JOURNAL OF APPLIED
CRYSTALLOGRAPHY
ISSN: $1600-5767$
journals.iucr.org/j

A remark on $a b$ initio indexing of electron backscatter diffraction patterns

Adam Morawiec

J. Appl. Cryst. (2021). 54, 1844-1846

IUCr Journals CRYSTALLOGRAPHY JOURNALS ONLINE

Author(s) of this article may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr.

For further information see https://journals.iucr.org/services/authorrights.html

JOURNAL OF APPLIED CRYSTALLOGRAPHY

Received 18 June 2021
Accepted 7 September 2021

Edited by A. Barty, DESY, Hamburg, Germany

Keywords: crystal diffraction; indexing; electron backscatter diffraction; EBSD; lattice parameters.

Supporting information: this article has supporting information at journals.iucr.org/j

A remark on ab initio indexing of electron backscatter diffraction patterns

Adam Morawiec*

Polish Academy of Sciences, Institute of Metallurgy and Materials Science, Reymonta 25, 30-059 Krakow, Poland. *Correspondence e-mail: nmmorawi@cyf-kr.edu.pl

There is a growing interest in ab initio indexing of electron backscatter diffraction (EBSD) patterns. The methods of solving the problem are presented as innovative. The purpose of this note is to point out that ab initio EBSD indexing belongs to the field of indexing single-crystal diffraction data, and it is solved on the same principles as indexing of patterns of other types. It is shown that reasonably accurate EBSD-based data can be indexed by programs designed for X-ray data.

1. Introduction

A number of papers have recently been published on determination of lattice parameters based on electron backscatter diffraction (EBSD) patterns (Dingley \& Wright, 2009; Li et al., 2014; Li \& Han, 2015; Han et al., 2018; Ming et al., 2018; Han \& Zhao, 2018; Oishi-Tomiyasu et al., 2021; Nolze et al., 2021). The process can be seen as semi-automatic $a b$ initio indexing. The papers consider the problem in nearly complete detachment from other single-crystal indexing methods.

The indexing of single-crystal diffraction patterns is a step in crystal structure determination, and it has been studied from various viewpoints for many years. In particular, many efforts have been made to create efficient and robust software for automatic indexing of X-ray diffraction data: see Duisenberg (1992), Carr et al. (1992), Kabsch (1993, 2010), Ravelli et al. (1996), Otwinowski \& Minor (1997), Campbell (1998), Powell (1999), Pflugrath (1999), Pilz et al. (2002), Leslie et al. (2002), Sauter et al. (2004), Tamura (2014), Morawiec (2017, 2021) and Gevorkov et al. (2019) for selected accounts from the past three decades. There is a question whether the $a b$ initio indexing of EBSD patterns is so different that it needs to be investigated as a separate crystallographic problem. Does it require a distinct formalism? Is it justified to portray ab initio EBSD indexing as a previously unconsidered issue? The answers to these questions are negative. One could scrutinize particular steps of EBSD indexing and indicate their analogs in other indexing procedures, but it is easier to prove the similitude simply by showing that EBSD data can be indexed by programs designed for single-crystal X-ray data.

2. Example data

Briefly, an EBSD pattern consists of diffraction bands. Blurred band edges are low-curvature conics. They correspond to nodes of the reciprocal lattice of the diffracting crystal. For more on the geometry of formation of EBSD patterns see, for example, Dingley \& Wright (2009) or Ming et al. (2018).

For illustration, the experimental EBSD pattern shown in Fig. 1 is used. It is suitable for comparisons because its original version was meticulously analyzed by Li \& Han (2015). That paper also provides all data needed to process the pattern: the radiation wavelength λ, the pattern center, and the ratio of the pattern width and the source-to-detector distance. For our test, edges of 26 bands indexed by Li \& Han (2015) were marked manually by visual inspection, without any bandprofile model. The dimensions of the pattern were 499×380 pixels, and the screen resolution was $1680 \times$ 1050 pixels. The positions of the edges were used to get the scattering vectors $\mathbf{H}_{i}(i=1,2, \ldots, 26)$. For a given band, the scattering vector is $\mathbf{H}=\left(\widehat{\mathbf{k}}_{1}-\widehat{\mathbf{k}}_{2}\right) / \lambda$, where $\widehat{\mathbf{k}}_{j}(j=1,2)$ is the unit vector directed toward the foot of the perpendicular from the pattern center of the j th edge (see Fig. 2 and the supplementary material). It is quite obvious that, owing to the small Bragg angles, the magnitudes of the vectors \mathbf{H}_{i} are affected by relatively large errors.

Figure 1
Experimental EBSD pattern of a mineral (diopside) published by Li \& Han (2015). The cross marks the location of the pattern center. Approximate positions of edges of the band No. 24 used by Li \& Han (2015) are marked by dashed blue lines and those used here by continuous red lines.

Figure 2
Schematic illustration of the configuration of edges of an EBSD band, $\widehat{\mathbf{k}}_{j}$ vectors and the scattering vector \mathbf{H}.

3. Indexing with software for monochromatic X-ray data

The example EBSD data were processed by the programs DirAx (Duisenberg, 1992) and Ind_X (Morawiec, 2017), designed for indexing diffraction patterns obtained from monochromatic radiation sources. Both DirAx and Ind_X accept the scattering vectors \mathbf{H}_{i} as the input data, both search for a reciprocal lattice matching these vectors, and both are available on the internet. $\operatorname{Dir} A x$ is at http://www.crystal.chem. uu.nl/distr/dirax/, and Ind_X can be downloaded from http:// imim.pl/personal/adam.morawiec/.

The solutions for the example data were obtained without any elaborate processing. Knowing that the vector magnitudes are inaccurate, relatively large tolerances were allowed. DirAx indexed 16 bands, and the remaining ten were ignored as nonfitting reflections. Ind_X indexed 19 reflections. Both programs indexed the data correctly in the sense that the solutions were equivalent to that given by Li \& Han (2015). [The only exception was the band No. 24 with indices resulting from Ind_X twice those listed by Li \& Han (2015); the band marked for this study turned out to be broader than that used by Li \& Han (2015).] The supplementary material contains the DirAx and Ind_X input and output files, and the relationships between reflection indices listed by Li \& Han (2015) and those obtained using DirAx and Ind_X.

4. Indexing with software for Laue patterns

The large errors of magnitudes of the scattering vectors affect conventional indexing. If the magnitudes are discarded by normalizing the vectors, the problem becomes analogous to $a b$ initio indexing of Laue diffraction patterns (Carr et al., 1992; Ravelli et al., 1996; Tamura, 2014). The prototype Laue indexer IndX_Laue introduced by Morawiec (2021) was applied to the example data. The input of $I n d X_{-}$Laue consists of normalized scattering vectors $\widehat{\mathbf{H}}_{i}=\mathbf{H}_{i} /\left|\mathbf{H}_{i}\right|$, and the program is available at the same internet location as Ind_X. With a large extent of the search for the solution, the program indexed all 26 reflections.
$A b$ initio indexing of normalized scattering vectors provides only relative dimensions of the lattice, i.e. the absolute volume of the primitive cell is indeterminable [see e.g. the article by Carr et al. (1992)]. Moreover, there are no grounds for specifying the order of a reflection, and only relatively prime indices are ascribed to reflections. However, having also crude estimates of the magnitudes of the scattering vectors, one can fit the scaling factor and the orders of the indexed reflections. An algorithm for that is given in Appendix A. Application of the algorithm to the example data gave an indexing solution equivalent to that obtained using DirAx and Ind_X, apart from the fact that all reflections were indexed. See the supplementary material for details.

5. Concluding remarks

Indexing of EBSD patterns is closely related to indexing of other single-crystal data. EBSD patterns can be indexed by
software designed for X-ray data. This was demonstrated using computer programs convenient for the author, but other tools could have been applied for that purpose.

The problem of $a b$ initio EBSD indexing is similar to indexing pink-beam data. In both cases, the directions of the scattering vectors are relatively accurate, whereas their magnitudes are uncertain. For pink-beam data, the ranges of the uncertainties are related to the spectral width of the radiation, and in the case of EBSD-based data, they are linked to inaccuracies of band widths. Like EBSD patterns, some pink-beam X-ray data are indexed using software designed for monochromatic data [see e.g. Martin-Garcia et al. (2019) and Tolstikova (2020)].

We stress that this note is not to advocate indexing EBSD patterns with software for X-ray data. Each diffraction method has a specific geometry, it is convenient to analyze particular geometries using dedicated interfaces, and all new software for processing EBSD patterns will be appreciated. The main message here is that dealing with ab initio EBSD indexing does not require starting from scratch. One can take advantage of the experience gained in indexing diffraction patterns of other types. Considering the EBSD indexing problem in isolation from existing indexing methods hinders the diffusion of ideas and increases the fragmentation of the research field. There is a significant cost of ignoring the bigger picture and duplicating past efforts (Daughton, 2001).

APPENDIX A

Algorithm for determining the scaling factor

Let D be a matrix with direct basis vectors (in rows) in the Cartesian laboratory reference frame. [D is the inverse of the UB matrix of Busing \& Levy (1967).] The basis resulting from indexing normalized scattering vectors is known except for a scaling factor; with the factor denoted by $S(>0)$, one has the matrix $\Delta=D / S$ such that $|\operatorname{det} \Delta|=1$. The true volume of the direct lattice cell is $V=|\operatorname{det} D|=S^{3}$. Let h_{i} in typewriter font denote the column matrix with relatively prime indices of the i th reflection. The relationship between the scattering vector \mathbf{H}_{i} and its indices h_{i} is $D \mathbf{H}_{i}=S \Delta \mathbf{H}_{i} \simeq m_{i} \mathrm{~h}_{i}$, where $m_{i} \geq 1$ is a small integer. With $\check{\mathbf{h}}_{i}=\Delta^{-1} \mathrm{~h}_{i}$, one has

$$
\begin{equation*}
S \mathbf{H}_{i} \simeq m_{i} \check{\mathbf{h}}_{i} . \tag{1}
\end{equation*}
$$

Given N indexed scattering vectors \mathbf{H}_{i} and corresponding vectors $\check{\mathbf{h}}_{i}$, from the above relationship, one can determine the common factor S and the orders m_{i} of individual reflections by the following procedure.

Consider a selected reflection j (i.e. a selected \mathbf{H}_{j} and $\check{\mathbf{h}}_{j}$), assuming that $m_{j}=1$:
(1) Get the scaling factor σ_{j} of the j th reflection by minimizing $\left|\sigma \mathbf{H}_{j}-\check{\mathbf{h}}_{j}\right|^{2}$ with respect to σ; it is given by $\sigma_{j}=\mathbf{H}_{j} \cdot \check{\mathbf{h}}_{j} /\left|\mathbf{H}_{j}\right|^{2}$.
(2) With the obtained σ_{j}, for each $i=1,2, \ldots, N$, get the integer factor $\mu_{i}(j) \geq 1$ by minimizing $\left|\sigma_{j} \mathbf{H}_{i}-\mu \check{\mathbf{h}}_{i}\right|^{2}$ with respect to μ; it is given by $\mu_{i}(j)=\max \left(1,\left\lfloor\sigma_{j} \mathbf{H}_{i} \cdot \check{\mathbf{h}}_{i} /\left|\check{\mathbf{h}}_{i}\right|^{2}\right\rceil\right)$, where $\lfloor x\rceil$ denotes the integer nearest to x.
(3) Knowing $\mu_{i}(j)$ for $i=1,2, \ldots, N$, compute the scaling factor $\Sigma(j)$ applicable to all indexed reflections by minimizing $\sum_{i=1}^{N}\left|\sigma \mathbf{H}_{i}-\mu_{i}(j) \check{\mathbf{h}}_{i}\right|^{2}$ with respect to σ; it is given by

$$
\begin{equation*}
\Sigma(j)=\frac{\sum_{i=1}^{N} \mu_{i}(j) \mathbf{H}_{i} \cdot \check{\mathbf{h}}_{i}}{\sum_{i=1}^{N}\left|\mathbf{H}_{i}\right|^{2}} \tag{2}
\end{equation*}
$$

(4) Compute $R(j)=\sum_{i=1}^{N}\left|\Sigma(j) \mathbf{H}_{i}-\mu_{i}(j) \check{\mathbf{h}_{i}}\right|^{2}$.

Since the initial assumption $m_{j}=1$ may be false, steps 1-4 must be repeated for all $j=1, \ldots, N$ (or at least for a sufficient number of them). The actual scaling factor S corresponds to $j=$ J leading to minimal R, i.e. with $J=\arg \min _{j} R(j)$, one has $S=$ $\Sigma(J)$ and $m_{i}=\mu_{i}(J)$. The actual indices of the i th reflection are $m_{i} \mathrm{~h}_{i}$.

References

Busing, W. R. \& Levy, H. A. (1967). Acta Cryst. 22, 457-464.
Campbell, J. W. (1998). J. Appl. Cryst. 31, 407-413.
Carr, P. D., Cruickshank, D. W. J. \& Harding, M. M. (1992). J. Appl. Cryst. 25, 294-308.
Daughton, C. G. (2001). Environ. Forensics, 2, 277-282.
Dingley, D. J. \& Wright, S. I. (2009). J. Appl. Cryst. 42, 234-241.
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
Gevorkov, Y., Yefanov, O., Barty, A., White, T. A., Mariani, V., Brehm, W., Tolstikova, A., Grigat, R.-R. \& Chapman, H. N. (2019). Acta Cryst. A75, 694-704.
Han, M., Chen, C., Zhao, G., Li, L., Nolze, G., Yu, B., Huang, X. \& Zhu, Y. (2018). Acta Cryst. A74, 630-639.
Han, M. \& Zhao, G. (2018). Microsc. Microanal. 24, 670-671.
Kabsch, W. (1993). J. Appl. Cryst. 26, 795-800.
Kabsch, W. (2010). Acta Cryst. D66, 125-132.
Leslie, A. G. W., Powell, H. R., Winter, G., Svensson, O., Spruce, D., McSweeney, S., Love, D., Kinder, S., Duke, E. \& Nave, C. (2002). Acta Cryst. D58, 1924-1928.
Li, L. \& Han, M. (2015). J. Appl. Cryst. 48, 107-115.
Li, L., Ouyang, S., Yang, Y. \& Han, M. (2014). J. Appl. Cryst. 47, 1466-1468.
Martin-Garcia, J. M., Zhu, L., Mendez, D., Lee, M.-Y., Chun, E., Li, C., Hu, H., Subramanian, G., Kissick, D., Ogata, C., Henning, R., Ishchenko, A., Dobson, Z., Zhang, S., Weierstall, U., Spence, J. C. H., Fromme, P., Zatsepin, N. A., Fischetti, R. F., Cherezov, V. \& Liu, W. (2019). IUCrJ, 6, 412-425.

Ming, H., Guangming, Z. \& Ye, Z. (2018). Ultramicroscopy, 195, 136146.

Morawiec, A. (2017). J. Appl. Cryst. 50, 647-650.
Morawiec, A. (2021). J. Appl. Cryst. 54, 333-337.
Nolze, G., Tokarski, T., Rychłowski, Ł., Cios, G. \& Winkelmann, A. (2021). J. Appl. Cryst. 54, 1012-1022.

Oishi-Tomiyasu, R., Tanaka, T. \& Nakagawa, J. (2021). J. Appl. Cryst. 54, 624-635.
Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326. Pflugrath, J. W. (1999). Acta Cryst. D55, 1718-1725.
Pilz, K., Estermann, M. \& van Smaalen, S. (2002). J. Appl. Cryst. 35, 253-260.
Powell, H. R. (1999). Acta Cryst. D55, 1690-1695.
Ravelli, R. B. G., Hezemans, A. M. F., Krabbendam, H. \& Kroon, J. (1996). J. Appl. Cryst. 29, 270-278.

Sauter, N. K., Grosse-Kunstleve, R. W. \& Adams, P. D. (2004). J. Appl. Cryst. 37, 399-409.
Tamura, N. (2014). Strain and Dislocation Gradients From Diffraction, edited by R. Barabash \& G. Ice, pp. 125-155. London: Imperial College Press.
Tolstikova, A. (2020). PhD thesis, Universität Hamburg, Germany.

Supplementary material

to the paper 'A remark on ab initio indexing of EBSD patterns' by A. Morawiec

This file contains results of indexing of the example EBSD pattern shown in Fig. 1. Input and output files of DirAx, Ind_X and IndX_Laue are in Tables 2-7. For convenience, the reflection indices listed in [1] are repeated in Table 1.
At the end, there is a derivation of the formula for determination of scattering vectors from positions of edges of EBSD bands.

Table 1: Reflection indices $\mathrm{h}_{L i}$ listed in [1].

	h	k	l
1	31	-20	-2
2	-12	7	1
3	-29	18	2
4	-43	28	3
5	6	-4	0
6	37	-24	-2
7	-25	16	2
8	6	-3	0
9	-24	16	2
10	-13	9	1
11	1	0	0
12	0	1	0
13	96	-61	-6
14	55	-36	-3
15	-6	4	1
16	0	0	1
17	-6	3	1
18	48	-31	-3
19	46	-29	-3
20	-44	28	3
21	-41	26	3
22	23	-14	-1
23	84	-54	-5
24	34	-22	-2
25	7	-4	0
26	12	-7	0

Table 2: DirAx input file. The parameters of the program are given in the first five commented lines. The wavelength ($1.54056 \AA$) is not used in computations. The following lines contain Cartesian components (in \AA^{-1}) of the scattering vectors $\boldsymbol{H}_{i}(i=1,2, \ldots, 26)$.

LevelFit: $1 / 100 \quad$ [1/A]maximal D: 15 A		
IndexFitFactor:		3.00
Delta axes zero		0.1 A
Delta angles zero 1.54056		0.2 deg
-0.381613	0.245448	-0.040362
-0.413404	-0.507353	0.056016
0.444278	0.351223	0.001019
-0.508321	0.399310	0.078563
-0.317655	-0.161782	0.195319
-0.027002	-0.373507	0.238714
0.588358	-0.022478	-0.159996
0.174490	-0.628767	-0.254487
-0.578591	0.535110	0.240619
0.199885	-0.604781	-0.115379
-0.055426	-0.603809	-0.087438
0.178921	0.911853	0.068243
0.825259	0.142683	0.231164
-0.068180	-0.788425	0.309236
-0.610669	0.098132	0.320284
0.908075	0.061048	-0.502669
0.775171	0.699036	-0.265922
0.331995	-0.301704	0.086418
0.540518	0.253031	0.062502
0.580123	0.047910	-0.021023
0.577995	0.087090	-0.081528
0.103485	-0.482924	-0.312692
0.382132	-0.344033	0.269722
0.251451	-0.502520	0.235751
-0.262867	0.326993	0.256804
0.476508	-0.461288	-0.44005

Table 3: $\operatorname{Dir} A x$ output file.
results from DIRAX for EBSD_DAT
Friday 21 May 2021 - 10:17:09
$===$
Lambda: 1.54056 LevelFit: $1 / 100$ IndexFitFactor: 3.00
IndexFit $=$ LevelFit*IndexFitFactor $=(1 / 100) * 3.00=1 / 33$
Dmax: 15 Acceptance Level (ACL) : 19

nr	h	k	1	theta	phib	chib	dth	dom	dch
$1=\mathrm{N}$	-1.379	-0.045	-2.662	20.54	57.25	-5.08			
2 H	-2.947	-1.981	0.904	30.39	140.83	4.89	-0.862	-0.843	-0.605
$3=N$	2.767	1.834	0.058	25.86	-51.67	0.10			
$4=\mathrm{N}$	-1.841	0.862	-3.590	30.10	51.85	6.93			
5 H	-2.015	-0.002	-0.025	18.25	116.99	28.72	0.094	-0.505	-0.222
6 H	-1.020	0.020	2.145	20.00	175.87	32.52	1.116	0.987	0.200
7 H	2.969	0.037	1.974	28.03	-92.19	-15.20	-0.403	0.309	0.449
8 H	-0.006	-3.047	3.005	32.65	-164.49	-21.31	0.314	-0.160	-0.339
9 H	-2.103	2.028	-4.128	39.40	47.24	16.98	1.450	0.589	-0.108
$10=\mathrm{N}$	0.022	-2.202	3.294	29.91	-161.71	-10.27			
$11=\mathrm{N}$	-1.240	-2.463	2.387	28.16	174.76	-8.21			
$12=\mathrm{N}$	2.397	3.539	-3.385	45.87	-11.10	4.20			
13 H	4.021	2.988	2.962	42.01	-80.19	15.43	0.006	0.384	-0.431
14 H	-2.016	-0.994	4.059	40.88	175.06	21.34	0.606	0.128	0.172
15 H	-3.102	1.006	-2.057	32.45	80.87	27.38	1.064	0.276	-0.204
16 H	5.002	-0.977	2.046	53.21	-86.15	-28.91	-0.031	-0.258	0.369
$17=\mathrm{N}$	5.243	2.073	-0.883	56.07	-47.96	-14.29			
18 H	0.995	0.028	2.835	20.60	-132.26	10.90	-1.186	1.238	-0.143
19 H	3.001	1.998	1.009	27.53	-64.91	5.98	0.004	-0.133	0.021
20 H	2.915	0.974	1.922	26.66	-85.28	-2.07	-0.890	0.308	-0.107
$21=\mathrm{N}$	3.033	0.778	1.601	27.04	-81.43	-7.94			
22 H	-0.037	-3.003	1.936	26.76	-167.91	-32.34	-0.292	-0.810	-0.455
$23=\mathrm{N}$	0.983	0.933	3.620	26.57	-132.00	27.68			
24=N	0.106	0.042	3.785	27.99	-153.42	22.76			
25 H	-0.954	1.959	-1.940	22.27	38.80	31.47	-0.678	-0.440	0.092
26 H	1.934	-3.001	2.965	37.81	-134.07	-33.57	-0.526	-0.660	-0.089

Niggli values:	27.5157	40.0229	40.3409
	2.8509	8.0440	8.1928

results from DIRAX for EBSD_DAT
Friday 21 May 2021 - 10:17:09

For each accepted (type H) reflection, indices h obtained by DirAx (Table 3) are related to indices $\mathrm{h}_{L i}$ listed in [1] and Table 1 above by $\pm T \mathrm{~h}=\mathrm{h}_{L i}$, where

$$
T=\left[\begin{array}{rrr}
-3 & 19 & 17 \\
2 & -12 & -11 \\
0 & -1 & -1
\end{array}\right]
$$

For instance, the reflection 13 has the indices

$$
\mathrm{h}_{L i}=\left[\begin{array}{r}
96 \\
-61 \\
-6
\end{array}\right]=+T \mathrm{~h}=T\left[\begin{array}{l}
4 \\
3 \\
3
\end{array}\right] \approx T\left[\begin{array}{l}
4.021 \\
2.988 \\
2.962
\end{array}\right] .
$$

The $\pm \operatorname{sign}$ in front of T is related to the choice of the first edge of a band. The choice determines the direction of the scattering vector.

Table 4: Ind_X input file. The lines following the keyword _Reflections contain Cartesian components (in \AA^{-1}) of the scattering vectors $\boldsymbol{H}_{i}(i=1,2, \ldots, 26)$.

_NumberOfReflections		
26		
_Reflections		
-0.381613	0.245448	-0.040362
-0.413404	-0.507353	0.056016
0.444278	0.351223	0.001019
-0.508321	0.399310	0.078563
-0.317655	-0.161782	0.195319
-0.027002	-0.373507	0.238714
0.588358	-0.022478	-0.159996
0.174490	-0.628767	-0.254487
-0.578591	0.535110	0.240619
0.199885	-0.604781	-0.115379
-0.055426	-0.603809	-0.087438
0.178921	0.911853	0.068243
0.825259	0.142683	0.231164
-0.068180	-0.788425	0.309236
-0.610669	0.098132	0.320284
0.908075	0.061048	-0.502669
0.775171	0.699036	-0.265922
0.331995	-0.301704	0.086418
0.540518	0.253031	0.062502
0.580123	0.047910	-0.021023
0.577995	0.087090	-0.081528
0.103485	-0.482924	-0.312692
0.382132	-0.344033	0.269722
0.251451	-0.502520	0.235751
-0.262867	0.326993	0.256804
0.476508	-0.461288	-0.440052
_MinMaxVolumeOfPrimitiveCell		
-100.0 1000.0		
_TheMainCriterion		
0.24		
_MaxAllowedMillerIndex		
8		

Table 5: The best solution from the $I n d _X$ output file.

		h	k	1		Real (hkl)				Error	
1					I	-1.39	-2.64	-0.06	1	0.531	
2	H- I	-3	1	-2	I	-2.93	0.91	-1.97	1	0.116	
3	-h \|	3	0	2	I	2.76	0.05	1.83	,	0.296	
4					1	-1.85	-3.56	0.84	1	0.489	
5	H- I	-2	0	0	1	-2.00	-0.02	0.00	1	0.016	
6	-h	-1	2	0		-1.00	2.14	0.04	1	0.146	
7	H- I	3	2	0	I	2.96	1.95	0.05	1	0.076	
8	H- I	0	3	-3	।	-0.01	2.98	-3.03	-	0.035	
9	H-	-2	-4	2		-2.10	-4.10	2.00	1	0.140	
10					I	0.03	3.27	-2.18		0.330	
11	\|				1	-1.23	2.38	-2.45	1	0.629	
12											
13	H-	4	3	3		4.04	2.94	3.01	1	0.072	
14	H-	-2	4	-1	\|	-1.98	4.05	-0.96	1	0.066	
15	H- I	-3	-2	1	I	-3.09	-2.03	1.00	1	0.093	
16	H- \|	5	2	-1	\\|	4.97	2.01	-0.97	1	0.040	
17	-h \|	5	-1	2	I	5.21	-0.90	2.06	,	0.243	
18	-h	1	3	0		1.01	2.82	0.05		0.188	
19	H-	3	1	2		3.00	1.00	2.01	1	0.007	
20	H-	3	2	1	।	2.92	1.90	0.99	,	0.129	
21					I	3.03	1.58	0.79	-	0.470	
22	H- I	0	2	-3	\|	-0.05	1.92	-2.99	1	0.092	
23	\|				1	1.01	3.60	0.96	1	0.399	
24	-h \|	0	4	0		0.13	3.77	0.07	,	0.277	
25	H- I	-1	-2	2	1	-0.95	-1.92	1.95	1	0.107	
26	H- I	2	3	-3	I	1.92	2.94	-2.99	1	0.104	
	and		ve	rs		t of	26.	Quality	:	0.673	

Primitive cell :

$$
\begin{array}{ccc}
5.230 & 6.320 & 6.342 \\
85.40 & 75.17 & 75.68
\end{array}
$$

Volume of the cell : 196.35

For an individual (type $\mathrm{H}-$ or -h) reflection, indices h listed in Table 5 are related to the indices $\mathrm{h}_{L i}$ by $\pm T \mathrm{~h}=\mathrm{h}_{L i}$, where

$$
T=\left[\begin{array}{rrr}
-3 & 17 & 19 \\
2 & -11 & -12 \\
0 & -1 & -1
\end{array}\right]
$$

The only exception is the reflection 24 with the indices related via $+T \mathrm{~h}=2 \mathrm{~h}_{L i}$.

Table 6: IndX_Laue input file. The lines following the keyword Reflections contain Cartesian components of normalized scattering vectors $\boldsymbol{H}_{i} /\left|\boldsymbol{H}_{i}\right| \quad(i=1,2, \ldots, 26)$.

```
_NumberOfReflections
            26
_Reflections
\begin{tabular}{rrr}
-0.837745 & 0.538825 & -0.088605 \\
-0.629377 & -0.772406 & 0.085280 \\
0.784472 & 0.620162 & 0.001799
\end{tabular}
-0.780638 0.613227 0.120650
    -0.781473 -0.398006 0.480511
    -0.060801 -0.841051 0.537529
    0.964302 -0.036841 -0.262229
    0.249130 -0.897727 -0.363346
    -0.702157 0.649390 0.292006
    0.308787 -0.934281 -0.178241
    -0.090473 -0.985618 -0.142729
    0.192028 0.978652 0.073242
    0.949862 0.164226 0.266067
    -0.080245 -0.927951 0.363962
    -0.876754 0.140890 0.459840
    0.873390 0.058716 -0.483469
    0.719649 0.648967 -0.246875
    0.726702 -0.660396 0.189160
    0.900750 0.421665 0.104157
    0.995958 0.082252 -0.036092
    0.979358 0.147565 -0.138142
    0.177033 -0.826144 -0.534925
    0.658131 -0.592515 0.464532
    0.412641 -0.824654 0.386876
    -0.534384 0.664747 0.522059
    0.598686 -0.579564 -0.552884
_ExtentOfTheSearch
    9
_AngularDeviationCriterion
        2.0
_MaxAllowedMillerIndex
    8
```

Table 7: The best solution from the IndX Laue output file.

The scaling factor determined using the algorithm described in Appendix A is $S=5.78807 \AA$. The corresponding volume of the cell is $V=S^{3}=193.91 \AA^{3}$. With the default volume of $1000 \AA^{3}$ used by IndX_Laue, the parameters a, b and c resulting from IndX_Laue need to be multiplied by $(193.91 / 1000)^{1 / 3}=0.578807$. Thus, the primitive cell parameters are $a=5.161, b=6.266$ and $c=6.279$. The integers m determining the order of reflections are
equal to 1 in all cases except the reflections $5,8,9$ and 24 for which they are $2,3,2$ and 4 , respectively. The relationship between the resulting reflection indices h and the indices $\mathrm{h}_{L i}$ is $\pm T \mathrm{~h}=\mathrm{h}_{L i}$, where

$$
T=\left[\begin{array}{rrr}
-3 & 19 & 17 \\
2 & -12 & -11 \\
0 & -1 & -1
\end{array}\right]
$$

The only exception is the reflection 24 with the indices related via $-T \mathrm{~h}=2 \mathrm{~h}_{L i}$.

On recommendation of an anonymous reviewer, below is a derivation of the formula for determination of the scattering vector \boldsymbol{H} from positions of edges of an EBSD band.

Let \boldsymbol{k}_{0} and \boldsymbol{k} denote the wave vectors of the incident and the diffracted beams, respectively. The derivation is based on the Laue equation $\boldsymbol{H}=\boldsymbol{k}-\boldsymbol{k}_{0}$ and the condition $\boldsymbol{k}^{2}=\boldsymbol{k}_{0}^{2}\left(=1 / \lambda^{2}\right)$ arising from energy conservation ${ }^{1}$. Edges of EBSD bands are generated by divergent beams, i.e., directions of the vectors \boldsymbol{k}_{0} are arbitrary. The formula governing the wave vectors of diffracted beams is obtained by eliminating \boldsymbol{k}_{0}; one has

$$
\boldsymbol{H} \cdot(\boldsymbol{H}-2 \boldsymbol{k})=\left(\boldsymbol{k}-\boldsymbol{k}_{0}\right) \cdot\left(\left(\boldsymbol{k}-\boldsymbol{k}_{0}\right)-2 \boldsymbol{k}\right)=\boldsymbol{k}_{0}^{2}-\boldsymbol{k}^{2}=0 .
$$

Thus, the wave vectors \boldsymbol{k} corresponding to the scattering vector \boldsymbol{H} are on the cone described by $\boldsymbol{H} \cdot(\boldsymbol{H}-2 \boldsymbol{k})=0$. Similarly, the wave vectors corresponding to $-\boldsymbol{H}$ are on the cone $(-\boldsymbol{H}) \cdot((-\boldsymbol{H})-2 \boldsymbol{k})=\boldsymbol{H} \cdot(\boldsymbol{H}+2 \boldsymbol{k})=0$. Let the wave vector \boldsymbol{k}_{1} be on the first cone and and \boldsymbol{k}_{2} on the second cone, i.e.,

$$
\boldsymbol{H} \cdot\left(\boldsymbol{H}-2 \boldsymbol{k}_{1}\right)=0, \quad \boldsymbol{H} \cdot\left(\boldsymbol{H}+2 \boldsymbol{k}_{2}\right)=0 .
$$

By adding and subtracting the sides of these equations, one gets

$$
\begin{equation*}
\boldsymbol{H} \cdot\left(\boldsymbol{H}-\left(\boldsymbol{k}_{1}-\boldsymbol{k}_{2}\right)\right)=0, \quad \boldsymbol{H} \cdot\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}\right)=0 . \tag{1}
\end{equation*}
$$

If $\boldsymbol{H}, \boldsymbol{k}_{1}$ and \boldsymbol{k}_{2} are coplanar, one can express the scattering vector as a linear combination of \boldsymbol{k}_{1} and \boldsymbol{k}_{2}. With $\boldsymbol{H}=\alpha_{1} \boldsymbol{k}_{1}+\alpha_{2} \boldsymbol{k}_{2}$, eqs.(1) can be written in the form

$$
\boldsymbol{H} \cdot\left(\left(\alpha_{1} \boldsymbol{k}_{1}+\alpha_{2} \boldsymbol{k}_{2}\right)-\left(\boldsymbol{k}_{1}-\boldsymbol{k}_{2}\right)\right)=0, \quad\left(\alpha_{1} \boldsymbol{k}_{1}+\alpha_{2} \boldsymbol{k}_{2}\right) \cdot\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}\right)=0 .
$$

Using $\boldsymbol{H} \cdot \boldsymbol{k}_{1}=\boldsymbol{H}^{2} / 2$ and $\boldsymbol{H} \cdot \boldsymbol{k}_{2}=-\boldsymbol{H}^{2} / 2$, one obtains

$$
\begin{equation*}
\left(\alpha_{1}-\alpha_{2}-2\right) \boldsymbol{H}^{2}=0, \quad\left(\alpha_{1}+\alpha_{2}\right)\left(1 / \lambda^{2}+\boldsymbol{k}_{1} \cdot \boldsymbol{k}_{2}\right)=0 . \tag{2}
\end{equation*}
$$

Both \boldsymbol{H}^{2} and $1 / \lambda^{2}+\boldsymbol{k}_{1} \cdot \boldsymbol{k}_{2}$ are positive for physical reasons, and this means that eqs.(2) are solved by $\alpha_{1}=1$ and $\alpha_{2}=-1$. Thus, the scattering vector can be expressed as

$$
\begin{equation*}
\boldsymbol{H}=\boldsymbol{k}_{1}-\boldsymbol{k}_{2}=\left(\widehat{\boldsymbol{k}}_{1}-\widehat{\boldsymbol{k}}_{2}\right) / \lambda, \tag{3}
\end{equation*}
$$

where $\widehat{\boldsymbol{k}}_{j}=\boldsymbol{k}_{j} /\left|\boldsymbol{k}_{j}\right|=\lambda \boldsymbol{k}_{j}(j=1,2)$, and the vectors $\widehat{\boldsymbol{k}}_{1}$ and $\widehat{\boldsymbol{k}}_{2}$ are coplanar with \boldsymbol{H}. When $\widehat{\boldsymbol{k}}_{j}$ is directed toward the foot of the perpendicular from the pattern center of the j-th edge, the condition of coplanarity is satisfied. Thus, knowing the vectors $\widehat{\boldsymbol{k}}_{j}$ for the band edges and the wavelength λ, one can determine the scattering vector corresponding to the band by using eq.(3).

References

[1] Lili Li and Ming Han. Determining the Bravais lattice using a single electron backscatter diffraction pattern. J. Appl. Cryst., 48:107-115, 2015.

[^0]
[^0]: ${ }^{1}$ Formation of EBSD patterns involves inelastic scattering but the energy loss is negligible.

