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INTERMETALLIC COMPOUND GROWTH, HARDNESS AND CORROSION PROPERTIES OF SAC305/CU SOLDER
BY MICROWAVE HYBRID HEATING

Tin-silver-copper (Sn-3.0Ag-0.5Cu, SAC305) in the form of SAC305/Cu joint were compared under different reflowing
conditions; conventional reflow (CR) and microwave hybrid heating (MR). The results showed that both reflow methods produced
an interfacial and primary intermetallic compound (IMC) layer, specifically n-CusSns, which contributed to increased sample hard-
ness. However, extended MR reflow times led to the formation of e-Cu;Sn, which could potentially reduce solder joint reliability.
Notably, after exposure to corrosion, the samples exhibited minimal pitting, indicating enhanced corrosion resistance following
MR reflow. This improvement is likely due to the more prominent IMC presence in MR compared to CR.
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1. Introduction

Microwave hybrid heating (MR) is recognized as a fa-
vorable alternative to conventional reflow (CR) methods due to
its advantages, such as uniform heating, energy efficiency, and
shorter processing time [1]. It has been suggested that the shorter
processing time is particularly beneficial for sensitive electronic
components [2,3]. However, it is crucial to carefully manage the
processing time to prevent brittleness caused by crack initiation
and excessive intermetallic compound (IMC) formation between
Sn-3.0Ag-0.5Cu (SAC305) solder and the copper (Cu) plate.
Despite the numerous advantages MR offers, there is limited
information regarding the optimization of the reflow process
for SAC305 solder on a deposited Cu substrate.

The choice of reflow method, whether MR or CR, can sig-
nificantly impact the properties of solder joints, affecting their
performance and reliability [4,5]. The distinct heating mechanism
of MR compared to CR can lead to differences in microstructure,
hardness, and corrosion resistance. Investigating these variations

is crucial, as hardness influences wear resistance and durability,
while corrosion resistance determines the long-term reliability
of solder joints, particularly in harsh environments [6,7]. Un-
derstanding these effects will aid in optimizing reflow processes
for improved solder joint performance.

Researchers have highlighted MR showing the potential for
reduced IMC thickness and improved uniformity, and enhances
microstructural refinement in the solder matrix, which contrib-
utes to increased joint hardness and better fatigue resistance [8].
Additionally, shorter processing times of MR and lower ther-
mal gradients have been linked to reduced void formation and
improved wettability in solder joints [9]. In terms of corrosion
resistance, recent studies suggest that the refined microstructure
and controlled IMC growth contribute to better resistance against
chloride-induced corrosion, making it a promising method for
ensuring solder joint reliability in aggressive environments [ 10].
Therefore, this study investigates the effects of MR on the IMC,
hardness, and corrosion of SAC305/Cu joints, comparing these
results with those from the CR process.
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2. Experimental

A 3 cm x 2 cm Cu plate was cleaned with ethanol using
ultrasonic machine, and SAC305 solder paste (Alpha CVP 390)
was applied with a stencil thickness 1 mm to achieve a uniform
surface (Fig. 1). For conventional reflow (CR), the SAC305/
Cu samples were heated at 250°C for 6 minutes (360 seconds)
in a Reflow Oven T200N+. Meanwhile, for microwave hybrid
reflow (MR), the process was conducted using high heating
mode at 50, 100, 150, 200, and 250 seconds with a Panasonic
NN-ST34HM (2.45 GHz, 800 W).

All reflowed samples were examined using a field emission
scanning electron microscope (FESEM, Zeiss SupraTM 35VP),
with micrographs captured in backscattered mode. X-ray dif-
fraction (XRD) analysis (Bruker AXS D9 Diffractometer) was
performed for phase identification, with a scanning angle of 26
ranging from 10° to 90°.

a b c Cu substrate

Reflowed SAC305

Fig. 1. (a) Cu substrate, (b) solder paste printed on the Cu substrate,
and (c) schematic diagram of the reflowed sample on the Cu substrate

For Vickers hardness measurement, the surface of the
reflowed samples was tested using a Vickers hardness machine
(LV Series, Leco) with a force of 0.03 kgf applied. For the nano-
indenter test (Micro Materials), the mounted reflowed samples
were used for measurement, with a force of 20 N applied to the
marked area and a dwell time of 10 seconds. The galvanic cor-
rosion test was performed in a 3.5 wt.% NacCl solution, using
a multimeter to measure the corrosion current between the Cu
plate and all the studied samples. The metastable pitting rate
(MPR) was obtained by dividing the number of transient peaks
recorded by the test duration.

3. Results and discussions
3.1. Microwave Reflow

To evaluate the application of MR, the sample processed by
CR was used for comparison (Fig. 2). At 50s, both CR and MR
samples showed yellowish residues, indicating incomplete flux
reaction during reflow (Fig. 2a). With increased reflow time, the
flux received enough heat to burn completely, changing from

a yellowish to a blackish substance (Fig. 2b-c). However, this
residue did not uniformly cover the entire surface of the MR
samples, as observed with different reflow times. Some of the
burnt flux became trapped beneath a thin Sn surface, forming
an ‘island’ structure (Fig. 2c-f). During microwave reflow, the
flux combusted and was released into the air, leaving a black
burnt mark on the surface of the sample, which caused inward
shrinkage of the solder paste. The uneven distribution of SAC305
solder particles across the sample led to inconsistent flux
evaporation, resulting in uneven shrinkage and a rougher surface
texture.

- 2 TR, T
Fig. 2. Conventional reflow (a) CR-360s and MR samples with reflow
time of (b) 50s, (c) 100s, (d) 150s, (¢) 200s and (f) 250s

3.2. Top View Morphology

The CR-SAC305/Cu sample (Fig. 3a) is characterized by
a sparse distribution of n-CugSns within the B-Sn matrix com-
pared with MR. Since CR uses a slower heat transfer rate via
convection to melt the solder paste, heat energy is released into
the surroundings [11]. The released heat energy is partially lost
to the surroundings due to the slow transfer rate and prolonged
heating time. Slower heating may cause partial melting, lead-
ing to a non-homogeneous distribution of phases, potentially
affecting microstructure formation. Similar findings have been
reported by other researchers, where slower heating in CR results
inuneven growth of IMC, leading to a microstructure with lower
homogeneity and mechanical reliability [12].

The ratio of n-CugSns phase to f-Sn phase increases with
longer reflow times under microwave reflow (Fig. 3b-f). Ad-
ditionally, the presence of white and elongated form associated
with “needle-like” structure of the Ag;Sn phase was detected
multiply at 50 seconds of. The n-CugSns phases become more
irregular. Microwave energy heats the solder paste faster than
conventional methods [13]. This difference in heating produces
distinct surface morphologies between the two reflow meth-



Fig. 3. Surface FESEM micrographs of (a) CR-SAC305/Cu sample,
(b) 50s MR-SAC305/Cu sample, (c) 100s MR-SAC305/Cu sample,
(d) 150s MR-SAC305/Cu sample, (e) 200s MR-SAC305/Cu sample
and (f) 250s MR-SAC305/Cu sample

ods. Similar trends have been observed, where rapid heating
in advanced reflow techniques such as microwave or infrared
heating leads to more refined and uniform distributions of IMC
compared to CR [14].

The n-CugSns phase grows with longer reflow times, tran-
sitioning from isolated grains to a rough, scallop-like structure.
This explains the more dominant presence of nN-CusSns on the
surface of MR-SAC305/Cu samples. Researchers have con-
sistently linked scallop-like IMC morphologies to enhanced
diffusion at higher reflow temperatures, which occur more
effectively under microwave reflow due to its efficient and
localized heating [15].

3.3. Cross Section Morphology

To study IMC formation, the samples were cross-sectioned
(Fig. 4a-c) and observed by FESEM (Fig. 4d-i). The cross-
sectional analysis of the reflowed CR and MR samples revealed
three distinct layers: the SAC solder layer, the interfacial IMC
layer, and the Cu layer (Fig. 4c). As reflow time increased,
Cu atoms diffused into the solder, promoting the formation
of the interfacial IMC layer between the Cu substrate and the
solder surface. A single interfacial IMC layer consisting of the
n-CugSns was observed in between SAC solder layer and Cu
layer in samples CR and MR with reflow times of 100 s or less
(Fig. 4d-f). A comparative analysis at 50 s showed that MR
samples exhibited a more continuous and uniform n-CusSns
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layer (3.06 um thickness average) compared to the CR samples
(2.35 pm thickness average), where the IMC layer appeared
thinner and less homogeneous. This difference is attributed to
the faster and more localized heating provided by MR, which
accelerates the diffusion of Cu into the molten solder and pro-
motes uniform IMC formation [16].

Cu substrate

Ili SACSIJS solder
substrate

Reflowed SAC305

IMC Iayer

Fig. 4. (a) reflowed CR sample, (b) schematic diagram of reflowed sam-
ple on Cu substrate; (c) schematic diagram of cross-sectioned samples;
FESEM cross-section micrograph of CR reflow (d) and MR reflow at
(e) 50s, (e) 50s, (f) 100s, (g) 150s, (h) 200s and (i) 250s

While at MR with reflow times of 150 s or more, two in-
terfacial IMC layers appeared in the samples where one consist
of n-CugSns and another one consists of e-Cu;Sn (Fig. 4g-1).
The bright IMC layer was identified as the n-CugSns phase, and
the darker layer as the e-Cu;Sn phase. These observations align
with findings from other researchers, where extended reflow
times under rapid heating conditions favor the formation of
a secondary e-CusSn layer due to enhanced diffusion kinetics
and prolonged reaction times [17].

In addition to the interfacial IMC layer, primary IMC grains
were also observed within the Sn layer in all reflowed samples.
These grains formed due to the reaction between Sn and Cu atoms
diffused from the Cu substrate, resulting in irregular n1-CugSns
grains. As reflow time increased under MR, the number of IMC
grains decreased, but their size grew, with the e-Cu;Sn phase
appearing at the center of these grains after 100 s. Kirkendall
voids due to Cu and Sn diffusion rate differences were seen in the
MR-SAC305/Cu IMC layer, which may cause brittle fractures
and connectivity loss [18].

3.4. Hardness analysis

For the Vickers hardness measurement, five random points
on the surface of the reflowed samples were measured using
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a Vickers hardness machine (Fig. 5a). For the nano-indenter test,
mounted reflowed samples were used for cross-sectional meas-
urement (Fig. 5b). The average Vickers hardness of CR on the
top (7.344 HV) and MR 50 s on the cross-section (10.964 HV)
reveals that MR produces samples that are almost 40% harder
than the CR-SAC305/Cu samples (Fig. 5¢). Note that the hard-
ness steadily increases with MR time, reaching a maximum
hardness of 13 HV for the sample reflowed for 250 s (Fig. 5d).
The top layer of the CR-SAC305/Cu sample exhibited the lowest
nano-indentation hardness of 0.2 GPa (Fig. 5¢), consistent with
a previous report [19].

For the MR-SAC305/Cu samples, the hardness margin-
ally increased from 0.24 GPa to 0.35 GPa as the reflow time
increased, a trend similar to that observed in the Vickers hardness
measurements. The hardness in the middle and bottom regions
also shows an increasing trend. Moreover, these areas contained
a high concentration of primary and interfacial n-CugSns IMCs.
The presence of both primary and interfacial n-CugSns IMCs acts
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Fig. 5. Schematic diagrams of (a) top section Vickers hardness meas-
urement points, (b) cross-section of hardness measurement points, (c)
Comparison of average Vickers hardness of CR-SAC305/Cu sample
and MR-SAC305/Cu samples (top surface), (d) Vickers hardness of
MR-SAC305/Cu samples with different reflow time and (e) nano-
indentation hardness at different layers

as a barrier to dislocation movement in the 3-Sn grains. As the
number of N-CugSns grains increases with longer reflow times,
dislocation slip becomes more difficult, resulting in an increase
in the hardness of the samples [20].

3.5. Corrosion analysis

The corrosion current for all samples fluctuates during the
first 30 minutes of immersion in a 3.5% NaCl solution, then
gradually stabilizes (Fig. 6). This initial period is critical for in-
vestigating the formation of metastable pitting [21,22]. The CR-
SAC305/Cu sample produces three current transient peaks within
the first 30 minutes (insert Fig. 6al), while only two peaks are
observed for the MR-SAC305/Cu 50s sample (Fig. 6b). As the
reflow time increases, the number of peaks remains between 2
and 3 for all samples. Further EDX analysis of the corrosion
products suggests that higher amounts of chlorine were present
in the CR-SAC305/Cu sample (Fig. 6¢), indicating that the MR
samples have slightly better resistance to pitting corrosion. The
increasingly dominant IMC of n-CusSns may contribute to the
improved corrosion resistance of the MR samples. Interestingly,
all samples were found to produce the same corrosion products:
Sn;O(OH),Cl, (ICDD 98-000-6006) (Fig. 6d).

When the reflowed SAC305/Cu sample was immersed in
the NaCl solution, Sn*" ions dissolved into the solution and re-
acted with both C1"and OH™ ions to form the corrosion products.
The CI ions began attacking the passivation oxide layer, particu-
larly at the intergranular boundaries or surface discontinuities
of the corrosion product, which served as effective diffusion
paths for Cl” ions. This facilitated the pitting process and led to
the formation of deeper pits along the intergranular boundaries
inside the underlying SAC305 solder layer [23]. A competing
process between pitting and re-passivation of the corrosion
product occurred, producing the oxy-hydrochloride phase of
Sn;O(OH),Cl, via reaction (1) [24]:

3Sn +40H +2CI" — Sn;O(OH),Cl, + H,0 + 6~ (1)

4. Conclusion

In this study, different reflowing methods were utilized to
investigate changes in IMC growth in SAC305/Cu joints. The
findings are summarized as follows;

i.  The n-CugSns IMC grew significantly in the bulk solder
with longer MR reflow times, increasing solder joint hard-
ness.-

ii. MR samples exhibited higher chlorine content in the corro-
sion products, indicating slightly lower pitting resistance,
although they produced the same phase of corrosion product
as the CR samples.

These results suggest that the MR method shows significant
promise for reflowing solder alloys. However, careful manage-
ment of reflow time is essential to prevent excessive IMC growth.
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