred that the quantity of mullite crystallized
is proportional to the area of the effect region in the DSC curve.
The area of the mullite crystallization region in the F7.5 sample,
at 478.96 J/g, is significantly larger than that of the FO sample, at
144.04 J/g. Therefore, it can be concluded that including fly ash (FA)
facilitates mullite formation during the firing of these ceramic tiles.

4. Conclusions

The impact of varying fly ash content, ranging from 0 to
20 wt.%, on the properties of ceramic tiles was thoroughly
evaluated. The research findings indicate that the incorporation
of FA at a concentration of 7.5 wt.% yields the highest flexural
strength among the tested samples. This enhancement in me-
chanical performance is notable, while other key properties, such
as volumetric density and water absorption, remain within the
acceptable limits established for ceramic tiles. XRD and DSC
analyses further substantiate these findings. The results from the
XRD analysis demonstrate an increase in mullite content, a valu-
able phase known for its high thermal stability and mechanical
strength, which is a beneficial outcome of using FA. The DSC
data corroborate this observation by indicating significant exo-
thermic effects associated with mullite formation. The ability of
fly ash to enhance mullite formation underscores its potential as
a functional material in ceramic production. The data suggests
that fly ash can effectively contribute to producing high-perfor-
mance ceramic tiles when used at an appropriate concentration.
Therefore, it can be concluded that fly ash, a by-product from
thermal power plants, is a viable and advantageous raw mate-
rial for manufacturing ceramic tiles, offering both performance
benefits and environmental sustainability.
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