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MICROSTRUCTURE, WETTABILITY, AND THERMAL PROPERTIES OF SINTERED Sn-0.7Cu EUTECTIC ALLOY
REINFORCED WITH GRAPHENE NANOSHEETS

In this study, various contents of graphene nanosheets (GNS) were successfully incorporated into Sn-0.7Cu base alloy by powder
metallurgy (PM) technique to form Sn-0.7Cu-xGNS composite materials. The synthesis process included mixing and mechanical
alloying, compacting and sintering. The effects of GNS on the microstructure, wettability, microhardness and melting properties
were investigated. Optical and scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS) revealed that the
distribution of GNS in the solder matrix became more evident as the content of GNS increased. The reinforcement particles were
homogeneously distributed at the grain boundaries, resulting in a finer -Sn structure. The melting temperatures of the synthesized
composites, determined by differential scanning calorimetry (DSC), are slightly higher than those of the Sn-0.7Cu base alloy.
Incorporating GNS into the Sn-0.7Cu matrix enhanced microhardness up to 15.65% and reduced the contact angle between the
composite solder and copper substrate up to 48.6%, significantly improving wettability.
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1. Introduction

The electronics industry continuously adapts to the
demands of the latest generation of electronic devices, with
advancements in electronics being paralleled by developments
in soldering technology. Solder materials, which serve as metal
fillers or interlayers, are used to connect various components
in electrical devices or circuits, playing a crucial role in ensuring
reliable solder joints. Historically, Pb-containing solders were
commonly used in the electronics industry. Lead poses a po-
tential risk to human health and the environment and should be
eliminated [1-4]. Recognizing these facts, several nations have
begun to take necessary safety measures, such as establishing
rules limiting or prohibiting the use of lead in electronics. The
European Union (EU) adopted two directives: WEEE (Waste
Electrical and Electronic Equipment) and RoHS (Restriction of
the Use of Certain Hazardous Substances) [5,6]. The produc-
tion of lead-free solder alloys has become a great challenge for
many researchers. New solder materials need to satisfy certain
requirements: low melting temperature, great wettability, and
good mechanical and electrical properties. Hence, Sn-based
lead-free solders, such as Sn-Ag, Sn-Bi, Sn-Cu, Sn-In, Sn-Sb,
Sn-Zn, and Sn-Ag-Cu have emerged as promising alternatives
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to Sn-Pb solders [7-10]. These solder alloys are also used as
a matrix to make composite solder materials.

Composite solder materials are improved compared to
solder alloys. There are several methods for adding reinforce-
ments to these solders, and the most commonly used technique
is the PM method. Certain researchers used various types of
nanoparticles to modify lead-free solders, including metal par-
ticles (such as Al, Co, Ni, Mo, etc.) and non-metals, including
different allotropic forms of carbon, such as fullerenes (FNS),
graphene nanosheets (GNS), carbon nanotubes (CNT), single-
walled carbon nanotubes (SWCNT), and multi-walled carbon
nanotubes (MWCNT) [11,12]. The earliest discovered allotropic
form of carbon is graphite, which has a layered structure, with
one of the layers being a modification known as graphene. Gra-
phene is a two-dimensional (2D) atomic crystal with a thickness
of one atom. It consists of carbon atoms arranged in a honey-
comb hexagonal sp” hybridized crystal structure. Carbon atoms
in the grid are connected by strong covalent bonds [13]. For the
production of nanomaterials, GNS are most frequently used.
They are one-dimensional (1D) nanomaterials formed by etch-
ing or shaping graphene in one direction, consisting of several
compressed single layers of graphene. Their thickness ranges
from 3 to 30 nm, with a length of several micrometers [14,15].
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The unique structural, electrical, thermal, and magnetic prop-
erties of these materials have attracted the attention of a large
number of researchers [11,16-18].

Graphene has poor dispersibility in a metal matrix due to
the presence of Van Der Waals forces, which leads to low wet-
tability and a tendency to easily aggregate [13,19]. To improve
the wettability between graphene nanoparticles and metal
powders, mechanical alloying (MA) and mixing are the most
used techniques for developing graphene-reinforced composite
solders [20]. This method enables the production of new materi-
als that are not obtainable by any other technique. Mechanical
alloying represents a classical method for obtaining composite
materials through solid-state alloying. This method involves
cold welding, fracturing, and rewelding of powder particles
in a high-energy ball mill [21].

Particle reinforcement is the primary strengthening tech-
nique in the production of lead-free composite solders. The ad-
dition of reinforcement particles aims to improve the mechanical
properties and refine the microstructure of the solders [22]. Tsao
et al. incorporated TiO> nanoparticles into Sn—0.7Cu solder
through mechanical alloying, leading to a finer microstructure
and enhanced mechanical properties as the nanoparticle content
increased [23]. Mohd Salleh and colleagues studied the impact
of SizN, particles on the properties of the Sn-0.7Cu solder alloy.
The results showed that the microhardness of the composites
increased by 25% compared to the base solder, while DSC
measurements indicated that the presence of reinforcing SisNa
particles in the composites had a negligible effect on the melting
temperature. Wettability testing using the sessile drop method
revealed that the contact angle between the solder and the cop-
per substrate decreased by 53% compared to the base alloy
[24,25]. Zhong and Gupta reported that the addition of Al.Os
particles in the Sn-0.7Cu alloy increased the microhardness and
tensile strength of the composites as the reinforcement content
increased. Microstructural analysis showed higher porosity
with increasing Al-Os content [26]. According to the available
literature, only Yang and his associates have studied the effect of
different GNS contents (0.02, 0.050, 0.075, and 0.10 wt.%) on
the properties of the Sn-0.7Cu base alloy. The results showed that
with an increase in GNS content, the density of the composite
solder did not change significantly, while the microhardness
reached its highest value of 11.48 HV at 0.075 wt.% GNS. DSC
results revealed that the reinforcing particles had no effect on the

melting temperature of the tested samples. Incorporating GNS
into the matrix alloy improved the wettability and shear strength
of'the composites. Their results indicated that the best properties
(mechanical, electrical, and corrosion resistance) were achieved
at 0.075 wt.% GNS [27,28].

Since there is limited data on sintered Sn-0.7Cu-xGNS
composite materials, this study investigates the effect of various
GNS contents, which have not been previously studied in the
Sn-0.7Cu base alloy, on the microstructure, wettability, micro-
hardness, and melting point. The reinforced composites were
produced using the PM technique. Mechanical alloying, cold
pressing, and conventional sintering were applied to produce the
composite samples. The obtained results were compared with
those of the matrix alloy.

2. Experimental procedures

Elemental metal powders Sn (99.90% purity), Cu (99.96%
purity), and GNS were used to produce Sn-0.7Cu alloy and Sn-
0.7Cu-xGNS composite materials. Atomized Sn and Cu powders,
with particle sizes up to 75 um, were purchased from MB “Wide
Range Metals” in Lithuania. The GNS utilized in this study, with
an average diameter of 5-10 um and a thickness of 3-5 layers,
were supplied by “Shanghai Huirui Chemical Technology”,
China. SEM images of the powders used in this study, obtained
with a “Quanta 650” SEM microscope, are presented in Fig. 1.

The Sn-0.7Cu-xGNS composite materials (with x = 0; 0.02;
0.04; 0.06; 0.08 and 0.1 wt.% GNS) were produced using the
PM technique. First, the Sn and Cu powders were weighed
separately in a specific ratio to form the Sn-0.7Cu base powder,
and then mixed. The mixing process was performed with a “Tur-
bula T2F” three-axis mixer at a speed of 50 rpm for 30 hours,
without using balls or process control agents. Subsequently, the
matrix powder and GNS were mechanically alloyed in a high
energy planetary ball mill “FRITSCH Planetary Ball Mill P-7”.
Mechanical alloying was conducted at a speed of 100 rpm for
3 hours. The balls and the cup were made of tungsten carbide
and the ball-to-powder ratio of 6:1 was utilized.

Each mixture was compacted using a ,,Mohr-Federhaff-
Losenhausen® hydraulic press under a pressure of 300 MPa
at room temperature to produce green compacts with a diameter
of 12.7 mm. The green compacts were conventionally sintered

Fig. 1. SEM image of elemental powders (a) Sn; (b) Cu; (c) GNS
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Fig. 2. Schematic illustration of production composite materials

in an inert argon atmosphere at 185°C for 3 hours. Fig. 2 provides
a schematic illustration of the process for obtaining composite
materials using the PM method.

The microstructural analysis of the sintered composite
samples was performed using a combination of optical mi-
croscopy and SEM equipped with an EDS. After standard
metallographic preparation by grinding and wet polishing, the
samples were etched with a solution of (2 mL HCI + 100 mL of
95% methanol) according to ASTM E3 [29] and ASTM E407
standards [30]. The “Reichert MeF2” optical microscope was
used for metallographic analysis, and the “Tescan Vega 3 LMU”
SEM equipped with an EDS “Oxford Instruments X-act” was
employed for microstructure observations and determination of
the chemical compositions of the samples, including the presence
and distribution of reinforcement particles. The average grain
size was determined using ImageJ software.

The wettability of solder is an important factor that de-
termines the quality of the bond between the solder and the
substrate. Determination of solder wettability often involves
measuring the contact angle (6). Fig. 3 shows a correlation
between the contact angle and surface tensions, which may be
determined using the Young Eq. (1) [31,32]:

}/sg_yls
Vig

cosf = (1)
where y,, is the surface tension between solid and gas, y,, is the
surface tension between liquid solder and gas, yj, is the surface
tension between liquid solder and solid, and & is the contact angle.
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N
\4
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Fig. 3. The contact angle of a drop of liquid metal on a solid substrate
adopted from the literature [31,32]

Copper substrates (20x20x1 mm) were polished with
silicon-carbide paper to achieve a smooth surface. The prepared
substrates were then dipped into acetone for 1 minute to remove
oil and immersed in a hydrochloric acid solution to eliminate the
oxide layer. Subsequently, cylindrical samples with a diameter
of 3 mm and a height of 3 mm, weighing 0.2 g, were placed at
the center of the substrate. The solder flux RMA223 was used
to prevent oxide formation during soldering. The samples, along
with the substrates, were heated to 250°C on a hot plate in air. A
cross-section of the solders was observed using an OM, and the
contact angle was measured using ImageJ software. Additionally,
SEM-EDS analysis was performed to investigate the microstruc-
ture of the solders and solder joints after the soldering process.
Fig. 4 shows different steps during the contact angle measurement.

The Vickers method was used to determine the microhard-
ness of the sintered composite materials, according to the ASTM
E384 standard [33]. Measurements were made on the “PMT-3”
Vickers microhardness tester. A force of 0.5 N was applied, with

Fig. 4. Measuring process for the contact angle (a) sintered sample at Cu substrate; (b) after soldering; (c) cross-section of the molten droplet on
Cu substrate
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a load duration of 15 seconds. The procedure was conducted six
times, and the average value was calculated.

To determine the melting point of the sintered composite
materials TGA-DSC/DTA simultaneous thermal analyzer “TA
Instruments SDT Q600” was used. Samples weighing approxi-
mately 10-20 mg, were heated from 30°C to 350°C at a heating
rate of 10°C/min in a protective nitrogen atmosphere.

3. Results and discussion

Microstructure research is essential for the development
of solder alloys, since it can be used for determine the properties
of solders and solder joints. The samples were characterized us-
ing SEM-EDS analysis to investigate the microstructure, identify
microconstituents, and determine their chemical composition.
EDS analysis confirmed the presence of intermetallic phases
and reinforcing particles distributed along the grain boundaries.

Fig. 5 shows the SEM microphotographs of the investigated
composites with different content of GNS. It can be seen that the
addition of reinforcement particles significantly contributes to
the reduction of the grain size, which was confirmed measuring
the average grain size (Fig. 6).

Acording to Fig. 5 the presence of GNS in the composites
with lower content of GNS (up to 0.04 wt.%) is barely noticeable.
At higher content (from 0.06 wt.% to 0.10 wt.%), its presence
becomes more evident in the microstructures. The GNS are
mainly distributed along the grain boundaries (indicated with

arrows). Yang et al. observed that as the GNS content exceeded
0.08 wt.%, the GNS tended to agglomerate along the grain
boundaries [27].

The average grain size continuously decreased from
23.69 pum to 13.18 um, as the GNS content increased. The Sn-
0.7Cu-0.10GNS composite has the finest microstructure with
approximately 44.37% lower grain size than the Sn-0.7Cu alloy.
The incorporation of GNS into the base matrix results in a grain
refinement. The microstructure of Sn-0.7Cu-xGNS composites
is more uniform and finer than the Sn-0.7Cu base alloy. Accord-
ing to this fact, it can be assumed that, on one hand, GNS act as
centers of heterogeneous nucleation leading to grain refinement,
while on the other hand, the higher the GNS content, the more
significant the barrier effect that prevents grain growth. Similar
results were also reported by Yang et al. in their studies [27].

The EDS results of Sn-0.7Cu-0.10GNS composite are
shown in Fig. 7. The presence of the chemical elements tin,
copper and carbon (C) has been determined. During the sinter-
ing phase of the PM method, the green compacts were heated
to 185°C. This temperature enabled diffusion between particle
surfaces, which was sufficient to densify the green compacts
but insufficient to form a eutectic phase. The distribution of the
intermetallic phase in the sintered Sn-0.7Cu-0.10GNS alloy
appears to be heterogeneous. The primary matrix consists of
nearly pure tin (99.3%). According to the phase diagram [34],
the formation of the CugSns intermetallic compound within the
tin matrix would be expected. EDS analysis in Fig. 7 (spectrum 1
and 4) confirms the presence of an intermetallic compound based

Fig. 5. SEM microphotographs of the Sn-0.7Cu-xGNS samples; (a) Sn-0.7Cu; (b) Sn-0.7Cu-0.02GNS; (c¢) Sn-0.7Cu-0.04GNS; (d) Sn-0.7Cu-

0.06GNS; (e) Sn-0.7Cu-0.08GNS; (f) Sn-0.7Cu-0.10GNS



No. of grains
H

1

Gr.

P e |

20 3
din size (jun)

d=1438 um

b) «

d ™

T) =

d=19.71 um

No. of grains

d 1504 pm

Grain size (jum)

30 40 50

No. of grains

d=13.18 ym

Crain size (Jun)

1705

Fig. 6. Grain size distribution in the PM samples (a) Sn-0.7Cu; (b) Sn-0.7Cu-0.02GNS; (¢) Sn-0.7Cu-0.04GNS; (d) Sn-0.7Cu-0.06GNS; (e) Sn-

0.7Cu-0.08GNS; (f) Sn-0.7Cu-0.10GNS

Fig. 7. The EDS chemical composition analysis of the Sn-0.7Cu-0.10GNS composite
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on Sn and Cu, which, based on its stoichiometric ratio, can be
identified as the CugSns phase. Additionally, the presence of
carbon (spectrum 2, 3 and 4) indicates that GNS is distributed
along the grain boundaries. These results align with findings
previously reported by Huang et al. and Salleh et al. [35,36].
To identify the distribution of the presented elements in the
composite, element distribution maps were performed (Fig. 8).

30um

In the micrograph in Fig. 8a, grain boundaries can be observed,
where graphene particles has agglomerated. Figs. 8(b-d) illus-
trates the distribution of Sn, Cu, and C, respectively in the inves-
tigate sample. Even though GNS has agglomerated on the grain
boundaries, a homogeneous distribution of carbon throughout
the structure can also be observed (Fig. 8d). This indicates the
successful mechanical alloying of GNS in the matrix.

30um

Fig. 8. Element distribution maps of Sn-0.7Cu-0.10GNSs composite a) SEM microphotograph; (b) Sn; (¢) Cu; (d) C
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Fig. 9. Microhardness of Sn-0.7Cu-xGNS samples

Microhardness testing is a commonly used method for
characterizing the mechanical properties of solid surfaces. The
microhardness of a solder alloy is affected by dislocation move-
ment, as well as grain growth and the microstructure refinement.
Fig. 9 shows the changes in microhardness of the sintered sam-
ples as a function of the weight content of GNS.

It can be noticed that the microhardness of the obtained
Sn-0.7Cu-xGNSs composite samples continually increases with
the increasing amount of GNS. A similar result was reported
by Yin and colleagues [37]. Sn-0.7Cu base alloy has a micro-
hardness of 18.72 HV, 45, while composite with a GNS content
of 0.10 wt.% has a microhardness of 21.65 HV o5, which is
approximately 15.65% higher than the Sn-0.7Cu alloy. The
increase in microhardness is mainly attributed to the uniform
distribution of GNS and the microstructure refinement induced



by reinforcement particles. During the sintering process, Sn-
0.7Cu exhibits good fluidity, while GNS act as a hard second
phase. The GNS are surrounded by the Sn-0.7Cu matrix and
are pinned at the grain boundaries, as shown in Fig. 7. GNS are
dispersed within the Sn-0.7Cu matrix (Fig. 8), contributing to
dispersion strengthening. Additionally, a higher GNS content
reduces interparticle spacing, making dislocation movement
more difficult, which also leads to an increase in microhardness.
A higher GNS content also increases stress due to the difference
in the coefficient of thermal expansion between the matrix and
the reinforcement [28]. These stresses cause the deformation of
the crystal lattice of the metal matrix and the accumulation of
dislocations, which is another factor contributing to the increase
in microhardness.

In the soldering process, the melting temperature plays
a determining role. The identification of the characteristic tem-
peratures of the phase transformations was performed according
to the recommendations from the literature [34]. Fig. 10 illus-
trates the DSC curves of the sintered Sn-0.7Cu-xGNS samples.
DSC heating curves for the six investigated samples exhibit an
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endothermic peak at nearly the same temperature, corresponding
to the eutectic reaction B-Sn + n-CugSns — R.

The onset temperature of the first observed peak was identi-
fied as the eutectic reaction temperature, corresponding to the
solidus temperature, whereas the peak temperature of the second
thermal effect was considered the liquidus temperature [38]. The
eutectic temperature of the Sn-0.7Cu base alloy obtained by DSC
was 228.82°C which is slightly higher than the literature value
0f 227°C [34]. The melting properties of Sn-0.7Cu-xGNS alloys
are summarized in TABLE 1.

TABLE 1
Melting properties of Sn-0.7Cu-xGNS alloys
Samples Ts (°C) T (°C) AT (°C)
Sn-0.7Cu 228.82 237.21 8.39
Sn-0.7Cu-0.02GNS 230.03 239.16 9.13
Sn-0.7Cu-0.04GNS 229.41 238.81 9.40
Sn-0.7Cu-0.06GNS 228.71 237.62 8.91
Sn-0.7Cu-0.08 GNS 229.80 236.60 6.80
Sn-0.7Cu-0.10GNS 229.23 236.72 7.49
b)
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Fig. 10. DSC heating curves (a) Sn—0.7Cu; (b) Sn-0.7Cu-0.02GNS; (c) Sn—0.7Cu-0.04GNS; (d) Sn—0.7Cu-0.06GNS; Sn—0.7Cu-0.08GNS, Sn—

0.7Cu-0.10GNS
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Based on the results, it can be concluded that the presence
of GNS in composite materials with a Sn-0.7Cu base alloy has
a negligible effect on the eutectic and liquidus temperatures.
The melting range (AT) for all tested samples is less than 10°C.
Similar findings were published by Yang et al. in their study [27].

The wettability of Sn-0.7Cu-xGNS solders was charac-
terized by measuring the contact angle. Fig. 11 presents the
measured values of contact angle between the solders and Cu
substrate. The results indicate that adding GNS enhances the
wettability of composite solders. The base Sn-0.7Cu solder has
a contact angle of 38.09°, while the composite solder with a
GNS content of 0.10 wt.% has a contact angle of 19.59°, which
is approximately 48.6% lower than the Sn-0.7Cu base solder.

Contacl angle 8 (%)

0.00 0.02 0.04 0.06 0.08 0.10
GNS (wr. %)

Fig. 11. Contact angle results of composite solders Sn-0.7Cu-xGNS
on Cu substrate

10 pm

According to the literature solders with 6 <30° show very
good wetting, with 8 =30°-40° show good wetting, § = 40°-55°
show acceptable wetting, while with 8= 55°-70° show poor wet-
ting, and 6> 70° show very poor wetting [32]. Composites with
higher GNS content then 0.02 wt.% show very good wetting.

Based on the obtained results, the following assumption
was made. GNS are non-polar molecules with a hexagonal
honeycomb lattice composed of carbon-carbon covalent bonds.
When the GNS in the molten composite solder come into
contact with the non-polar molecules in organic acids in the
solder flux during soldering, the dispersion between the non-
polar molecules of these compounds may occur. This reduces
the interphase tension between the solder and the flux. Based
on Young's Eq. (1), reducing the interpase tension lowers the
contact angle, which improves the wettability of the composite
solders. Similar results have been reported by Yin et al. and Liu
et al. in their studies [37,39].

After the wettability test, the microstructure of the solders
and the interfacial growth of intermetallic compounds at the
solder/Cu interface were examined. Fig. 12 shows the corre-
sponding SEM microstructures of the intermetallic layer after
soldering process.

SEM-EDS analysis revealed that the matrix consists of
a solid solution of B-Sn, along with a needle-like intermetallic
phase CusSns, which is embedded within the B-Sn structure.
It was observed that a typical wave-serrated CusSns intermetallic
layer formed at the interface between the Sn-0.7Cu-xGNS solder
and the Cu substrate after the soldering process. The thickness
of'the intermetallic layer was determined using ImagelJ software.

e ——
10 pm

—
10 pm

Fig.12. SEM micrographs of the intermetallic layer between Sn-0.7Cu-xGNS solders and Cu substrate (a) Sn-0.7Cu; (b) Sn-0.7Cu-0.02GNS; (¢)
Sn-0.7Cu-0.04GNS; (d) Sn-0.7Cu-0.06GNS; (e) Sn-0.7Cu-0.08GNS; (f) Sn-0.7Cu-0.10GNS



The results indicated that the thickness of the intermetallic
layer decreased with increasing GNS content in the solder. The
high specific surface area of GNS slows down the diffusion of
metal atoms when added to the solder. GNS acts as a barrier
to the diffusion of Cu and Sn atoms, leading to the formation of
a thinner intermetallic layer. Additionally, due to its low density
and tendency to agglomerate, GNS accumulates at the interface
between the solder and the substrate, further restricting the dif-
fusion of Cu atoms from the copper substrate. As a result, the
reduced diffusion of Cu slows the formation of the intermetallic
layer. Therefore, the presence of GNS in Sn-0.7Cu-xGNS com-
posite solders inhibits the growth of intermetallic compounds at
the solder/substrate interface. This finding aligns with reported
results in the literature [40].

4. Conclusions

In this study, Sn-0.7Cu-xGNS composite materials with

x =0; 0.02; 0.04; 0.06; 0.08 and 0.1 wt.% GNS were success-

fully synthesized by the PM technique. The conclusions can be

summarized as follows:

*  The synthesized composites have a more homogeneous
and finer-grained microstructure compared to the Sn-0.7Cu
base alloy. The GNS are mainly distributed along the grain
boundaries, resulting in a finer $-Sn structure.

*  The addition of GNS to the Sn-0.7Cu base alloy enhanced
the microhardness of the composite material.

»  There is no significant changes in the eutectic and liquidus
temperatures of the composite materials compared to solder
matrix.

*  With increasing GNS content, the composite solders ex-
hibit a reduced contact angle, improved wettability, and a
thinner intermetallic layer at the solder/substrate interface
compared to the Sn-0.7Cu base solder.
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